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On the solution of dual integral equations
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Abstract

A quick method of solution of dual integral equations involving a kernel comprised of trigonometric functions is explained.

Certain solvability criteria are obtained in terms of forcing functions for the unique solution of the dual integral equations.
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1. Introduction

Dual integral equations are often encountered in different branches of mathematical physics and they generally arise

while solving a boundary value problem with mixed boundary conditions (see Sneddon [1] and Debnath Lokenath

[2]). Chakrabarti et al. [3,4] studied linear water wave scattering by a vertical barrier by reducing the corresponding

boundary value problem to dual integral equations with a trigonometric kernel. The behavior of one of the integrals

of these dual integral equations at the point where the boundary condition changes plays a crucial role in determining

their solution.

The dual integral equations

2

π

∫ ∞

0

A(ξ)

[

n
∑

k=0

ck+1
∂2k+1

∂y2k+1
+ c0

]

sin ξy dξ = f (y), y ∈ L

2

π

∫ ∞

0

ξ A(ξ)

[

n
∑

k=0

ck+1
∂2k+1

∂y2k+1
+ c0

]

sin ξy dξ = g(y), y ∈ (0,∞) \ L, (1.1)

where ci , i = 0, 1, 2, . . . , 2n+1, are real or complex constants and L = (0, a) or (a,∞), a > 0, are uniquely solvable

when the functions g and f are suitably differentiable. They arise in connection with the radiation or scattering of

surface water waves propagating in deep water with surface tension, associated with partial vertical wave-makers or

barriers taken into account (see [5]). In this context, L represents the complement of the vertical wave-maker or barrier

position along the positive axis.
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In the present note, we attempt to solve the above dual integral equations (1.1) completely by converting them into

logarithmic singular integral equations. With the aid of the bounded solutions of these singular integral equations,

a unique solution for the dual integral equations is obtained under certain restrictions or conditions on the forcing

functions f and g.

2. The method of solution

We start with solving the dual integral equations (1.1) with L = (0, a). They can be equivalently written as a set

of differential equations

T

[

2

π

∫ ∞

0

A(ξ) sin ξy dξ

]

= f (y), 0 < y < a

T

[

2

π

∫ ∞

0
ξ A(ξ) sin ξy dξ

]

= g(y), a < y < ∞,

where T =
∑n

k=0 ck+1
∂2k+1

∂y2k+1 + c0. After solving the above (2n + 1)th-order ordinary differential equations, they

transform into a new set of dual integral equations

2

π

∫ ∞

0

A(ξ) sin ξy dξ =
2n
∑

k=0

Dkeλk y + T −1[ f (y)] ≡ h1(y), 0 < y < a (2.1)

2

π

∫ ∞

0

ξ A(ξ) sin ξy dξ =
2n
∑

k=0

Ekeλk y + T −1[g(y)] ≡ h2(y), a < y < ∞, (2.2)

where T −1[ f (y)], T −1[g(y)] are the particular integrals with respect to the differential operator T and λk, k =
0, 1, 2, . . . , n, are the roots of the polynomial equation

∑n
k=0 ck+1x2k+1 + c0 = 0.

Accommodating zero along the y axis, we must have from Eq. (2.1) that

h
(2i)
1 (y) = 0, i = 0, 1, 2, . . . , n, i.e.,

2n
∑

k=0

Dkλ
2i
k +

d2i

dy2i

[

T −1( f (y))

]

∣

∣

∣

∣

∣

y=0

= 0, i = 0, 1, 2, . . . , n, (2.3)

where we follow the notation that the superscript in parentheses for a function, such as h1(y), denotes the order of

differentiation.

The dual integral equations (2.1) and (2.2) can be differentiated up to 2i, i = 0, 1, 2, . . . , n, times and the resulting

sets of dual integral equations are given by

2

π

∫ ∞

0
(−1)iξ2i A(ξ) sin ξy dξ =

2n
∑

k=0

Dkλ
2i
k eλk y +

d2i

dy2i
T −1[ f (y)]

≡ h
(2i)
1 (y), 0 < y < a (2.4)

2

π

∫ ∞

0
(−1)iξ2i+1 A(ξ) sin ξy dξ =

2n
∑

k=0

Ekλ
2i
k eλk y +

d2i

dy2i
T −1[g(y)]

≡ h
(2i)
2 (y), a < y < ∞, for i = 0, 1, 2, . . . , n. (2.5)

We define

P2i+1(y) =
2

π
(−1)i

∫ ∞

0

ξ2i+1 A(ξ) sin ξy dξ, 0 < y < a, i = 0, 1, 2, . . . , n (2.6)

and then we clearly see that P2i+1(y) = (−1)i P
(2i)
1 (y), i = 1, 2, . . . , n.

From the Eqs. (2.5) and (2.6), by the Fourier sine transform, we derive that

ξ2i+1 A(ξ) =
∫ ∞

0

Q2i+1(y) sin ξy dy, (2.7)
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where

Q2i+1(y) =

{

(i) P
(2i)
1 (y), 0 < y < a

(ii) (−1)ih
(2i)
2 (y), a < y < ∞,

i = 0, 1, 2, . . . , n.

By equating A(ξ) recursively in the relation (2.7) and using integration by parts, we must have the following

conditions:

h
(2i)
2 (a) = 0, i = 0, 1, 2, . . . , n − 1,

i.e.,

2n
∑

k=0

Ekλ
2i
k eλka +

d2i

dy2i

[

T −1[g(y)]
]

∣

∣

∣

∣

y=a

= 0, i = 0, 1, 2, . . . , n − 1 (2.8)

and

P(2i+1)(a) = (−1)i h
(2i+1)

2 (a) = 0, i = 0, 1, 2, . . . , n − 1. (2.9)

Note that the conditions (2.9) are not suitable for representing them in terms of the unknown constants. For this

purpose, we derive a set of logarithmic singular integral equations and utilize their bounded solution. The restriction

of the bounded solution will be clear a little later.

Substituting ξ2i A(ξ), i = 0, 1, 2, . . . , n, from Eq. (2.7) into the relation (2.4), we derive a set of singular integral

equations

∫ a

0

P
(2i)
1 (u) log

∣

∣

∣

∣

u + t

u − t

∣

∣

∣

∣

du = −
∫ ∞

a

h
(2i)
2 (u) log

∣

∣

∣

∣

u + t

u − t

∣

∣

∣

∣

du +
2n
∑

k=0

Dkλ
2i
k eλk t

+
d2i

dt2i

[

T −1[ f (t)]
]

≡ Ri (t), i = 0, 1, 2, . . . , n, (2.10)

where we have utilized the following relation (see [6], Eq. 3.741(1)):

∫ ∞

0

sin ξy sin ξ t

ξ
dξ = −

1

2
log

∣

∣

∣

∣

y − t

y + t

∣

∣

∣

∣

, for y, t ∈ (0,∞).

The bounded solutions of the logarithmic singular integral equations (see [7]), described by the relation (2.10), are

given by

P
(2i)
1 (u) =

2

π
u
√

a2 − u2

∫ a

0

R
(1)
i (t)

√
a2 − t2(u2 − t2)

dt, 0 < u < a, (2.11)

provided that

∫ a

0

R
(1)
i (t)

√
a2 − t2

dt = 0, i = 0, 1, 2, . . . , n. (2.12)

The bounded property of the solution is that P
(2i)
1 (u) = 0, i = 0, 1, 2, . . . , n, at the end points 0 and a. Now, we

multiply the relation (2.11) by u and integrate between 0 and a. After using the integral

∫ a

0

t2
√

b2 − t2

t2 − x2
dt = −

π

2
x2

which is evaluated by the standard contour integration technique, we obtain that

a P
(2i−1)

1 (a) = −
∫ a

0

t2 R
(1)

i (t)
√

a2 − t2
dt, i = 1, 2, . . . , n. (2.13)
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From the relations (2.9) and (2.13), the conditions expressed in terms of the unknown constants are obtained as

∫ a

0

t2 R
(1)
i (t)

√
a2 − t2

dt + a h
(2i−1)

2 (a) = 0, i = 1, 2, . . . , n (2.14)

The relations (2.3), (2.8), (2.12) and (2.14) together will determine the 4n + 1 unknown parameters that appear in

Eqs. (2.1) and (2.2) completely. Thus, we conclude here that the dual integral equations (1.1) have a unique solution

provided a set of solvability criteria are satisfied by the forcing functions f and g. We remark here that in Eq. (2.5),

accommodating infinity along the y axis, one can equate certain constants, whose coefficient is eλk y with the root λk

having a positive real part, to zero. These extra conditions are naturally utilized in the physical problems of practical

interest.
For the case of L being (a,∞) in the relation (1.1), the equivalent form of the dual integral equations

2

π

∫ ∞

0

(−1)iξ2i+1 A(ξ) sin ξy dξ =
2n
∑

k=0

Dkλ
2i
k eλk y +

d2i

dy2i
T −1[ f (y)]

≡ h
(2i)
1 (y), 0 < y < a (2.15)

2

π

∫ ∞

0

(−1)iξ2i A(ξ) sin ξy dξ =
2n
∑

k=0

Ekλ
2i
k eλk y +

d2i

dy2i
T −1[g(y)]

≡ h
(2i)
2 (y), a < y < ∞, for i = 1, 2, . . . , n, (2.16)

can be similarly solved. By defining P2i+1(y), i = 0, 1, 2, . . . , n, as in (2.6) for a < y < ∞, we obtain from the

relation (2.15) that

ξ2i+1 A(ξ) =
∫ ∞

0

Q2i+1(y) sin ξy dy, (2.17)

with

Q2i+1(y) =

{

(−1)i h
(2i)
1 (y), 0 < y < a

P
(2i)
1 (y), a < y < ∞,

i = 0, 1, 2, . . . , n.

Then, the conditions of the solvability criteria are specified as

(i) h
(2i)
2 (0) = 0, i.e.,

2n
∑

k=0

Ekλ
2i
k +

d2i

dy2i

[

T −1( f (y))

]

∣

∣

∣

∣

y=0

= 0, i = 0, 1, 2, . . . , n.

(ii) h
(2i)
1 (a) = 0, i.e.,

2n
∑

k=0

Dkλ
2i
k eλka +

d2i

dy2i

[

T −1[g(y)]
]

∣

∣

∣

∣

y=a

= 0, i = 0, 1, 2, . . . , n − 1.

(iii) P(2i+1)(a) = (−1)ih
(2i+1)

1 (a) = 0, i = 0, 1, 2, . . . , n − 1, (2.18)

where in this case

P(2i+1)(y) =
2

π
(−1)i

∫ ∞

0

ξ2i+1 A(ξ) sin ξy dξ, a < y < ∞, i = 0, 1, 2, . . . , n.

(iv)

∫ ∞

a

t S
(1)
i (t)

√
a2 − t2

dt = 0, i = 0, 1, 2, . . . , n,

with

Si (t) = −
∫ ∞

a

h
(2i)
1 (u) log

∣

∣

∣

∣

u + t

u − t

∣

∣

∣

∣

du +
2n
∑

k=0

Ekλ
2i
k eλk t +

d2i

dt2i

[

T −1[g(t)]
]

.

Condition (iii) is not in a suitable form to be expressed in terms of the unknown constants and it cannot be modified

as in the previous case. Using certain integral relations, an equivalent relation between h
(2i+1)

1 (y) and h
(2i+1)

2 (y) is

derived as in the following:
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Multiplying the Eq. (2.16) by 1√
y2−a2

and integrating between a and ∞, after using the integral relation (see [6]

pp. 419)

2

π

∫ ∞

a

sin ξy
√

y2 − a2
dy = J0(aξ),

where J0 is a Bessel function, gives

∫ ∞

0
ξ2i A(ξ)J0(aξ)dξ = (−1)i

∫ ∞

a

h
(2i)
2 (y)

√

y2 − a2
dy. (2.19)

Making the substitution from the relation (2.17) into the relation (2.19) and use of the integral (see [6] pp. 744)
∫ ∞

0

J0(aξ)
sin ξy

ξ
dξ =

π

2

gives

−P
(2i−1)

1 (a) + (−1)i

∫ a

0

h
(2i)
1 (y)dy = (−1)i π

2

∫ ∞

a

h
(2i)
2 (y)

√

y2 − a2
dy, i = 1, 2, . . . , n. (2.20)

From the relations (2.18) and (2.20), we determine the required condition as

h
(2i−1)

1 (a) +
∫ ∞

a

h
(2i)
2 (y)

√

y2 − a2
dy = 0, i = 1, 2, . . . , n.
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