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1 Introduction
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Figure 1: An MAS in-
stance with value 5/6.

We study the NP-hardness of approximating a rich class of optimization problems
known as Ordering-Constraint Satisfaction Problems (OCSPs). An instance of
an OCSP is given by a set X of variables and a set C of local ordering constraints

where each constraint is specified by a set of permitted permutations on a subset
of the variables. The objective is to find an ordering of X maximizing the fraction
of constraints satisfied by the induced local permutations.

A simple example of an OCSP is the problem MAXIMUM ACYCLIC SUB-
GRAPH (MAS) where one is given a directed graph G = (V,A) with the task of
finding an acyclic subgraph of G containing as many arcs as possible. Phrased
as an OCSP, V is the set of variables and each arc u→ v is a constraint “u≺ v”
dictating that u should precede v. The maximum fraction of constraints simulta-
neously satisfiable by an ordering of V is then precisely the fraction of edges in a
largest acyclic subgraph. Since each constraint involves exactly two variables, MAS is an OCSP of width

two. Another example of an OCSP is the MAXIMUM BETWEENNESS (MAX BTW) problem [12]. In this
width-three OCSP, a constraint on a triplet of variables (x,y,z) is satisfied by the local orderings x≺ z≺ y

and y≺ z≺ x – in other words, z has to be between x and y, giving rise to the name of the problem.

Determining the optimal value of an MAS instance is NP-hard and one turns to approximations.
An algorithm is called a c-approximation if, when applied to an instance I, the algorithm is guaranteed
to produce an ordering O satisfying a fraction of constraints within a factor c of the optimum, i. e.,
val(O;I) ≥ c · val(I). As in the case of classical constraint satisfaction, every OCSP admits a naive
approximation algorithm which picks an ordering of X uniformly at random without even looking at the
constraints. For example, this algorithm yields an 1/2-approximation in expectation for MAS.

Surprisingly, there is evidence that this mindless procedure achieves the best polynomial-time approx-
imation constant: assuming the Unique Games Conjecture (UGC) [17], MAS is hard to approximate
within 1/2+ ε for every ε > 0 [14, 13]. An OCSP is called approximation resistant if it exhibits this
behavior, i. e., if it is NP-hard to approximate within a constant better than the random-ordering algorithm.
In fact, the results of Guruswami et al. [13] are more general and contrasting with classical constraint
satisfaction: assuming the UGC, they prove that every OCSP of bounded width is approximation resistant.

In many cases—such as for VERTEX COVER, MAX CUT, and as we just mentioned, for all OCSPs—
the UGC implies optimal NP-hard inapproximability constants which are not known without the conjec-
ture. For instance, the problems MAS and MAX BTW have, until the present work, only been known
to be NP-hard to approximate within 65/66+ ε [19] and 47/48+ ε [9], resp., far from matching the
respective random-assignment thresholds of 1/2 and 1/3. In fact, while the UGC implies that all OCSPs
are approximation resistant, there were no results proving NP-hard approximation resistance of an OCSP
prior to this work. In contrast, there is a significant body of work on NP-hard approximation resistance
of classical Constraint Satisfaction Problems (CSPs) [16, 21, 11, 6]. Furthermore, the UGC is still
very much open and recent algorithmic advances have given rise to subexponential algorithms (as the
completeness-error ε goes to 0) for Unique Games [1, 5] calling the conjecture into question. Several
recent works have also been aimed at bypassing the UGC for natural problems by providing comparable
results without assuming the conjecture [15, 6].
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Problem Approx. factor UG-inapprox. NP-inapprox. This work
MAS 1/2+Ω(1/logn) [8] 1/2+ ε [14] 65/66+ ε [19] 14/15+ ε

MAX BTW 1/3 1/3+ ε [7] 47/48+ ε [9] 1/2+ ε

MAX NBTW 2/3 2/3+ ε [7] - 2/3+ ε

m-OCSP 1/m! 1/m!+ ε [13] - 1/⌊m/2⌋!+ ε

Table 1: Prior results and improvements.

1.1 Results

In this work we obtain improved NP-hardness of approximating various OCSPs. While a complete
characterization such as in the UG regime still eludes us, our results improve the knowledge of what we
believe are four important flavors of OCSPs; see Table 1 for a summary of the present state of affairs.

We address the two most studied OCSPs: MAS and MAX BTW. For MAS, we show a factor
(14/15+ ε)-inapproximability improving the factor from 65/66+ ε [19]. For MAX BTW, we show a
factor (1/2+ ε)-inapproximability improving from 47/48+ ε [9].

Theorem 1.1. For every ε > 0, it is NP-hard to distinguish MAS instances with value at least 15/18−ε

from instances with value at most 14/18+ ε .

Theorem 1.2. For every ε > 0, it is NP-hard to distinguish MAX BTW instances with value at least

1− ε from instances with value at most 1/2+ ε .

The above two results are inferior to what is known assuming the UGC and in particular do not
prove approximation resistance. We introduce the MAXIMUM NON-BETWEENNESS (MAX NBTW)
problem which accepts the complement of the predicate in MAX BTW. This predicate accepts four of the
six permutations on three elements and thus a random ordering satisfies two thirds of the constraints in
expectation. We show that this is optimal up to smaller-order terms.

Theorem 1.3. For every ε > 0, it is NP-hard to distinguish MAX NBTW instances with value at least

1− ε from instances with value at most 2/3+ ε .

Finally, we address the approximability of a generic width-m OCSP as a function of the width m.
In the CSP world, the generic version is called m-CSP and we call the ordering version m-OCSP. We
devise a simple predicate, “2t-Same Order” 2t-SO, on m = 2t variables that is satisfied only if the first t

elements are relatively ordered exactly as the last t elements. A random ordering satisfies only a fraction
1/t! of the constraints and we prove that this is essentially optimal, implying a (1/⌊m/2⌋!+ ε)-factor
inapproximability of m-OCSP.

Theorem 1.4. For every ε > 0 and integer m≥ 2, it is NP-hard to distinguish m-OCSP instances with

value at least 1− ε from value at most 1/⌊m/2⌋!+ ε .

1.2 Proof overviews

With the exception of MAS, our results follow a route which is by now standard in inapproximability:
starting from the optimization problem LABEL COVER (LC), we give reductions using dictatorship-test
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gadgets, also known as long-code tests. We describe these reductions in the context of MAX NBTW to
highlight the new techniques in this paper.

The reduction produces an instance I of MAX NBTW from an instance L of LC such that val(I)>
1− ε if val(L) = 1 while val(I) < 2/3+ ε if val(L) ≤ η for some η = η(ε). By the PCP Theorem
and the Parallel Repetition Theorem [3, 2, 20], it is NP-hard to distinguish between val(L) = 1 and
val(L)≤ η for every constant η > 0 and thus we obtain the result in Theorem 1.3. The core component
in this paradigm is the design of a dictatorship test: a MAX NBTW instance on [q]L∪ [q]R, for integers q

and label sets L and R. Let π be a map R→ L. Each constraint is a tuple (~x,~y,~z) where~x ∈ [q]L, while
~y,~z ∈ [q]R. The distribution of tuples is obtained as follows. First, pick~x, and~y uniformly at random from
[q]L, and [q]R. Set z j = y j + xπ( j) mod q. Finally, add noise by independently replacing each coordinate
xi, y j and z j with a uniformly random element from [q] with probability γ .

This test instance has canonical assignments that satisfy almost all the constraints. These are obtained
by picking an arbitrary j ∈ [R], and partitioning the variables into q sets S0, . . .Sq−1 where

St = {~x ∈ [q]R | xπ( j) = t}∪{~y ∈ [q]L | y j = t} .

If a constraint (~x,~y,~z) is so that~x ∈ St , ~y ∈ Su then~z /∈ Sv for any v ∈ {t + 1, . . . ,u− 1} except with
probability O(γ). This is because (a+b) mod q is never strictly between a and b. Further, the probability
that any two of~x,~y, and~z fall in the same set Si is simply the probability that any two of xπ( j),y j, and z j

are assigned the same value, which is at most O(1/q). Thus, ordering the variables such that S0 ≺ S1 ≺
. . .≺ Sq−1 with an arbitrary ordering of the variables within a set satisfies a fraction 1−O(1/q)−O(γ)
constraints.

The proof of Theorem 1.3 requires a partial converse of the above: every ordering that satisfies more
than a fraction 2/3+ ε of the constraints is more-or-less an ordering that depends on a few coordinates j

as above. This proof involves three steps. First, we show that there is a Γ = Γ(q,γ,β ) such that every
ordering O of [q]L and [q]R can be broken into Γ sets S0, . . . ,SΓ−1 such that one achieves expected value at
least val(O)−β for arbitrarily small β by ordering the sets S0 ≺ ·· · ≺ SΓ−1 and within each set ordering
elements arbitrarily. The proof of this “bucketing” uses hypercontractivity of noised functions from a
finite domain. We note that a related bucketing argument is used in proving inapproximability of OCSPs
assuming the UGC [14, 13]. Somewhat similar to our analysis, they “round” table values to q buckets
of equal size and proceed to analyze indicator functions for ranges of order assignments. In particular,
the UG-based analysis only needs to consider multiple queries to, and bucketing of, individual tables.
For our construction, we have to consider the simultaneous bucketing of two tables. Merely “rounding”
the tables to a set [q] does not suffice. Rather, we consider having q equal-sized buckets for each table
and analyze functions which do not differentiate values within buckets. More precisely, we introduce a
“bucketed payoff” which, given a tuple of bucket indices, samples a random element from the respective
indexed buckets of the tables and evaluates the predicate for the resulting tuple. With this setup, we can
analyze functions of bounded range, yet the bucketing preserves arbitrarily well the value of an instance
even when the tables have influential coordinates.

Similarly to [14, 13], the bucketing argument allows an OCSP to be analyzed as if it were a CSP
on a finite domain, enabling us to use powerful techniques developed in this setting. In particular, we
show that unless val(L) > η , for some η , then the distribution of constraints (~x,~y,~z) can be regarded
as obtained by sampling~x independently up to some negligible error in the payoff; in other words,~x is
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“decoupled” from (~y,~z). We note that the marginal distribution of the tuple (~y,~z) is already symmetric
with respect to swaps: P(~y = y,~z = z) = P(~y = z,~z = y). In order to prove approximation resistance, we
combine three of these dictatorship tests: the jth variant has~x as the jth component of the triple. We
show that the combined instance is symmetric with respect to every swap up to an error O(ε) unless
val(L)> η . This implies that the instance has value at most 2/3+O(ε) hence proving approximation
resistance of MAX NBTW.

For MAX BTW and MAX 2t-SO, we do not require the final symmetrization and instead use a
dictatorship test based on a different distribution. Finally, the reduction to MAS is a simple gadget
reduction from MAX NBTW. For hardness results of width-two predicates, such gadget reductions
presently dominate the scene of classical CSPs and also designates the state of affairs for MAS. As an
example, the best-known NP-hard approximation hardness of 16/17+ ε for MAX CUT is via a gadget
reduction from MAX 3-LIN-2 [16, 23]. The preceding best approximation hardness of MAS was also
via a gadget reduction from MAX 3-LIN-2 [19], although with the significantly smaller hardness constant
65/66+ ε . By reducing from a problem more similar to MAS, namely MAX NBTW, we improve to the
approximation hardness to 14/15+ ε . The gadget in question is simple and was given in Section 1.

Organization. Section 2 sets up the notation used in the rest of the article. Section 3 gives a general
hardness result based on test distributions, although the proofs are deferred to Section 5. In Section 4, we
introduce distributions tailored to the studied predicates and invoke the construction from Section 3 to
prove three of the four approximation-hardness results; the fourth result is proven in the same section via
a gadget reduction.

Acknowledgments. We would like to thank Johan Håstad for suggesting the topic and for numerous
helpful discussions regarding the same, as well as the anonymous referees, and the editors of the
publishing issue, who assisted in improving the legibility of the work.

2 Preliminaries

We denote by [n] the integer interval {0, . . . ,n−1} and by [n]1 the interval {1, . . . ,n}. Given a tuple of
reals x ∈ Rm, we write ~σ(x) ∈ Sm for the natural-order permutation on {1, . . . ,m} induced by x. We also
denote by x−i the tuple (x1, . . . ,xi−1,xi+1, . . . ,xm). For a distribution D over Ω1×·· ·×Ωm, we use D≤t

and D>t to denote the projection to coordinates up to t and to the remaining coordinates, respectively.

2.1 Ordering-constraint satisfaction problems

We are concerned with predicates P : Sm→ [0,1] on the symmetric group Sm. Such a predicate specifies a
width-m OCSP written as OCSP(P). An instance I of OCSP(P) problem is a tuple (X,C) where X is the
set of variables and C is a distribution over ordered m-tuples of X referred to as the constraints.

An assignment to I is an injective map O : X→Z called an ordering of X. For a tuple~c = (v1, . . . ,vm),
O|c denotes the tuple (O(v1), . . . ,O(vm)). An ordering is said to satisfy the constraint c when P(~σ(O|c)) =
1. The value of an ordering is the probability that a random constraint c←C is satisfied by O and the
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value val(I) of an instance is the maximum value of any ordering. Thus,

val(I)
def
= max

O:X→Z
val(O;I) def

= max
O:X→Z

E
c∈C

[
P(O|c)

]
.

To simplify analysis, we extend the predicate to Zm and permit assignments which are not necessarily
injective as follows: define P : Zm → [0,1] by setting P(a1, . . . ,am) = E~σ [P(~σ)] where ~σ is drawn
uniformly at random over all permutations in Sm such that σi < σ j whenever ai < a j. As an example, for
m = 3,

P(42,13,13) =
1
2
P(3,1,2)+

1
2
P(3,2,1) .

Note that the value of an instance is invariant this extension as there is a complete ordering attaining at
least the value of any non-injective assignment.

We define the predicates and problems studied in this work. MAS is exactly OCSP({(1,2)}). The
betweenness predicate BTW is the set {(1,3,2),(3,1,2)} and NBTW is S3 \BTW. We define MAX

BTW as OCSP(BTW) and MAX NBTW as OCSP(NBTW). Finally, introduce 2t-SO as the subset of
S2t such that the induced ordering on the first t elements coincides with the ordering of the last t elements,

2t-SO def
= {π ∈ S2t | σ(π(1), . . . ,π(t)) = σ(π(t +1), . . . ,π(2t))} .

This predicate has (2t)!/t! satisfying orderings and will be used in proving the inapproximability of the
generic m-OCSP with constraints of width at most m.

2.2 Label cover and inapproximability

The problem LABEL COVER (LC) is a common starting point of strong inapproximability results. An LC
instance L= (U,V,E,L,R,Π) consists of a bipartite graph (U ∪V,E) associating with every edge {u,v}
a projection πv,u : R→ L with the goal of labeling the vertices, λ : U ∪V → L∪R, so as to maximize the
fraction of projections for which πv,u(λ (v)) = λ (u). For simplicity, we shall additionally assume that
every projection has degree exactly d = d(ε). That is, for every LC instance, edge e ∈ E, and label i ∈ L,
there are exactly d choices of j ∈ R for which πe( j) = i.

Theorem 2.1. For every ε > 0, there exists fixed label sets L and R such that it is NP-hard to distinguish

LC instances of value one from instances of value at most ε . Additionally, one can assume that there

exists d = d(ε) such that every projection of every instance has degree d.

Proof. Follows from an easy modification [24] of the classical LC construction [2, 20].

2.3 Primer on real analysis

We refer to a finite domain Ω along with a distribution µ as a probability space. Given a probability
space (Ω,µ), the nth tensor power is (Ωn,µ⊗n) where µ⊗n(ω1, . . . ,ωn) = µ(ω1) · · ·µ(ωn). The ℓp norm

of f : Ω→ R w. r. t. µ is denoted by || f ||µ,p and is defined as Ex∼µ [| f (x)|p]1/p for real p ≥ 1 and
maxx∈supp(µ) f (x) for p = ∞. When clear from the context, we omit the distribution µ . The following
noise operator and its properties play a pivotal role in our analysis.
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Definition 2.2. Let (Ω,µ) be a probability space and f : Ωn→ R be a function on the nth tensor power.
For a parameter ρ ∈ [0,1], the noise operator Tρ takes f to Tρ f → R defined by

Tρ f (x)
def
= E [ f (y) | x] ,

where independently for each i, with probability ρ , yi = xi and otherwise a uniform random sample.

The noise operator preserves the mass E [ f ] of a function while spreading it in the space. The
quantitative bound on this is referred to as hypercontractivity.

Theorem 2.3 ([25]; [18, Theorem 3.16, 3.17]). Let (Ω,µ) be a probability space in which the minimum

nonzero probability of any atom is α < 1/2. Then, for every q > 2 and every f : Ωn→ R,

∣
∣
∣
∣Tρ(q,α) f

∣
∣
∣
∣
q
≤ || f ||2 ,

where for α < 1/2 we set

A =
1−α

α
;

1
q′

= 1− 1
q

; and ρ(q,α) =

(

A1/q−A−1/q

A1/q′−A−1/q′

)1/2

.

For α = 1/2, we set ρ(q,α) = (q−1)−1/2.

For a fixed probability space, the above theorem says that for every γ > 0, there is a q > 2 such that
∣
∣
∣
∣T1−γ f

∣
∣
∣
∣
q
≤ || f ||2. For our application, we need the easy corollary that the reverse direction also holds:

for every γ > 0, there exists a q > 2 such that hypercontractivity to the ℓ2-norm holds.

Lemma 2.4. Let (Ω,µ) be a probability space in which the minimum nonzero probability of any atom is

α ≤ 1/2. Then, for every f : Ωn→ R, small enough γ > 0,

∣
∣
∣
∣T1−γ f

∣
∣
∣
∣
2+δ
≤ || f ||2

for any

0 < δ ≤ δ (γ,α) = 2
log((1− γ)−2)−1

log(A)
with A =

1−α

α
> 1 .

Further, δ (γ,1/2) = γ(2− γ)(1− γ)−2.

Proof. The estimate for δ (γ,1/2) follows immediately from the above theorem assuming γ < 1/2. In
the case when α < 1/2, solving

ρ2 def
= (1− γ)2 = (A1/q−A−1/q)(A1−1/q−A1/q−1)−1

for q gives, for γ < 1−A−1/2,

δ = q−2 =
2log(A)

log
( 1+ρ2A

1+ρ2/A

) −2≥ 2
log
(
(1− γ)−2

)
−1

log(A)
.
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Efron-Stein Decompositions. Our proofs make use of the Efron-Stein decomposition which has useful
properties akin to Fourier decompositions.

Definition 2.5. Let f : Ω(1)×·· ·×Ω(n)→R and µ a measure on ∏Ω(t). The Efron-Stein decomposition

of f with respect to µ is defined as { fS}S⊆[n] where

fS(x)
def
= ∑

T⊆S

(−1)|S\T |E
[

f (x′) |x′T = xT

]
.

Lemma 2.6 (Efron and Stein [10]; Mossel [18]). Assuming {Ω(t)}t are independent, the Efron-Stein

decomposition { fS}S of f : ∏Ω(t)→ R satisfies:

• fS(x) depends only on xS,

• for any S,T ⊆ [m], and xT ∈∏t∈T Ω(t) such that S\T 6= /0, E[ fS(x
′) |x′T = xT ] = 0.

We use the standard notion of influence and noisy influence as in previous work.

Definition 2.7. Let f : Ωn→ R be a function on a probability space. The influence of the 1 ≤ ith ≤ n

coordinate is
Infi ( f )

def
= E
{Ω j} j 6=i

[VarΩi
( f )] .

Additionally, given a noise parameter γ , the noisy influence of the ith coordinate is

Inf(1−γ)
i ( f )

def
= E
{Ω j} j 6=i

[
VarΩi

(T1−γ f )
]
.

Influences have simple expressions in terms of Efron-Stein decompositions:

Infi ( f ) = ∑
S∋i

E
[

f 2
S

]
and Inf(1−γ)

i ( f ) = ∑
S∋i

(1− γ)2|S|E
[

f 2
S

]
.

The following well-known bounds on noisy influences are handy in the analysis.

Lemma 2.8. For every γ > 0, natural numbers i and n such that 1≤ i≤ n, and every f : Ωn→ R,

Inf(1−γ)
i ( f )≤ Var( f ) and ∑

i

Inf(1−γ)
i ( f )≤ Var( f )

γ
.

Proof. The former inequality is immediate from the influences in terms of Efron-Stein and Parseval’s
Identity for the decomposition: ∑S E

[
f 2
S

]
= Var( f ). Expanding the LHS of the second inequality,

∑
i

Inf(1−γ)
i ( f ) = ∑

k≥1

k(1− γ)2k ∑
S : |S|=k

E
[
F2

S

]
≤ Var( f )max

k≥1
k(1− γ)2k

≤ Var( f ) ∑
k≥1

(1− γ)2k ≤ Var( f )
1

(1− γ)2 ≤
Var( f )

γ
.
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Let the total (noisy) influence of a function f : Ωn→ R be defined as

TotInf( f )
def
= ∑

i∈[n]1
Infi ( f ) and TotInf(1−γ) ( f )

def
= ∑

i∈[n]1
Inf(1−γ)

i ( f ) .

Finally, we introduce the notion of cross influence between functions subject to a projection. This
notion is implicitly prevalent in modern LC reductions, either for noised functions or for, analytically
similar, degree-bounded functions. Given finite sets Ω,L,R; an injective function π : L→ R; and functions
f : ΩL→ R;g : ΩR→ R; define

CrInf(1−γ)
π ( f ,g)

def
= ∑

(i, j)∈π

Inf(1−γ)
i ( f ) Inf(1−γ)

j (g) .

Note that our definition differs somewhat from the cross-influence, denoted “XInf,” used by Samorodnit-
sky and Trevisan [22].

3 A general hardness result

In this section, we prove a general inapproximability result for OCSPs which, similar to results for
classic CSPs, permit us to deduce hardness of approximation based on the existence of certain simple
distributions. The proof is via a scheme of reductions from LC to OCSPs. For an m-width predicate
P, we instantiate this scheme with a distribution D over Qt

1×Qm−t
2 ; for some parameter 1≤ t < m and

where Q1 and Q2 are finite integer sets. As an example of a classical distribution, Q1 and Q2 could be the
set {−1,1}; t = 1,m = 3; and D could choose the two first arguments independently, setting the third
to be their product. To get appropriate properties for ordering problems, we may however need Q1 and
Q2 to be larger ranges than the classical bits, and the sizes of tables in the resulting OCSP instance will
similarly depend on these ranges.

When the predicate permits introducing distributions satisfying certain properties, akin to pairwise
independence, then the hardness claims in this section follow and, together with the hardness of LC and
other properties of the distributions, yield the desired inapproximability results.

The reduction itself is composed of pieces known as dictatorship test which is described in the next
section. Section 3.2 uses this test to construct the overall reduction and also contains the properties of this
reduction. For concrete examples of distributions D, we refer the reader to Section 4.

3.1 Dictatorship test

The dictatorship test uses the following test distribution (Distribution 1) parametrized by γ , and π and is
denoted by T

(γ)
π (D). The reader should think of the support of the argument distribution D as essentially

being contained in the predicate P.
Recall our convention of extending P to a predicate P : Zm→ [0,1]. For a pair of functions ( f ,g),

let ( f ,g) ◦ (X,Y) denote the tuple ( f (~x(1)), . . . , f (~x(t)), g(~y(t+1)), . . . ,g(~y(m))). Then, the acceptance

probability on T
(γ)
π (D) for a pair of functions ( f ,g) where f : QL

1 → Z and g : QR
2 → Z is

Acc f ,g(T
(γ)
π (D))

def
= E

(X,Y)←T
(γ)
π (D)

[P(( f ,g)◦ (X,Y))] . (3.1)
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Distribution 1: T
(γ)
π (D)

Parameters: • distribution D over

t
︷ ︸︸ ︷

Q1×·· ·×Q1×
m−t

︷ ︸︸ ︷

Q2×·· ·×Q2;

• noise parameter γ > 0;

• projection map π : R→ L.

Output: Distribution T
(γ)
π (D) over

(~x(1), . . . ,~x(t),~y(t+1), . . . ,~y(m)) ∈
(
QL

1×·· ·×QL
1

)
×
(
QR

2 ×·· ·×QR
2

)
.

1. pick a random |L|× t matrix X over Q1 by letting each row be a sample from D≤t , indepen-
dently.

2. pick a random |R|× (m− t) matrix Y
def
= (~y(t+1), . . . ,~y(m)) over Q2 by letting the ith row be a

sample from D>t conditioned on Xπ(i) = (x
(1)
π(i), . . . ,x

(t)
π(i))

3. for each entry of X and Y, independently with probability γ , replace the entry with a new
sample from Q1 and Q2, resp.

4. output (X,Y).

This definition is motivated by the overall reduction described in the next section. The distribution is
designed so that functions ( f ,g) that are dictated by a single coordinate have a high acceptance probability,
justifying the name of the test.

Lemma 3.1. Let f : QL
1 → Z and g : QR

2 → Z be defined by g(y) = yi and f (x) = xπ(i) for some i ∈ R.

Then,

Acc f ,g(T
(γ)
π (D))≥ E

~x()∼D
[P(x)]− γm .

Proof. The vector ( f (~x(1)), . . . , f (~x(t)),g(~y(t+1)), . . . ,g(~y(m))) simply equals the π(i)th row of X followed
by the ith row of Y. With probability (1− γ)m ≥ 1− γm this is a sample from D and is hence accepted by
P with probability at least Ex∼D[P(x)]− γm.

We prove a partial converse of the above: unless f and g have influential coordinates i and j such that
π( j) = i, the distribution D can be replaced by a product of two distributions with a negligible loss in the
acceptance probability. We define this product distribution below and postpone the analysis to Section 5.2
in order to complete the description of the reduction.

Definition 3.2. Given the base distribution D, the decoupled distribution D⊥ is obtained by taking
independent samples x from D≤t and y from D>t .
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Reduction 2: R
(P)
D,γ

Parameters: distribution D over Qt
1×Qm−t

2 and noise parameter γ > 0.

Input: a Label Cover instance L= (U,V,E,L,R,Π).

Output: a weighted OCSP(P) instance I = (X,C) where X = (U ×QL
1)∪ (V ×QR

2 ). The distribution
of constraints in C is obtained by sampling a random edge e = (u,v) ∈ E with projection πe and
(X,Y) from T

(γ)
πe

(D); the constraint is the predicate P applied to the tuple

((u,~x(1)), . . . ,(u,~x(t)),(v,~y(t+1)), . . . ,(v,~y(m))) .

3.2 Reduction from Label Lover

An assignment to I is seen as a collection of functions, { fu}u∈U ∪{gv}v∈V , where fu : QL
1→Z, gv : QR

2 →Z
and, e. g., fu(x) is identified with the variable (u,x). The value of an assignment is

E
e=(u,v)∈E;

(X,Y)∈T(γ)
πe (D)

P(( fu,gv)◦ (X,Y)) = E
e=(u,v)∈E

[Acc fu,gv
(T

(γ)
πe

(D))] .

Lemma 3.1 now implies that if L is satisfiable, then the value of the output instance is also high.

Lemma 3.3. If λ is a labeling of L satisfying a fraction c of its constraints, then the ordering assignment

fu(x) = xλ (u), gv(y) = yλ (v) satisfies at least a fraction

c ·
(

E
x∼D

[P(x)]− γm
)

of the constraints of R
(P)
D,γ(L). In particular, there is an ordering of R

(P)
D,γ(L) which does not depend on D

and attains a value

val(L) ·
(

E
x∼D

[P(x)]− γm
)

.

On the other hand, we also extend the decoupling property of the dictatorship test to the instance
output when val(L) is small. This is the technical core of the paper and is proven in Section 5, more
specifically via Lemma 5.9.

Theorem 3.4. Suppose that D over Qt
1×Qm−t

2 satisfies the following properties:

• D has uniform marginals;

• for every i > t, Di is independent of D≤t .

Then, for every ε > 0 and γ > 0 there exists εLC > 0 such that if val(L)≤ εLC then for every assignment

A = { fu}u∈U ∪{gv}v∈V to I it holds that

val(A;R
(P)
D,γ(L))≤ val(A;R

(P)

D⊥,γ(L))+ ε .
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In particular,

val(R
(P)
D,γ(L))≤ val(R

(P)

D⊥,γ(L))+ ε .

4 Applications of the general result

In this section, we prove the inapproximability of MAX BTW, MAX NBTW, and MAX 2t-SO, using the
general hardness result of Section 3. We also present a gadget reduction from MAX NBTW to MAS.

4.1 Hardness of MAXIMUM BETWEENNESS

For q ∈ Z≥1, define the distribution D over {−1,q}× [q]× [q] by picking x1 ∼ {−1,q}, y2 ∼ [q], and

y3 =

{

y2 +1 mod q if x1 = q,

y2−1 mod q if x1 =−1.

The way to think of this distribution is that x1 will always take on either the smallest or the largest value
which in turn dictates whether y3 should be smaller or greater than y2 in order to satisfy BTW, which will
be satisfied when drawn as above except perhaps the unlikely y2 ∈ {0,q−1}.

Proposition 4.1. Let (x1,y2,y3)∼D. Then the following holds:

1. D has uniform marginals.

2. y2 and y3 are separately independent of x.

3. (y2,y3) has the same distribution as (y3,y2).

4. Ex1,y2,y3∼D[BTW(x1,y2,y3)]≥ 1−1/q.

Let γ > 0 be a noise parameter and D⊥ be the decoupled distribution of D which draws the first
coordinate independently of the remaining. Consider applying Reduction 2 to a given LC instance L with
test distributions D and D⊥, obtaining MAX BTW instances

I= RBTW
D,γ (L) and I

⊥ = RBTW
D⊥,γ(L) .

Lemma 4.2 (Completeness). If val(L) = 1, then val(I)≥ 1−1/q−3γ .

Proof. This is an immediate corollary of Lemma 3.3 and Proposition 4.1.

Lemma 4.3 (Soundness). For every ε > 0, γ > 0, q, there is an εLC > 0 such that if val(L)≤ εLC, then

val(I)≤ 1/2+ ε .

Proof. We note that the first two items of Proposition 4.1 asserts that D satisfies the conditions of
Theorem 3.4 and it suffices to show val(I⊥) ≤ 1/2. Let { fu : {0,1}L→ Z}u∈U ,{gv : [q]R→ Z}v∈V be
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an arbitrary assignment to I⊥. Fix an LC edge {u,v} with projection π and consider the mean value of
constraints produced for this edge by the construction:

E
~x(1),y(2),y(3)←T

(γ)
π (D⊥)

[

BTW
(

fu(~x
(1)),gv(~y

(2)),gv(~y
(3))
)]

. (4.1)

As noted in Proposition 4.1, (~y(2),~y(3)) has the same distribution as (~y(3),~y(2)) when drawn from D.
Consequently, when drawing arguments from the decoupled test distribution, the probability of a specific
outcome (x(1),y(2),y(3)) equals the probability of (x(1),y(3),y(2)). For strict orderings, possibly having
broken ties, at most one of the two can satisfy the predicate BTW. Thus, the expression in (4.1), and in
effect val(I⊥), is bounded by 1/2.

Theorem 1.2 is now an immediate corollary of Lemmas 4.2 and 4.3, taking q = ⌈2/ε⌉ and γ = ε/6.

4.2 Hardness of MAXIMUM NON-BETWEENNESS

For an implicit parameter q, define a distribution D over [q]3 by picking x1,y2 ∼ [q] and setting y3 =
x1 +y2 mod q.

Proposition 4.4. The distribution D satisfies the following:

1. D is pairwise independent with uniform marginals,

2. and Ex1,x2,x3∼D [NBTW(x1,y2,y3)]≥ 1−3/q.

A straightforward application of the general inapproximability with t = 1 shows that x1 is decoupled
from y2 and y3 unless val(L) is large. Furthermore, pairwise independence implies that the decoupled
distribution is simply the uniform distribution over [q]3. However, this does not suffice to prove approxi-
mation resistance and in fact the value could be greater than 2/3. To see this, note that if { fu}u∈U ,{gv}v∈V

is an ordering of the instance from the reduction, then the first coordinate of every NBTW constraint is a
variable of the form fu(·) while the rest are gv(·). Thus, ordering the fu(·) variables in the middle and
randomly ordering gv(·) on both sides satisfies a fraction 3/4 of the constraints.

To remedy this issue and prove approximation resistance, we permute D by swapping the last
coordinate with each of the remaining coordinates and overlay the instances obtained by the reduction
using these respective distributions. More specifically, for 1 ≤ j ≤ 3, define D( j) as the distribution
over [q]3 obtained by first sampling from D and then swapping the jth and third coordinate, i. e., the
jth coordinate is the sum of the other two which are picked independently at random. Similarly, define
NBTW( j) as the ordering predicate which is true if the jth argument does not lie between the other two,
e. g., NBTW(3) = NBTW.

As in the previous section, take an LC instance L and consider applying Reduction 2 to L with the
distributions {D( j)}3

j=1, and write

I
( j) = RNBTW( j)

D( j),γ
(L) .

Similarly let

I
⊥( j)

= RNBTW( j)

D⊥( j)
,γ

(L)
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be the corresponding decoupled instances.
As the distributions D( j) are over the same domain [q]3, the instances I(1),I(2),I(3) are over the same

variables. We define a new instance I over the same variables as the “sum”

1
3 ∑

j∈[3]
I
( j) ,

defined by taking all constraints in I(1),I(2),I(3) with multiplicities and normalizing their weights by 1/3.
In other words, up to noise, we have an acceptance probability of

E

[
2
3

NBTW( f u(x),gv(y),gv(xπ +q y))+
1
3

NBTW(gv(y),gv(xπ −q y), f u(x))

]

.

Lemma 4.5 (Completeness). If val(L) = 1, then val(I)≥ 1−3/q−3γ .

Proof. This is an immediate corollary of Lemma 3.3 and Proposition 4.4.

Lemma 4.6 (Soundness). For every ε > 0, γ > 0, q, there is an εLC > 0 such that if val(L)≤ εLC, then

val(I)≤ 2/3+ ε .

Proof. Again our goal is to use Theorem 3.4 and we start by bounding val(I⊥). To do this, note that

the decoupled distributions {D⊥( j)} j are in fact the uniform distributions over [q]3 and in particular do

not depend on j. This means that the distributions of variables which NBTW( j) is applied to in I⊥
( j)

is independent of j, e. g., if I⊥
(1)

contains the constraint NBTW(1)(z1,z2,z3) with weight w then I⊥
(2)

contains the constraint NBTW(2)(z1,z2,z3) with the same weight. In other words, I⊥ can be thought of
as having constraints of the form

E
j

[

NBTW( j)(z1,z2,z3)
]

.

It is readily verified that

E
j

[

NBTW( j)(a,b,c)
]

≤ 2
3

for every a,b,c.
Getting back to the main task of bounding val(I), fix an arbitrary assignment

A = { fu : [q]L→ Z}u∈U ∪{gv : [q]R→ Z}v∈V

of I. By Theorem 3.4, val(A;I( j))≤ val(A;I⊥
( j)
)+ε for j ∈ [3]. It follows that val(A;I)≤ val(A;I⊥)+ε

and therefore, since A was arbitrary, it holds that val(I)≤ val(I⊥)+ ε ≤ 2/3+ ε , as desired.
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4.3 Hardness of MAXIMUM ACYCLIC SUBGRAPH

x z y

a

b

Figure 2: The gadget re-
ducing NBTW to MAS.

The inapproximability of MAS is via a simple gadget reduction from MAX

NBTW. We claim the following properties of the directed graph shown in Fig. 2,
defined formally as follows.

Definition 4.7. Define the MAS gadget H from a constraint NBTW(x,y,z)

with auxiliary variables {a,b} as the directed graph H
def
= (V,A) where V =

{x,y,z,a,b} and A consists of the walk

b→ x→ a→ z→ b→ y→ a .

Lemma 4.8. Consider an ordering O of x, y, z. Then,

1. if NBTW(O(x),O(y),O(z)) = 1, then maxO′ val(O′;H) = 5/6 where the

max is over all extensions O′ : V → Z of O to V .

2. if NBTW(O(x),O(y),O(z)) = 0, then maxO′ val(O′;H) = 4/6 where the

max is over all extensions O′ of O to V .

Proof. To find the value of the gadget H, we individually consider the optimal placement of a and b

relative x,y, and z. There are three edges in which the respective variables appear: a appears in (x,a),
(y,a) and (a,z); while b appears in (z,b), (b,x), and (b,y).

From this, we gather that two out of the three respective constraints can always be satisfied by placing
a after x,y,z and similarly placing b before x,y,z. We also see that all three constraints involving a can be
satisfied if and only if z comes after both x and y. Similarly, satisfying all three constraints involving b is
possible if and only if z is ordered before both x and y. From this, one concludes that if NBTW(x,y,z) = 1,
i. e., if z comes first or last, then we can satisfy five out of the six constraints, whereas if z is the middle
element of O, we can satisfy only four out of the six constraints.

The proof of Theorem 1.1 is now a routine application of the MAS gadget.

Proof of Theorem 1.1. Given an instance I of MAX NBTW, construct a directed graph G by replacing
each constraint NBTW(x,y,z) of I with a MAS gadget H, identifying x,y,z with the vertices x,y,z of H

and using two new vertices a,b for each constraint of I. By Lemma 4.8, it follows that

val(G) =
5
6
val(I)+

4
6
(1− val(I)) .

By Theorem 1.3, it is NP-hard to distinguish between val(I) ≥ 1− ε and val(I) ≤ 2/3+ ε for every
ε > 0, implying that it is NP-hard to distinguish val(G)≥ 5/6−ε/6 from val(G)≤ 7/9+ε/6, providing
a hardness gap of

7/9
5/6

+ ε ′ = 14/15+ ε ′ .
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4.4 Hardness of MAXIMUM 2t-SAME ORDER

We establish the hardness of MAX 2t-SO, Theorem 1.4, via the approximation resistance of the relatively
sparse predicate 2t-SO. The proof is similar to the that of MAX BTW in Section 4.1. Let q1 < q2 be integer
parameters and define the base distribution D over [q1]

t × [q2]
t as follows: draw x1, . . . ,xt uniformly

at random from [q1], draw z uniformly at random from [q2], and for 1 ≤ j ≤ t set y j = x j + z mod q2.
The distribution of (x1, . . . ,xt ,y1, . . . ,yt) defines D. For a permutation ~σ ∈ St , let 1σ (·) be the ordering
predicate which is 1 on ~σ and 0 on all other inputs.

Proposition 4.9. D satisfies the following properties.

1. D has uniform marginals.

2. For every i > t, Di is independent of D≤t .

3. For every ~σ ∈ St , E [1σ (x1, . . . ,xt)] = E [1σ (yt+1, . . . ,ym)] = 1/t!.

4. E
x1,...,xt ,yt+1,...,ym∼D

[2t-SO(x1, . . . ,xt ,yt+1, . . . ,ym)]≥ 1− t2

2q1
− q1

q2
.

Proof. The first three properties are immediate from the construction and recalling the extension of
predicates to non-unique values. For the last property, note that 2t-SO(x1, . . . ,xt ,yt+1, . . . ,ym) = 1 if
x1, . . . ,xt are distinct and z < q2−q1. The former event occurs with probability at least 1− t2/(2q1) and
the latter independently with probability at least 1−q1/q2; a union bound implies the claim.

As in the proof of Theorem 1.2, let γ be some noise parameter, take an LC instance L, and let

I= R2t-SO
D,γ (L) and I

⊥ = R2t-SO
D⊥,γ (L)

be the respective instances produced by Reduction 2 using the base distribution D and the decoupled
version D⊥.

The following lemma is an immediate corollary of Lemma 3.3, Proposition 4.9, and Item 4.

Lemma 4.10 (Completeness). If val(L) = 1, then val(I)≥ 1− t2

2q1
− q1

q2
−2tγ .

For the soundness, we have the following.

Lemma 4.11 (Soundness). For every ε > 0,γ > 0, and 1 ≤ q1 ≤ q2, there is an εLC > 0 such that if

val(L)≤ εLC, then val(I)≤ 1/t!+ ε .

Proof. As in the proof of Lemma 4.3, it suffices to prove that val(I⊥)≤ 1/t!. Let { fu : [q1]
L→ Z}u∈U ,

{gv : [q2]
R→ Z}v∈V be an arbitrary assignment to I⊥. Set m = 2t. Fix an arbitrary edge {u,v} of L with
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projection π . The value of constraints corresponding to {u,v} satisfied by the assignment is

E
(X,Y)∈T(γ)

π (D⊥)

[

2t-SO( fu(~x
(1)), . . . , fu(~x

(t)),gv(~y
(t+1)), . . . ,gv(~y

(2t)))
]

= ∑
~σ∈St

E
(X,Y)∈T(γ)

π (D⊥)

[

1~σ

(

fu(~x
(1)), . . . , fu(~x

(t))
)

1~σ

(

gv(~y
(t+1)), . . . ,gv(~y

(2t))
)]

= ∑
~σ∈St

E
T
(γ)
π (D⊥)

[

1~σ

(

fu(~x
(1)), . . . , fu(~x

(t))
)]

E
T
(γ)
π (D⊥)

[

1~σ

(

gv(~y
(t+1)), . . . ,gv(~y

(2t))
)]

= 1/t! ,

where the penultimate step uses the independence of X and Y in the decoupled distribution, and the final
step uses Item 3 of Proposition 4.9.

Theorem 1.4 is a corollary of Lemmas 4.10 and 4.11, taking, e. g.,

q1 =

⌈
2t2

ε

⌉

, q2 =

⌈
2q1

ε

⌉

, and γ =
ε

8t
.

5 Analysis of the reduction

In this section we prove Theorem 3.4 which bounds the value of the instance generated by the reduction
in terms of the decoupled distribution. Throughout, we fix an LC instance L, a predicate P, an OCSP
instance I obtained by the procedure R

(P)
D,γ for a distribution D and noise-parameter γ , and finally an

assignment A = { fu}u∈U ∪{gv}v∈V .
The proof involves three major steps. First, we show that the assignment functions, which are

Z-valued, can be approximated by functions on finite domains via bucketing (see Section 5.1). This
approximation makes the analyzed instance value susceptible to tools developed in the context of finite-
domain CSPs [24, 6] which are used in Section 5.2 to prove the decoupling property of the dictatorship
test. Finally, the decoupling is applied to the reduction in Section 5.3 and related to the value of the
reduced-from LC instance.

5.1 Bucketing

For an integer Γ, we approximate the possibly non-injective function fu : QL
1 → Z by partitioning the

range into Γ multisets. Set q1 = |Q1| and partition the cardinality-QL
1 multiset range of fu into sets

B
( fu)
1 , . . . ,B

( fu)
Γ of respective size qL

1/Γ such that if x ∈ B
( fu)
i and y ∈ B

( fu)
j for some i < j then x ≤ y.

Note that this is possible as long as the parameter Γ divides qL
1 , which is the case in this treatise. Let

Fu : QL
1 → [Γ] specify the mapping of points to the bucket containing it, and F

(a)
u : QL

1 → {0,1} the

indicator of points assigned to B
( fu)
a . Partition gv : QR

2 → Z similarly into buckets {B(gv)
a } obtaining

Gv : QR
2 → [Γ] and G

(a)
v : QR

2 →{0,1}.
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We show that a bucketed version approximates well the acceptance probability of the dictatorship test
for any edge e = (u,v) from Section 3,

Acc f ,g(T
(γ)
π (D))

def
= E

(X,Y)←T
(γ)
π (D)

[P(( f ,g)◦ (X,Y))] .

Fix an edge e = (u,v) and put f = fu, g = gv. As before, we concisely denote by (X,Y) and ( f ,g)◦(X,Y)
the query tuple and assignment tuple,

(~x(1), . . . ,~x(t),~y(t+1), . . . ,~y(m)) and ( f (~x(1)), . . . , f (~x(t)),g(~y(t+1)), . . . ,g(~y(m))) .

Define the bucketed payoff function ℘( f ,g) : [Γ]m→ [0,1] with respect to f and g as

℘( f ,g)(a1, . . . ,am) = E
~x(i)←B

( f )
ai

; i≤t

~y( j)←B
(g)
a j

; j>t

[

P(~x(1), . . . ,~x(t),~y(t+1), . . . ,~y(m))
]

(5.1)

and the bucketed acceptance probability,

BAcc f ,g(T
(γ)
π (D)) = E

(X,Y)←T
(γ)
π (D)

[

℘( f ,g)((F,G)◦ (X,Y))
]

. (5.2)

In other words, bucketing corresponds to generating a tuple ~a = (F,G) ◦ (X,Y) and replacing each
coordinate ai with a random value from the bucket which ai fell in. We show that above is close to the
true acceptance probability Acc f ,g(T

(γ)
π (D)).

Theorem 5.1 (Bucketing preserves value). For every predicate P, noise parameter γ > 0, projection

π : R→ L, distribution D with uniform marginals, pair of functions f : QL
1 → Z and g : QR

2 → Z, and

bucketing parameter Γ,

∣
∣
∣Acc f ,g(T

(γ)
π (D))−BAcc f ,g(T

(γ)
π (D))

∣
∣
∣≤ m2Γ−δ ,

for some δ = δ (γ,Q)> 0 with Q≥max{|Q1|, |Q2|}.

To prove this, we show that for every choice of f and g, including f = g, there is only a few
overlapping pairs of buckets, and the probability of hitting any particular pair is small. For each a ∈ [Γ],
let R

( f )
a be the smallest interval in Z containing B

( f )
a ; and similarly R

(g)
a for g.

Lemma 5.2 (Few buckets overlap). For every integer Γ there are at most 2Γ choices of pairs (a,b) ∈
[Γ]× [Γ] such that R

( f )
a ∩R

(g)
b 6= /0.

Proof. Construct the bipartite intersection graph GI = (UI ∪VI,EI) where the vertex sets are disjoint
copies of [Γ], and there is an edge (a,b) ∈UI ×VI iff R

( f )
a ∩R

(g)
b 6= /0. By construction, the intervals

{R( f )
a }a are disjoint and similarly {R(g)

b }b. Consequently, GI must be a forest as it does not contain any
pair of distinct edges (u,v),(u′,v′) such that u < u′ and v > v′. We conclude that that the number of edges
and hence intersections is at most |UI ∪VI|= 2Γ.
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Next, we prove a bound on the probability that a fixed pair of the m queries fall in a specific pair of
buckets. For a distribution D over QL

1×QR
2 , define D(γ) as the distribution that samples from D and for

each of the |L|+ |R| coordinates independently with probability γ replaces it with a new sample from D.
The distribution D(γ) is representative of the projection of T(γ)

π (D) to two specific coordinates and we
show that noise prevents the buckets from intersecting with good probability.

Lemma 5.3 (Bucket collisions are unlikely). Let D be a distribution over QL
1×QR

2 whose marginals are

uniform in QL
1 and QR

2 and D(γ) be as defined above. For every integer Γ and every pair of functions

F : QL
1 →{0,1} and G : QR

2 →{0,1} such that E [F(~x)] = E [G(~y)] = 1/Γ,

E
(~x,~y)∈D(γ)

[F(~x)G(~y)]≤ Γ−(1+δ )

for some δ = δ (γ,Q)> 0 where Q≥min{|Q1|, |Q2|}.

Proof. Without loss of generality, let |Q1| = max{|Q1|, |Q2|}. Set q = 2+ δ ′ > 2 as in Lemma 2.4,
1/q′ = 1−1/q, and define

H(~x)
def
= E

~y|~x

[
T1−γG(~y)

]
.

Then,

E
(~x,~y)∈D(γ)

[F(~x)G(~y)] = E
~x

[
T1−γF(~x)H(~x)

]
≤
∣
∣
∣
∣T1−γF

∣
∣
∣
∣
q
||H||q′

≤ ||F ||2||H||q′ ≤ ||F ||2
∣
∣
∣
∣T1−γG

∣
∣
∣
∣
q′ ≤ ||F ||2||G||q′

= Γ−(1/2+1/q′) = Γ−(1+δ ′/2(2+δ ′)),

using the hypercontractivity from Lemma 2.4 and Jensen’s inequality.

Note that the above lemma applies to queries to the same function as well, setting F = G, etc. To
complete the proof of Theorem 5.1, we apply the above lemma to every distinct pair of the m queries
made in T

(γ)
π (D) and each of the at most 2Γ pairs of overlapping buckets.

Proof of Theorem 5.1. Note that the bucketed payoff ℘( f ,g)((F,G)◦ (X,Y)) is equal to the true payoff
P(( f ,g) ◦ (X,Y)) except possibly when at least two elements in (F,G) ◦ (X,Y) fall in an overlapping
pair of buckets. Fix a pair of inputs, say x(i) and y( j) – the proofs are identical when choosing two inputs
from X or two from Y. Let a = F(x(i)) and b = G(y( j)). By Lemma 5.2 there are at most 2Γ possible
values (a,b) such that the buckets indexed by a and b are overlapping. From Lemma 5.3, the probability
that F(~x(i)) = a and G(~y( j)) = b is at most Γ−1−δ . By a union bound, the two outputs F(~x(i)), G(~y( j))
consequently fall in overlapping buckets with probability at most 2Γ−δ . As there are at most

(
m
2

)
≤ m2/2

pairs of outputs, the proof is complete.
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5.2 Soundness of the dictatorship test

We now reap the benefits of bucketing and prove the decoupling property of the dictatorship test alluded
to in Section 3.

Theorem 5.4. For every predicate P and distribution D satisfying the conditions of Theorem 3.4, and

any noise rate γ > 0, projection π : R→ L, and bucketing parameter Γ, the following holds. For any

functions f : QL
1 → Z, g : QR

2 → Z with bucketing functions F : QL
1 → [Γ], G : QR

2 → [Γ],
∣
∣
∣BAcc f ,g(T

(γ)
π (D))−BAcc f ,g(T

(γ)
π (D⊥))

∣
∣
∣≤ γ−1/2m1/24mΓm ∑

a,b∈[Γ]
CrInf(1−γ)

π

(

F(a),G(b)
)1/2

.

Recall that the decoupled version D⊥ of a base distribution D is obtained by combining two inde-
pendent samples of D: one for the first t coordinates and one for the remaining. A similar claim, as
above, for the true acceptance probabilities of the dictatorship test is now a simple corollary of the above
theorem and Theorem 5.1. This will be used later in extending the decoupling property to our general
inapproximability reduction.

Lemma 5.5. For every predicate P and distribution D satisfying the conditions of Theorem 3.4, and any

noise rate γ > 0, projection π : R→ L, and bucketing parameter Γ, the following holds. For any functions

f : QL
1 → Z, g : QR

2 → Z with bucketing functions F : QL
1 → [Γ], G : QR

2 → [Γ],
∣
∣
∣Acc f ,g(T

(γ)
π (D))−Acc f ,g(T

(γ)
π (D⊥))

∣
∣
∣

≤ γ−1/2m1/24mΓm ∑
a,b∈[Γ]

CrInf(1−γ)
π

(

F(a),G(b)
)1/2

+2Γ−δ m2 .
(5.3)

The proof of the theorem is via an invariance-style theorem and uses techniques found in the works of
Mossel [18], Samorodnitsky and Trevisan [22], and Wenner [24]. Frankly, it mostly involves introducing
new notation to apply existing machinery. The notion of lifted functions may be the most alien: a
large-side table g : [q2]

R→ R may equivalently be seen as the function g′π : Ω′L→ R where Ω′ = [q2]
d

contains the values of all d coordinates in R projecting to the same coordinate in L. g′π is called the lifted
analogue of g with respect to the projection π .

The first lemma proved in this section essentially says that if a product of functions is influential, then
at least one of the functions is also influential. The second says that if the lifted analogue of a function g

is influential for some coordinate i ∈ L, then g is influential for a coordinate projecting to i. The lemma
will be used to—after massaging the expression—decouple the small-side table from the lifted analogue
of the large-side table as a function of their cross influence.

Lemma 5.6 (Mossel [18, Lemma 6.5]). Let f1, . . . , ft : Ωn→ [0,1] be arbitrary functions. Then for any

j ∈ [n], Inf j (∏
t
r=1 fr)≤ t ∑

t
r=1 Inf j ( fr).

Lemma 5.7. Consider a function g : ΩR → R, a map π : R→ L, and an arbitrary bijection ς : R↔
((ℓ)×

[
|π−1(ℓ)|

]
)ℓ∈L such that for all (i, j), ∃tς( j) = (i, t) iff π( j) = i. Introduce Ω′ℓ

def
= Ω|π

−1(ℓ)| and

define g′ : ∏L Ω′ℓ→ R as g′(~z) = g(~y) where y j = zς( j). Then for every i ∈ L,

Infi

(
g′
)
≤ ∑

j∈π−1(i)

Inf j (g) .
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Proof. Using definitions and the law of total conditional variance,

Infi

(
g′
)
= E

Ω′−i

[

Var
Ω′i

g′
]

= E
{Ωℓ}ℓ:6∃ jς(i, j)=ℓ

[

Var
{Ωℓ}ℓ:∃ jς(i, j)=ℓ

g

]

≤ ∑
ℓ:∃ jς(i, j)=ℓ

E
Ω−ℓ

[

Var
Ωℓ

g

]

= ∑
ℓ:∃ jς(i, j)=ℓ

Infℓ (g) .

Theorem 5.8 (Wenner [24, Theorem 3.21]). Consider functions { f (r) ∈ L∞(Ωn
r )}r∈[m]1

on a probability

space P= (∏m
i=1 Ωi,P)⊗n, a set M ( [m]1, and a collection C of minimal sets1 C⊆ [m]1 ,C * M such that

the spaces {Ωi}i∈C are dependent. Then,

∣
∣
∣
∣
∣
E

[
m

∏
r=1

f (r)

]

− ∏
r/∈M

E
[

f (r)
]

E

[

∏
r∈M

f (r)

]∣
∣
∣
∣
∣

≤ 4m max
C∈C

√

min
r′∈C

TotInf
(

f (r
′)
)

∑
ℓ

∏
r∈C\{r′}

Infℓ
(

f (r)
)

∏
r/∈C

∣
∣
∣

∣
∣
∣ f

(r)
∣
∣
∣

∣
∣
∣
∞
.

Proof of Theorem 5.4

Proof. We massage the expression BAcc f ,g(T
(γ)
π (D)) to a form suitable for applying Theorem 5.8. Recall

that F(a) denotes the indicator of “F(x) = a” and similarly G(a) of “G(y) = a.” In terms of these indicators,
BAcc f ,g(T

(γ)
π (D)) equals

∑
~a∈[Γ]t ,~b∈[Γ]m−t

℘(~a,~b) E
T
(γ)
π (D)

[
t

∏
r=1

F(ar)(x(r))
m

∏
r=t+1

G(br−t)(y(r))

]

.

Consequently,
∣
∣BAcc f ,g(D)−BAcc f ,g(D

⊥)
∣
∣ may be bounded from above by

∑
~a,~b

℘(~a,~b)

∣
∣
∣
∣
∣

E
T
(γ)
π (D)

[
t

∏
r=1

F(ar)(x(r))
m

∏
r=t+1

G(br−t)(y(r))

]

− E
T
(γ)
π (D⊥)

[
t

∏
r=1

F(ar)(x(r))
m

∏
r=t+1

G(br−t)(y(r))

]∣
∣
∣
∣
∣
.

(5.4)

We note that 0≤℘≤ 1 and proceed to bound the difference in the summation for fixed (a,b). To
this end, we make a slight change of notation as discussed previously. The new notation may seem
cumbersome; the high-level picture is that we group the first set of functions into a single function,
receiving a single argument over a larger domain, and redefine the latter functions to take arguments
indexed by L instead of R. Also recall that we intend to reduce from LC instances with projection degrees
exactly d for some d = d(εLC).

Define m′ = m− t +1, Ω1 = [q1]
t , Ω2 = · · ·= Ωm′ = [q2]

d . Let ς be a bijection L× [d]↔ R such that
π(ς(i, j′)) = i; i. e., for each i ∈ L, we group together the d coordinates in R mapping to i. Introduce the
distribution

ΩL
1×·· ·×ΩL

m′ ∋ (~w,z(2), . . . ,z(m
′))∼ R(µ)

1Minimal sets of dependent outcome spaces in the sense that if C ∈ C, then the outcomes spaces of every strict subset of C

are independent.
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which samples (x(1), . . . ,x(t),y(t+1), . . . ,y(m)) from T
(γ)
π (D), setting

wi,r = x
(r)
i and z

(r)
i = (y

(r)

ς−1(i, j′))
d−1
j′=0 .

Let

W (~w)
def
=

t

∏
r=1

(
T1−γF(ar)

)
(x(r))

where x
(r)
i = wi,r and similarly, for 2≤ r ≤ m′, call the lifted function H(r) : ΩL

r → R defined as

H(r)(z) =
(
T1−γG(br−1)

)
(y)

where yς(i, j′) = zi, j′ . In the new notation, the difference within the summation in (5.4) is

∣
∣
∣
∣
∣

E
R(D)

[

W (~w)
m′

∏
r=2

H(r)(z(r))

]

− E
R(D⊥)

[

W (~w)
m′

∏
r=2

H(r)(z(r))

]∣
∣
∣
∣
∣
. (5.5)

We note that R is a product distribution R= µ⊗L for some µ and for any 2≤ r≤m′, Ωr is independent
of Ω1 due to the premise that Dr independent of D≤t . Choosing M = {2, . . . ,m′}, minimal indices C of
dependent sets in µ not contained in M contains 1 and at least two elements from M, i. e., C ∈ C implies
1,e,e′ ∈C for some e 6= e′ ∈ {2, . . . ,m′}.

Applying Theorem 5.8 and choosing r′ 6= 1 bounds the difference (5.5) by

4m

√

max
C∈C

min
16=e∈C

TotInf(H(e))∑
i

Infi (W ) ∏
t∈C\{1,e}

Infi

(
H(t)

)

∏
r/∈C

∣
∣
∣

∣
∣
∣H

(r)
∣
∣
∣

∣
∣
∣
∞
. (5.6)

As we assumed the codomain of the studied functions {G(r)}r to be [0,1] the same holds for {H(r)}r

and consequently the influences and infinity norms in (5.6) are upper-bounded by one on account of
Lemma 2.8, yielding at most

(5.6)≤ 4m

(

max
e 6=1

TotInf(H(e)) ·max
e 6=1

∑
i

Infi (W ) Infi

(

H(e)
)
)1/2

. (5.7)

We recall that W = ∏
t
r=1 T1−γF(ar) and hence by Lemma 5.6,

Infi (W )≤ t
t

∑
r=1

Infi

(

T1−γF(ar)
)

= t ∑ Inf(1−γ)
i

(

F(ar)
)

.

Similarly, Lemma 5.7 implies that

Infi

(

H(e)
)

≤ ∑
j∈π−1(i)

Inf j

(

T1−γG(be−1)
)

= ∑
j∈π−1(i)

Inf(1−γ)
j

(

G(be−1)
)

.
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Returning to Equation (5.7), we have the bound

(5.7)≤ 4m

(

t max
e>t

TotInf(1−γ)(G(be)) ·max
e>t

∑
i

t

∑
r=1

Inf(1−γ)
i

(

F(ar)
)

∑
j∈π−1(i)

Inf(1−γ)
j

(

G(be)
)
)1/2

. (5.8)

Using t ≤ m; maxe · · · ≤ ∑e · · · for non-negative expressions; bounding the total noisy influence by γ−1

from Lemma 2.8; and identifying the inner sum as a cross influence, we establish the desired bound on
the considered difference as

(5.5)≤ (5.8)≤ 4m

(

tγ−1 ∑
r,e

CrInf(1−γ)
π

(

F(ar),G(be)
)
)1/2

≤ γ−1/2m1/24m ∑
r,r′

CrInf(1−γ)
π

(

F(ar),G(br′ )
)1/2

.

Finally, as we noted before, since 0 ≤℘≤ 1, and since there are at most Γm terms in the summation,
(5.4) is at most

γ−1/2m1/24mΓm ∑
a,b∈[Γ]

CrInf(1−γ)
π

(

F(a),G(b)
)1/2

.

5.3 Soundness of the reduction

With the soundness for the dictatorship test in place, proving the soundness of the reduction (Theorem 3.4)
is a relatively standard task of constructing noisy-influence decoding strategies.

The proof follows immediately from the more general estimate given in the following lemma by
taking

Γ =
⌈

(4m2/ε)1/δ
⌉

and then εLC =

(

εγ3/2

m1/24mΓm+1

)2

.

Lemma 5.9. Given an LC instance L= (U,V,E,L,R,Π) and a collection of functions, fu : QL
1 → Z for

u ∈U; gv : QR
2 → Z for v ∈V , and Γ, γ , δ as in this section,

E
u,v∼E

[∣
∣
∣Acc fu,gv

(T
(γ)
π (D))−Acc fu,gv

(T
(γ)
π (D⊥))

∣
∣
∣

]

≤ γ−1.5m1/24mΓm+1
val(L)1/2 +2Γ−δ m2 .

Proof. For a function f : QL
1 → Z define a distribution Ψ( f ) over L as follows. First pick a ∼ [Γ]

uniformly, then pick ℓ ∈ L with probability γ · Inf(1−γ)
ℓ (F

(a)
v ) and otherwise an arbitrary label. Note that

by Lemma 2.8,

∑
ℓ∈L

Inf(1−γ)
ℓ (F

(a)
u )≤ 1/γ

and so picking ℓ ∈ L with the given probabilities is possible. Define Ψ(g) over R for g : QR
2 → Z similarly.

Now define a labeling of L by, for each u ∈U (and v ∈V ), sampling a label from Ψ( fu) (Ψ(gv), resp.),
independently.
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For an edge e = (u,v) ∈ E, the probability that e is satisfied by the labeling equals P(πe(Ψ( fu)) =
Ψ(gv)), which can be lower-bounded by

∑
i, j :πe( j)=i

γ2 E
a,b∈[Γ]

[

Inf(1−γ)
i

(

F
(a)

u

)

Inf(1−γ)
j

(

G
(b)
v

)]

= (γ/Γ)2 ∑
a,b

CrInf(1−γ)
πe

(

F
(a)

u ,G
(b)
v

)

.

Taking the expectation over all edges of L, we get that the fraction of satisfied constraints is

(γ/Γ)2 E
e=(u,v)

[

∑
a,b

CrInf(1−γ)
πe

(

F
(a)

u ,G
(b)
v

)
]

≤ val(L) ,

and by concavity of the
√· function, this implies that

E
e=(u,v)

[

∑
a,b

CrInf(1−γ)
πe

(

F
(a)

u ,G
(b)
v

)1/2
]

≤ Γγ−1
val(L)1/2 .

Plugging this bound on the total cross influence into the soundness for the test, Lemma 5.5, we obtain

E
e=(u,v)

[∣
∣
∣Acc fu,gv

(T
(γ)
πe

(D))−Acc fu,gv
(T

(γ)
πe

(D⊥))
∣
∣
∣

]

≤ γ−1.5m1/24mΓm+1
val(L)1/2 +2Γ−δ m2 ,

as desired.
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