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Let K ⊆ IR
n denote the second-order cone. Given an n ×n real 

matrix M and a vector q ∈ IR
n, the second-order cone linear 

complementarity problem SOLCP(M, q) is to find a vector 
x ∈ IR

n such that

x ∈ K, y := Mx + q ∈ K and yT x = 0.

We say that M ∈ Q if SOLCP(M, q) has a solution for all 
q ∈ IR

n. An n × n real matrix A is said to be a Z-matrix with 
respect to K iff:

x ∈ K, y ∈ K and xT y = 0 =⇒ xT My ≤ 0.

Let ΦM (q) denote the set of all solutions to SOLCP(M, q). 
The following results are shown in this paper:

• If M ∈ Z ∩ Q, then ΦM is Lipschitz continuous if and 
only if M is positive definite on the boundary of K.

• If M is symmetric, then ΦM is Lipschitz continuous if and 
only if M is positive definite.
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1. Introduction

Let (V, 〈·, ·〉) be a finite dimensional real inner-product space. We say that a cone 

C ⊆ V is proper if int(C) is non-empty, closed, convex and pointed. The dual of the cone 

C is given by

C∗ := {x ∈ V : 〈v, x〉 ≥ 0 ∀v ∈ C}.

Given a linear transformation L : V → V , a proper cone C ⊆ V and a vector q ∈ V , the 

linear complementarity problem LCP(L, C, q) is to find a vector x ∈ V such that

x ∈ C, y := L(x) + q ∈ C∗ and 〈x, y〉 = 0.

Complementarity problems appear in various fields. The classical linear complemen-

tarity problem is obtained by specializing V = IRn and C := IRn
+ for which the text of 

Cottle, Pang and Stone [4] is a standard reference where one can find several applications 

as well as theoretical and numerical results. Complementarity problem can be defined in 

a more general setting and is a special case of a finite dimensional variational inequal-

ity problem (VIP). A wide literature on finite dimensional VIPs and complementarity 

problems appears in [5].

1.1. Lipschitz continuity of solutions

Let ΦL,C(q) be the set of all solutions to LCP(L, C, q). A fundamental question in 

linear complementarity theory is the following: When is ΦL,C Lipschitz continuous? To 

make this precise, we define the Lipschitz continuity of the set-valued map ΦL,C.

Definition 1. Suppose L : V → V is a linear transformation such that LCP(L, C, q) has 

a solution for all q ∈ V . We say that the set-valued map ΦL,C is Lipschitz continuous if 

there exists c > 0 such that:

ΦL,C(q) ⊆ ΦL,C(q′) + c‖q − q′‖B ∀q, q′ ∈ IRn.

Here ‖.‖ denotes the Euclidean norm and B = {x ∈ V : ‖x‖ ≤ 1}.

We summarize the known results from the literature:

• If L is positive definite on V (i.e., 〈L(v), v〉 > 0 ∀0 �= v ∈ V ) and C is a proper cone 

in V , then ΦL,C is Lipschitz continuous. (See Facchinei and Pang [5] or Corollary 1

in this paper.)

• Let A be an n × n real matrix such that all the principal minors are positive. Then 

ΦA,IRn

+
is Lipschitz continuous. A proof of this result can be seen in [6]. Conversely, 

if ΦA,IRn

+
is Lipschitz continuous then Murthy et al. [10] showed that all the principal 

minors of A are positive. In this setting, it is well-known that LCP(A, IRn
+, q) has a 



148 R. Balaji, K. Palpandi / Linear Algebra and its Applications 510 (2016) 146–159

unique solution for all q ∈ IRn if and only if all the principal minors of A are positive. 

(See Cottle, Pang and Stone [4].)

• Suppose (V, 〈·, ·〉, ◦) is a Euclidean Jordan algebra and K is the corresponding sym-

metric cone. If L is a linear transformation on V such that ΦL,K is Lipschitz 

continuous, then det(L) > 0 and 〈L(v), v〉 > 0, where 0 �= v ∈ K is an extreme 

direction. (See Theorem 4 in [1].)

• Suppose Sn is the space of all n × n real symmetric matrices and Sn
+ is the cone 

of all positive semidefinite matrices in Sn. Then there exists a linear transformation 

L : Sn → Sn such that ΦL,Sn

+
(Q) has a unique solution for all Q ∈ Sn, but ΦL,Sn

+
is 

not Lipschitz continuous. (See Example 1.3 in [8].)

Given L and C, in general it is hard to verify whether ΦL,C is Lipschitz continuous 

or not. In fact, an answer to the following question is not known: Does there exist 

a non-polyhedral symmetric cone K in a Euclidean Jordan algebra (V, ◦, 〈·, ·〉) such 

that L is not positive definite on V and ΦL,K is Lipschitz continuous? Our first result 

of this paper answers this question. More precisely, we show the following result: Let 

K ⊆ IRn be the second-order cone. There exists a family of n × n real matrices, 

(M, say) such that if M ∈ M, then ΦM,K is Lipschitz continuous, but M is not 

positive definite. In the second part of the paper, we consider the following question: 

If ΦA,K is Lipschitz continuous, when is A positive definite? We show that if A is 

symmetric, then ΦA,K is Lipschitz continuous if and only A is positive definite.

1.2. Second-order cone, linear complementarity problems and Z-transformations

In the space IRn, the second-order cone (or the n-dimensional ice-cream cone or the 

Lorentz cone) is defined by

Kn := {x = (x1, x2, · · · , xn) ∈ IRn : (x2
2 + · · · + x2

n)1/2 ≤ x1}.

The cone Kn is self-dual for any n and non-polyhedral when n ≥ 3. By fixing n ≥ 3, we 

will write K (for brevity) to denote the n-dimensional second-order cone Kn in the rest 

of the paper. Let Mn(IR) denote the set of all n × n matrices with real entries. Given a 

matrix M ∈ Mn(IR) and a vector q ∈ IRn, the second-order cone linear complementarity 

problem LCP(M, K, q) is to find a vector x ∈ IRn such that

x ∈ K, y := Mx + q ∈ K and xT y = 0.

From now on we will use the notations SOLCP(M, q) and ΦM (q) to denote LCP(M, K, q)

and ΦM,K(q) respectively. SOLCP has been of interest to several authors in recent times 

(see [2,12] and references therein). While the results for VIPs are applicable to SOLCP, 

the extra-structure available in this second-order cone framework allows us to go beyond 

the general study and derive specialized results.
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In the theory of non-negative matrices, a real square matrix said to be a Z-matrix 

if all its off-diagonal entries are non-positive [3]. The definition of a Z-matrix can be 

reformulated as follows: M ∈ Mn(IR) is a Z-matrix if and only if

x ∈ IRn
+, y ∈ IRn

+ and xT y = 0 =⇒ xT My ≤ 0. (1)

Given a proper cone C, using the above reformulation, Gowda and Tao [9] introduced 

Z-transformations with respect to C. The definition of Z-matrices with respect to the 

second order cone is given below:

Definition 2. We say that M ∈ Mn(IR) is Z-matrix with respect to K iff:

x ∈ K, y ∈ K and xT y = 0 =⇒ xT My ≤ 0.

The motivation for studying Z-transformations with respect to a proper cone, signifi-

cance and applications are well-discussed in [9]. It may be noted that if S ∈ Mn(IR) and 

S(K) ⊆ K, then I − S is a Z-matrix with respect to K. Matrices that satisfy S(K) ⊆ K
are completely characterized in Loewy and Schneider [7]. When M is a Z-matrix with 

respect to K, we have the following result from [9] which we record for later use.

Theorem 1. Let M be a Z-matrix with respect to K. Then the following are equivalent:

(A) SOLCP(M, q) has a solution for all q ∈ IRn.

(B) det(M) > 0 and M−1(K) ⊆ K.

(C) There exists u ∈ int(K) such that Mu ∈ int(K).

(D) M is positive stable.

1.3. Main results of the paper

We summarize our main results of this paper. Let M ∈ Mn(IR) be such that 

SOLCP(M, q) has a solution for all q ∈ IRn and ΦM (q) be the set of all solutions to 

SOLCP(M, q). We show the following:

• If M is a Z-matrix with respect to K, then ΦM is Lipschitz continuous if and only if 

xT Mx > 0 for all x ∈ ∂K � {0}.

• If M is a symmetric matrix, then ΦM is Lipschitz continuous if and only if M is 

positive definite.

2. Preliminaries

The following notation is used throughout this paper.
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1. Throughout, we use IRn to denote the Euclidean n-space whose elements depending 

on the context, are regarded as row or column vectors.

2. The boundary and the interior of a set Δ are denoted by ∂Δ and int(Δ) respectively.

3. Given an n × n matrix M , the set of all solutions to SOLCP(M, q) is denoted by 

SOL(M, q) and let ΦM (q) := SOL(M, q).

4. Given a vector x ∈ IRn, ‖x‖ will denote the Euclidean norm which is defined by 

‖x‖ :=
√

xT x.

5. For an n × n matrix A, let ‖A‖ := inf{c > 0 : ‖Ax‖ ≤ c‖x‖ ∀x ∈ IRn}.

6. Let J denote the diagonal matrix diag(1, −1, −1, · · · , −1).

7. If SOLCP(A, q) has a solution for all q ∈ IRn, then we write A ∈ Q. If A is a Z-matrix 

with respect to K, then we write A ∈ Z.

Definition 3. We say that A ∈ Mn(IR) has GUS-property if SOLCP(A, q) has a unique 

solution for all q ∈ IRn.

Definition 4. Let A ∈ Q. We say that ΦA (defined by ΦA(q) := SOL(A, q)) is Lipschitz 

continuous if there exists c > 0 such that

ΦA(q) ⊆ ΦA(q′) + c‖q − q′‖B

for all q and q′ in IRn. Here B = {x ∈ IRn : ‖x‖ ≤ 1}.

Definition 5. Let A ∈ Mn(IR). We say that A is positive definite on a set Δ ⊆ IRn iff:

0 �= x ∈ Δ =⇒ xT Ax > 0.

The following elementary lemma will be useful in the sequel. We refer to [2] and [9]

for details.

Lemma 1. The following are true:

(a) Any two vectors x ∈ ∂K and y ∈ ∂K are orthogonal if and only if y = µJx for some 

µ ≥ 0.

(b) If x /∈ ±K, then there exist a ∈ ∂K � {0} and b ∈ ∂K � {0} such that x = a − b and 

aT b = 0.

(c) K is self dual. This means that K = {x ∈ IRn : xT y ≥ 0 ∀y ∈ K}.

(d) int(K) = {x : xT y > 0 ∀y ∈ K � {0}}.

By items (a) and (d) in Lemma 1 we have the following:

Lemma 2. Let M ∈ Mn(IR). Then x ∈ SOL(M, q) ∩ ∂K if and only if there exists µ ≥ 0

such that Mx + q = µJx. Furthermore, if x ∈ int(K) ∩ SOL(M, q) then Mx + q = 0.
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The following result follows from Theorem 4 in [1] and Theorem 4.1 in [11].

Theorem 2. Let A ∈ Mn(IR). Suppose ΦA is Lipschitz continuous. Then the following 

are true:

(i) det(A) > 0.

(ii) A is positive definite on ∂K.

3. Lipschitz continuity of Z ∩ Q matrices

Our first objective in this paper is to show that if M ∈ Z ∩ Q, then ΦM is Lipschitz 

continuous if and only if M is positive definite on the boundary of K. The following 

lemmas will be used to prove the main result.

Lemma 3. Let M ∈ Mn(IR) and Δ ⊆ IRn be a non-empty closed set such that

(i) pT Mp > 0 for all p ∈ Δ � {0}.

(ii) p ∈ Δ and α > 0 =⇒ αp ∈ Δ.

Then there exists c > 0 such that

x ∈ ΦM (q), y ∈ ΦM (q′) and x − y ∈ Δ =⇒ ‖x − y‖ ≤ c‖q − q′‖.

Proof. Let x ∈ φM (q), y ∈ φM (q′) and x − y ∈ Δ. Suppose x �= y. The vectors w :=

Mx + q and w′ := My + q′ belong to K and hence by self-duality of K, xT w′ ≥ 0 and 

yT w ≥ 0. Since xT w = 0 and yT w′ = 0,

(x − y)T (w − w′) ≤ 0. (2)

By the equation

(x − y)T M(x − y) = (x − y)T (w − w′) + (x − y)T (q − q′),

from (2), it follows that

(x − y)T M(x − y) ≤ (x − y)T (q′ − q). (3)

Let Δ′ = {p : p ∈ Δ} ∩ {p : ‖p‖ = 1}. Assumption (ii) implies that Δ′ is non-empty 

compact set. Define α := min{pT Mp : p ∈ Δ′}. By assumption (i), α > 0. Write 

β = ‖x − y‖. From (3), we now have

α ≤ 1

β2
(x − y)T (q′ − q).

≤ ‖q − q′‖
β

.

(4)
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If x = y, then

‖x − y‖ ≤ 1

α
‖q − q′‖. (5)

Define c := 1
α . By (4) and (5),

‖x − y‖ ≤ c‖q − q′‖.

The proof is now complete. ✷

The following result is immediate now.

Corollary 1. Let M be a positive definite matrix. Then ΦM is Lipschitz continuous.

Lemma 4. Let A ∈ Z and zT Az > 0 for all non-zero z ∈ ∂K. Then, pT Ap > 0 for all 

p /∈ K ∪ −K.

Proof. Let p /∈ K ∪ −K. Item (c) in Lemma 1 implies that there exist a ∈ ∂K � {0}
and b ∈ ∂K � {0} such that aT b = 0 and p = a − b. Since A ∈ Z, aT Ab and bT Aa are 

non-positive. By our assumption, aT Aa and bT Mb are positive. Hence

pT Ap = aT Aa + bT Ab − aT Ab − bT Aa > 0.

The proof of the lemma is complete. ✷

Theorem 3. Let M ∈ Z ∩ Q. Then the following are equivalent:

(i) ΦM is Lipschitz continuous.

(ii) xT Mx > 0 for all ∂K � {0}.

Proof. (i)=⇒ (ii) is a known result, see Theorem 2. We now prove the converse (ii) 

⇒ (i). By Theorem 4 in [2], M has GUS-property. Let u, v ∈ IRn, {x} = ΦM (u) and 

{y} = ΦM (v). We now show that there exists C > 0 such that

‖x − y‖ ≤ C‖u − v‖ ∀u, v ∈ IRn.

If x = y, then we have

‖x − y‖ ≤ ‖u − v‖. (6)

Suppose x �= y. Consider the following possible cases:

(c1) x − y ∈ ±∂K.

(c2) x − y /∈ ±K.

(c3) x − y ∈ ±int(K).
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Assume that x − y ∈ ±∂K. Define

Ω := {p : 0 �= p ∈ ±∂K}.

By assumption (ii), pT Mp > 0 for all p ∈ Ω. Now x = ΦM (u), y = ΦM (v) and x −y ∈ Ω. 

If α > 0 and p ∈ Ω, then αp ∈ Ω. By Lemma 3 we can find C1 > 0 such that

‖x − y‖ ≤ C1‖u − v‖. (7)

Assume (c2). Define

∇ := {p : p /∈ ±K}.

In view of Lemma 4,

pT Mp > 0 ∀p ∈ ∇.

By Lemma 3, there exists C2 > 0 such that

‖x − y‖ ≤ C2‖u − v‖. (8)

Consider case (c3). Without loss of generality, let x − y ∈ int(K). Then x ∈ int(K) and 

by Lemma 2,

Mx + u = 0. (9)

If My + v = 0, then by (9),

x = −M−1u and y = −M−1v.

So,

‖x − y‖ = ‖M−1(u − v)‖ ≤ ‖M−1‖‖u − v‖. (10)

If y ∈ int(K), then My + v = 0 and hence (10) holds. Now, assume that y ∈ ∂K. By 

Lemma 1, there exists µ ≥ 0 such that My + v = µJy. In view of (10), it suffices to 

assume that µ > 0 and y �= 0.

By an easy verification, we deduce that if A ∈ Mn(IR) is non-singular, then

x ∈ SOL(A, q) ⇐⇒ Ax + q ∈ SOL(A−1, −A−1q). (11)

In view of (9) and (11) we have

0 ∈ SOL(M−1, −M−1u) and µJy ∈ SOL(M−1, −M−1v). (12)
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Since M ∈ Z ∩ Q, by item (B) in Theorem 1,

M−1(K) ⊆ K. (13)

Define

Λ := (K ∪ −K) � {0}.

As K is self dual, equation (13) implies that xT M−1x ≥ 0 for all x ∈ Λ. If xT M−1x = 0

for some x ∈ K, then x ∈ SOL(M−1, 0) and hence x = 0. Therefore,

xT M−1x > 0 ∀x ∈ Λ.

Since µJy ∈ Λ, by Lemma 3 and (12), there exists λ > 0 such that

‖µJy‖ ≤ λ‖M−1(u − v)‖ ≤ θ‖u − v‖,

where θ = λ‖M−1‖. By (9), we see that

‖M(y − x)‖ = ‖(My + v) − (Mx + u) + (u − v)‖

≤ ‖M(y − x) + v − u‖ + ‖v − u‖

= ‖My + v‖ + ‖v − u‖

= ‖µJy‖ + ‖v − u‖

≤ (θ + 1)‖u − v‖.

Then we get

‖y − x‖ = ‖M−1M(y − x)‖ ≤ ‖M−1‖‖M(y − x)‖ ≤ ‖M−1‖(θ + 1)‖u − v‖. (14)

Define

C := max{1, C1, C2, ‖M−1‖, ‖M−1‖(θ + 1)}.

By (6), (7), (8), (10) and (14), we deduce that

‖x − y)‖ ≤ C‖u − v‖ ∀u, v ∈ IRn.

Therefore ΦM is Lipschitz continuous. The proof of the theorem is complete. ✷

An easy consequence of the above theorem is the following:

Corollary 2. Let M ∈ Z and e = (1, 0, . . . , 0). If Me ∈ int(K), then ΦM is Lipschitz 

continuous.
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Proof. Since e and Me belong to int(K), Theorem 1 implies M ∈ Q. We claim that M

is positive definite on ∂K. Let x ∈ ∂K � {0}. Without loss of generality assume that 

x = (1/2, x2, . . . , xn). Then y := Jx = (1/2, −x2, . . . , −xn). Define

A :=

[

xT Mx xT My

yT Mx yT My

]

.

Since M ∈ Z, the off-diagonal entries of A are non-positive. Let e′ = (1, 1). Since Me ∈
int(K) and x + y = e, by item (d) in Lemma 1 it follows that Ae′ = (xT Me, yT Me) ∈
IR2

++. By a well-known result on P -matrices (see [3], Theorem 2.3 of chapter 6), it follows 

that all the principal minors of A are positive. Hence xT Mx > 0. By Theorem 3, ΦM is 

Lipschitz continuous. The proof is complete. ✷

3.1. Examples

We now give an example of a matrix M ∈ Mn(IR) that is not positive definite but 

ΦM is Lipschitz continuous.

Example 1. For α > 0, define

Mα :=

⎡

⎢

⎣

1 − α −α 0

α 1 + α 0

0 0 1

⎤

⎥

⎦

By an easy verification, we see that Mα can be written as I −Sα, where Sα is nilpotent 

and Sα(K) ⊆ K. Since det(Mα) > 0 and M−1
α = I + Sα, from Theorem 1, it follows that 

Mα ∈ Z ∩ Q. We claim that

xT Mαx > 0 ∀x ∈ ∂K � {0} ⇐⇒ 0 < α < 2.

Suppose xT Mαx > 0 ∀x ∈ ∂K � {0}. By choosing p = (1, 0, 1), we find that pT Mαp =

2 − α. So, 0 < α < 2. For any y = (y1, y2, y3) ∈ ∂K � {0}, we have

yT Mαy = (1 − α)y2
1 + (1 + α)y2

2 + y2
3

= y2
1 + y2

2 + y2
3 + α(y2

2 − y2
1)

> y2
1 + y2

2 + y2
3 + 2(y2

2 − y2
1)

= 2y2
1 + 2(y2

2 − y2
1) = 2y2

2 ≥ 0.

If 1 < α < 2, then Mα is not positive definite but ΦM is Lipschitz continuous.
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Example 2. Let

M :=

⎡

⎢

⎣

1 4
√

2 0

0 8 0

0 0 3

⎤

⎥

⎦
.

If x = (−2
√

2, 1, 0)T , then xT Mx = 0 and hence M is not positive definite. By an 

easy verification, we find that

6J − (JM + MT J) =

⎡

⎢

⎣

4 −4
√

2 0

−4
√

2 10 0

0 0 0

⎤

⎥

⎦

is positive semidefinite. It can be shown that A ∈ Mn(IR) is a Z-matrix with respect to 

K if and only if the matrix γJ − (AJ +JAT ) is positive semidefinite for some γ ∈ IR (see

Example 4 in [9]). Hence M ∈ Z. Since Me ∈ int(K), by Corollary 2, ΦM is Lipschitz 

continuous.

3.2. Symmetric matrices

We now show that if M ∈ Mn(IR) is a symmetric Q-matrix, then ΦM is Lipschitz 

continuous if and only if M is positive definite. The following lemma will be used in the 

proof of main result.

Lemma 5. Let Q ∈ Mn(IR) be non-singular. Define Ω := QK and Ω∗ := Q−T K. If u

and v are any two non-zero orthogonal vectors in IRn such that u, v /∈ ∂Ω ∪ −∂Ω and 

u, v /∈ ∂Ω∗ ∪ −∂Ω∗, then at least one vectors in the set {u, −u, v, −v} does not belong to 

Ω ∪ Ω∗.

Proof. Assume the contrary. Then there exist two non-zero vectors u and v in IRn sat-

isfying the hypothesis of the lemma such that

{u, −u, v, −v} ⊆ Ω ∪ Ω∗. (15)

This means that either u ∈ int(Ω) or u ∈ int(Ω∗). Without loss of generality, let u ∈
int(Ω). Then, u = Qx, where x ∈ int(K). If v ∈ int(Ω∗), then v = Q−T y for some 

y ∈ int(K) and hence uT v = xT y. Since x and y belong to int(K), xT y > 0; so uT v > 0. 

But u and v are orthogonal. This contradiction implies that v /∈ int(Ω∗). By a similar 

argument, −v /∈ int(Ω∗). Thus, v /∈ int(Ω∗) ∪∂Ω ∪∂Ω∗. By (15), v ∈ int(Ω). As Ω ∩−Ω =

{0}, −v /∈ int(Ω). Therefore, −v /∈ Ω ∪ Ω∗. This is a contradiction. Hence the lemma 

must be true. ✷

Theorem 4. Let A be an n × n symmetric matrix. Suppose A ∈ Q. Then the following 

are equivalent:
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(i) A is positive definite.

(ii) ΦA is Lipschitz continuous.

Proof. (i) =⇒ (ii) follows from Corollary 1. We now show that (ii)=⇒(i). By Theorem 4 

in [1] and Theorem 4.1 in [11] it follows that det(A) > 0 and xT Ax > 0 for all x ∈
∂K�{0}. Furthermore by (11) in Theorem 3 it follows that ΦA−1 is Lipschitz continuous 

and A−1 ∈ Q. Hence xT A−1x > 0 for all x ∈ ∂K � {0}. In addition, by Theorem 4 in 

[1], we see that det(A) > 0.

Suppose A is not positive definite. Since A is symmetric and xT Ax > 0 for a non-zero 

vector x ∈ IRn, A has at least one positive eigenvalue. Let k be the number of positive 

eigenvalues of A. Put s = n − k. Since det(A) > 0, s ≥ 2. There exists an n × n

non-singular matrix Q such that

B := QAQT =

[

Ik 0

0 −Is

]

.

Here Is and Ik denote identity matrices of order s and k respectively. Let Δ := QK. 

Since Q is non-singular, we have the following:

∂(QK) = Q(∂K) and int(QK) = Q(int(K)). (16)

The set Δ is a closed convex cone with dual

Δ∗ = Q−T K.

We now show that if x ∈ ∂Δ∗
� {0}, then xT Bx > 0. If x ∈ ∂Δ∗

� {0}, by (16), there 

exists 0 �= y ∈ ∂K such that x = Q−T y. Hence,

xT Bx = xT QAQT x = yT Q−1QAQT Q−T y = yT Ay > 0.

Since B−1 = B, by a similar argument, we get

xT B−1x > 0 ∀x ∈ ∂Δ � {0}.

Hence if x = (x1, . . . , xn) ∈ ∂Δ ∪ ∂Δ∗
� {0}, then

k
∑

1

x2
i >

n
∑

k+1

x2
i . (17)

Since s ≥ 2, the right-hand side of (17) is non-zero if xn−1 �= 0 or xn �= 0. We now 

choose two vectors in IRn, namely, u = (0, . . . , 0, 1) and v = (0, . . . , 1, 0). From (17), we 

see that none of the vectors in the set {u, −u, v, −v} belong to ∂Δ ∪ ∂Δ∗ and hence u

and v satisfy the hypothesis of Lemma 5.
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Without loss of generality, let u be the vector for which there exist x ∈ ∂Δ � {0} and 

y ∈ ∂Δ∗
� {0} such that u = x − y and xT y = 0. Since u1 = u2 = . . . = un−1 = 0, 

xi − yi = 0 for all 1 ≤ i ≤ n − 1. By using the orthogonality of x and y, we find that

xnyn = −
n−1
∑

1

y2
i . (18)

By applying (17) to x and y and using (18) and Cauchy–Schwarz inequality, we get

(
k

∑

1

y2
i )2 = (

k
∑

1

x2
i )(

k
∑

1

y2
i ) > (

n
∑

k+1

x2
i )(

n
∑

k+1

y2
i )

≥ (
n

∑

k+1

xiyi)
2

= (
k

∑

1

y2
i )2,

(19)

which is not possible. Hence A must be positive definite. The proof of the theorem is 

complete. ✷

The following result is implicit from the proof of the above theorem.

Theorem 5. Let A be an n × n symmetric matrix. Then A is positive definite if and only 

if det(A) > 0 and A and A−1 are positive definite on ∂K.

We conclude the paper with an example of a symmetric matrix A such that det(A) > 0

and A is positive definite on ∂K, but A−1 is not positive definite on ∂K.

Example 3. Let A :=

⎡

⎢

⎣

2 0 0

0 −1 0

0 0 −1

⎤

⎥

⎦
. If x ∈ ∂K, then xT Ax = x2

1 > 0 and hence A is 

positive definite on ∂K. But if y = (1, 0, 1) ∈ ∂K, we see that yT A−1y = −0.5. Hence 

A−1 is not positive definite on ∂K.

4. Conclusion

For Z-matrices with respect to K, we have obtained a sufficient condition for the 

Lipschitz continuity of the solution map of a second-order cone linear complementarity 

problem. When the given matrix is symmetric, we have shown that the corresponding 

solution map is Lipschitz continuous if and only if it is positive definite. The proof of 

both these results depends upon the fact that all the boundary points and the extreme 

vectors of the second-order cone coincide. But this is not true in general for a symmetric 
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cone in a Euclidean Jordan algebra. Hence we do not know whether our results can be 

extended to other symmetric cones. This may be a topic for further research.
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