
Theoretical Computer Science 590 (2015) 38–54

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the isomorphism problem for decision trees and decision

lists✩

V. Arvind a, Johannes Köbler b, Sebastian Kuhnert b,∗, Gaurav Rattan a,
Yadu Vasudev a

a The Institute of Mathematical Sciences, Chennai, India
b Institut für Informatik, Humboldt-Universität zu Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2013
Received in revised form 20 July 2014
Accepted 16 January 2015
Available online 20 January 2015

Keywords:

Boolean function isomorphism

Graph isomorphism

Logspace completeness

We study the complexity of isomorphism testing for boolean functions that are represented

by decision trees or decision lists. Our results are the following:

• Isomorphism testing of rank 1 decision trees is complete for logspace.

• For any constant r ≥ 2, isomorphism testing for rank r decision trees is polynomial-

time equivalent to Graph Isomorphism. As a consequence of our reduction, we obtain

our main result for decision trees: A 2
√
n(log s)O (1)

time algorithm for isomorphism

testing of decision trees of size s over n variables.

• The isomorphism problem for decision lists admits a Schaefer-type trichotomy:

depending on the class of base functions, the isomorphism problem is either in L,

or polynomial-time equivalent to Graph Isomorphism, or coNP-hard.

 2015 Elsevier B.V. All rights reserved.

1. Introduction

Two boolean functions f , g: {0, 1}n → {0, 1} are said to be isomorphic (in symbols: f ∼= g) if there is a permutation

π ∈ Sn so that f π = g , meaning that f (xπ(1), xπ(2), . . . , xπ(n)) and g(x1, x2, . . . , xn) are identical boolean functions. The

boolean function isomorphism problem (Boolean Isomorphism for short) is to test if two given boolean functions f and g are

isomorphic. Naturally, the complexity of this problem depends on how the boolean functions f and g are represented when

given as input. For example, f and g could be given as input simply by their respective truth-tables. In this case, of course,

the input is of size N = 2n+O (1) , and the naive isomorphism algorithm that does a brute-force search for π ∈ Sn such that

f π = g runs in time N lg lg N+O (1) . Indeed, there is an NO (1) time algorithm for this case due to Luks [17]. On the other hand,

if the input formulas f and g are given as 3-CNF formulas, then the problem is coNP-hard because f is unsatisfiable if and

✩ An abbreviated version of this paper appears in the proceedings of FCT 2013. This work was supported by Alexander von Humboldt-Stiftung in its
research group linkage program, grant DEU/1115695. The third author was supported by DFG grant KO 1053/7-2.

* Corresponding author.
E-mail addresses: arvind@imsc.res.in (V. Arvind), koebler@informatik.hu-berlin.de (J. Köbler), kuhnert@informatik.hu-berlin.de (S. Kuhnert),

grattan@imsc.res.in (G. Rattan), yadu@imsc.res.in (Y. Vasudev).

http://dx.doi.org/10.1016/j.tcs.2015.01.025

0304-3975/ 2015 Elsevier B.V. All rights reserved.

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 39

only if f is isomorphic to the constant formula g = 0. Thus, the complexity of Boolean Isomorphism crucially depends on

the representation of the input functions.

The isomorphism problem for functions given as boolean circuits, boolean formulas (general, as well as CNF/DNF), and

branching programs has been studied before [2,22]. It is easy to see that the isomorphism for all these representations

is in Σ
p
2 . And, as observed above, the problem is coNP-hard even for 3-CNF/3-DNF formulas. Furthermore, Agrawal and

Thierauf [2] also show that boolean circuit isomorphism is not hard for the complexity class Σ
p
2 unless the Polynomial-Time

Hierarchy, PH, collapses to the third level Σ
p
3 . Along similar lines, Thierauf [22] has further shown that the isomorphism

problem for read-once branching programs is not NP-complete unless PH collapses to Σ
p
2 .

However, interesting questions remain regarding Boolean Isomorphism, especially about its connection to Graph Isomor-

phism: recall that Graph Isomorphism (GI) is the problem of checking if two input graphs G1 and G2 are isomorphic under

a bijection of their vertex sets. Suppose f and g are boolean functions given as, say, boolean circuits of size s. Then, in

O (s22n) time, we can convert them into their respective truth-table representations and check if they are isomorphic in

time 2O (n) using Luks’s algorithm [17], already mentioned above. On the other hand, the best known algorithm for Graph

Isomorphism has running time 2O (
√

n log n) [8]. An obvious bottleneck in obtaining a faster algorithm for Boolean Isomor-

phism is that any algorithm for it also solves the equivalence problem! Thus, it seems difficult to obtain a 2o(n)sO (1) time

algorithm for Boolean Isomorphism when f and g are given as boolean circuits of size s because nothing better than a

2nsO (1) time algorithm is known for the satisfiability problem for such circuits [13].

In this context it is natural to study the following questions:

• For which representations of boolean functions is Boolean Isomorphism polynomial-time equivalent to Graph Isomor-

phism?

• For a given representation of boolean functions, what influence has the complexity of the corresponding equivalence

problem on the complexity of Boolean Isomorphism?

Böhler et al. address these questions in the nice setting of constraint satisfaction problems [6,7]. The setting is nice

because of dichotomy results in the field, like Schaefer’s theorem [21]. Among the several results in [6,7], the main con-

tribution is a trichotomy theorem (Theorem 5.3) which classifies Boolean Isomorphism arising from CSP representations as

one of: polynomial-time solvable, equivalent to Graph Isomorphism, or coNP-hard.

A key idea in the work of [6,7] is the notion of a normal form of a boolean function f , represented as a CSP, where:

(a) equivalent boolean functions have the same normal form, and (b) the normal form of f π can be obtained by first

computing the normal form of f and then applying π to it. This notion allows us to pass from a semantic to a syntactic

notion of isomorphism and then reduce the problem to Graph Isomorphism. In fact, the notion of similar normal forms also

plays a crucial role in the Agrawal–Thierauf interactive protocol result [2] for Boolean Isomorphism (for the boolean circuit

representation). We note that the “normal form” used in [2] is actually a probability distribution on formulas and not a

single normal form formula. It is the output of a randomized learning algorithm (using an NP oracle) for boolean circuits.

In this paper, our aim is to explore boolean function representations for which the isomorphism problem has faster

algorithms than in the general case when the functions are given as circuits. We focus on the problem when the functions

are given as decision trees and decision lists. Decision trees are a natural representation for boolean functions and are

fundamental to boolean function complexity due to their conceptual simplicity. See, for example, the beautiful survey by

Buhrman and de Wolf [4] on complexity measures for boolean functions and the central role of decision tree complexity in

the field. Decision lists were introduced as a flexible representation for boolean functions by Rivest [19] in the context of

machine learning. In the field of algorithmic learning theory, decision trees too have played a significant role in learnabil-

ity of boolean functions. The quasipolynomial time PAC learning algorithms of constant-depth circuits under the uniform

distribution due to Linial, Mansour and Nisan [16] and the quasipolynomial time PAC learning algorithm of decision trees

under uniform distribution by Kushilevitz and Mansour [15] are important basic results in the area. Our interest in these

representations is the boolean function isomorphism problem, especially in the context of the two questions raised above.

Definition 1.1. A decision tree T on variables x1, . . . , xn is an ordered binary tree in which each leaf is labeled with a boolean

value and each inner node has exactly two children and is labeled with a variable xi . Any assignment a1, . . . , an defines a

path from the root of T to a leaf: At an inner node labeled with xi , proceed to the left child if ai = 0 and to the right child

otherwise. The function value T (a1, . . . , an) is the label of the leaf node reached along this path.

The size |T | of a decision tree T is the number of its leaves. Using a simple preprocessing step, we can assume that on

the path from the root to any leaf, each variable occurs at most once as the label of an inner node. Indeed, querying the

same variable a second time will always yield the same result as before, so the second occurrence can be removed together

with the subtree rooted at its non-reachable child without changing the represented function. From this point on, we will

assume that each variable is queried at most once on each path of the decision tree.

The satisfiability and equivalence problems for decision trees have simple polynomial-time algorithms, implying that the

isomorphism problem for decision trees, denoted DT-Iso, is in NP. Given a decision tree T , the boolean function represented

by T is satisfiable if and only if one of the leaves of T is labeled with the constant 1. For checking the equivalence of two

40 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

Fig. 1. The decision tree T1 computes the function x5 ∧ (x2 ∨ x3 ∧ x4) and has rank 1. The decision tree T2 computes the function x1 ∧ x2 ∧ x3 ∧ x4 ∨ x1 ∧
x2 ∧ x3 ∧ x4 and has rank 2.

boolean functions f and g given as decision trees T f and T g , we can construct a decision tree T for the function f ⊕ g .

Then f and g are equivalent if and only if f ⊕ g is unsatisfiable. To construct the decision tree T for f ⊕ g , we attach the

decision tree T g to the leaves of T f that are labeled with 0 and we attach the decision tree T g (obtained by complementing

the leaves of the decision tree T g) to the leaves of T f that are labeled with 1. We can then prune this decision tree to

remove nodes with the same label on a path to obtain the decision tree T . To check equivalence it is sufficient to check if

all the leaves of the decision tree T are labeled with the constant 0.

The rank of a decision tree T is the depth of the largest full binary tree that can be embedded into T ; a formal definition

of decision tree rank is given at the beginning of Section 2. The rank of a boolean function f is the minimum rank over all

decision trees computing f . In Section 3 we describe a logspace canonization algorithm for decision trees that may have

arbitrary rank but compute a function of rank 1. Further, it turns out that isomorphism of rank 1 decision trees is complete

for deterministic logspace.

Our main result for decision trees is in Section 4 where we give a 2
√
n(log s)O (1)

time algorithm for isomorphism testing

of size s decision trees over n variables. We obtain this result by examining the connection between bounded rank decision

trees and hypergraphs of bounded rank, where the rank of a hypergraph is the maximum size of its hyperedges. It turns out

that a rank r decision tree of size s can be encoded as a hypergraph of rank O (r) and this transformation can be carried

out in time (snr)O (1) . Since decision trees of size s have rank at most log s, this gives the 2
√
n(log s)O (1)

time algorithm for

isomorphism by applying the algorithm for bounded rank hypergraph isomorphism described in [3].

Section 5 treats the next main topic of the paper – the isomorphism problem for decision lists. Decision lists were

originally introduced by Rivest [19] in learning theory.

Definition 1.2. (Cf. [19].) Let C be a finite class of boolean functions. A C-decision list (C-DL) L is a sequence of pairs

〈 f i, ci〉i≤m where ci ∈ {0, 1}, fm = 1, and for i = 1, . . . , m − 1, f i(x1, . . . , xn) = gi(xi1 , . . . , xik) for some gi ∈ C and indices

1 ≤ i1, . . . , ik ≤ n. For a boolean assignment b, the decision list L has the value L(a) = ci , where i = min{ j ≥ 1 | f j(b) = 1}.

In his original definition, Rivest [19] considered r-decision lists (r-DLs in short), which are C-decision lists where

C consists of conjunctions of r literals. He observed that for any r-DNF T1 ∨ · · · ∨ T l , there is an equivalent r-DL

〈T1,1〉 · · · 〈T l,1〉〈1,0〉, and for any r-CNF C1 ∧· · ·∧Cl , there is an equivalent r-DL 〈C1,0〉 · · · 〈Cl,0〉〈1,1〉. Rivest’s observations
imply that for r ≥ 3, the satisfiability problem for r-DLs is NP-complete, and the equivalence problem is coNP-complete. Fur-

thermore, he proved that there are r-decision lists for which neither an equivalent r-DNF nor an equivalent r-CNF formula

exists [19, Theorem 2], showing that r-DLs are strictly more expressive than formulas in r-CNF or r-DNF.

The classes of 1-decision lists and rank 1 decision trees coincide. For example, the decision tree T1 from Fig. 1 is

equivalent to the decision list 〈x5,0〉〈x2,1〉〈x3,0〉〈x4,0〉〈1,1〉. More generally, every rank r decision tree of size s has an

r-decision list of length O (s) [9]. Our results on the complexity of the isomorphism problem for C-DLs, denoted C-DL-Iso,

are summarized below.

1. C-DL-Iso is in L if all functions in C are parities of at most 2 literals, or disjunctions of such parities. It is also L-hard if

C contains a non-constant function.

2. C-DL-Iso is GI-complete,1 when C consists of one of the following: (i) 2-DNFs, (ii) complements of Horn-CNFs, (iii) com-

plements of anti-Horn-CNFs, and (iv) disjunctions of parities of literals such that at least one parity has size at least 3.

3. In all other cases for C , C-DL-Iso is both coNP-hard and GI-hard.2

The above results show a Schaefer-type trichotomy for the C-DL isomorphism problem. It is interesting to compare this

with the trichotomy result for C-CSP isomorphism problems proved by Böhler et al. [7]. They show that C-CSP isomorphism

is in P if C consists of conjunctions of parities of size at most 2; it is GI-complete if C consists of one of the following:

1 We say that a decision problem is GI-complete if it is polynomial-time equivalent to Graph Isomorphism.
2 We say that a decision problem is GI-hard if there is a polynomial-time reduction from Graph Isomorphism to it.

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 41

(i) 2-CNFs, (ii) Horn-CNFs, (iii) anti-Horn-CNFs, and (iv) conjunctions of parities such that at least one parity has size

at least 3; and that in all other cases, C-CSP isomorphism is both coNP-hard and GI-hard. As any C-CSP can be easily

transformed into an equivalent C-DL, where C contains all complementary constraints ¬C for C ∈ C , the representation

classes appearing in our trichotomy are extensions of the classes appearing in the Böhler et al. trichotomy result.

Additionally, we generalize the PNP

‖ upper bound of Böhler et al. for C-CSP isomorphism [6] to C-DL isomorphism. This

complexity class contains all problems that can be solved in polynomial time using one round of parallel queries to an

NP oracle.

2. Preliminaries and basic facts

We recall the notion of rank for decision trees [11]. Let T be a decision tree and let v be a node in T . If v is a leaf

node then its rank is rk(v) = 0. Otherwise, suppose v has children v0 and v1 in T . If rk(v0) �= rk(v1), define rk(v) =
max{rk(v0), rk(v1)} and rk(v) = rk(v0) + 1, otherwise. The rank of the decision tree rk(T) is the rank of its root node. The

rank rk(f) of a boolean function f is the minimum rank over all decision trees computing f .

In general, by a representation class of boolean functions we mean a set R of finite descriptions R for boolean func-

tions f : {0, 1}n → {0, 1}, such that for any R ∈ R and input x ∈ {0, 1}n we can evaluate R(x) = f (x) in time polynomial in n

and the size of R . Examples of representation classes include circuits, branching programs, formulas, decision trees, decision

lists etc. Two representations R and R ′ are equivalent (denoted R ≡ R ′) if they describe the same boolean function.

Let f : {0,1}n → {0,1} be a boolean function and let π ∈ Sn be a permutation. Then f π denotes the boolean function

f (xπ(1), xπ(2), . . . , xπ(n)). Similarly, we assume that we can transform any representation R of the function f into a repre-

sentation Rπ for f π by replacing each input variable xi in R by xπ(i) . We call two representations R1 and R2 syntactically

isomorphic if R2 = Rπ
1 for some permutation π .

Let R and R′ be representation classes of boolean functions. A normal form representation for R is a mapping N: R → R′

such that: (i) NR ≡ R for any R ∈R, (ii) R1 ≡ R2 implies NR1 = NR2 , and (iii) for each permutation π we have NRπ = (NR)π .

This definition is a generalization of the definition of a normal form function given by Böhler et al. [7, Definition 8]. We

call NR the normal form of R . Since NR only depends on the function f represented by R , NR is also called the normal

form of f and we will also denote it by N f . Usually, only the first two conditions are required for a normal form. Following

Böhler et al. we additionally require that it also fulfills the third condition that it is permutation preserving.

Notice that a normal form representation N: R → R′ can be used to reduce the isomorphism problem for representa-

tions in R to the syntactical isomorphism problem for representations in R′ . More precisely, for any two representations

R1 and R2 in R it holds that R1 and R2 represent isomorphic functions if and only if NR1 and NR2 are syntactically

isomorphic.

A canonical representation for R is a mapping C : R → R such that: (i) for any R ∈ R, the function represented by CR is

isomorphic to the one described by R , and (ii) for any two representations R1 and R2 , the functions described by R1 and

by R2 are isomorphic if and only if CR1 = CR2 . We call CR the canonical form or simply canon of R .

We will use the following approach to compute a canonical representation C : R → R for R. First we find a suitable nor-

mal form representation N: R → R′ for R. Secondly, we find a transformation C ′ on R′ that maps a given representation R

to a syntactically isomorphic representation C ′
R such that any two syntactically isomorphic representations R1, R2 ∈ R′ are

mapped to identical representations C ′
R1

= C ′
R2
. The last step is to convert a given representation R ∈R′ back into an equiv-

alent representation T R in R. It is easy to verify that the concatenation C = T ◦ C ′ ◦ N of these three mappings gives a

canonical representation for R.

A literal is either a variable xi or a negated variable xi . We call xi a positive literal and xi a negative literal. For a set L

of literals we denote by L = {l̄ | l ∈ L} the set of all complementary literals, where xi = xi . Further, we denote a positive

literal xi also by x1
i
and a negative literal xi also by x0

i
. Given an n-ary boolean function f , a variable xi and a bit b ∈ {0, 1},

the function f [xi ← b] is the n-ary boolean function that is obtained from f by setting the value of xi to b, i.e.,

f [xi ← b] : (b1, . . . ,bn) �→ f (b1, . . . ,bi−1,b,bi+1, . . . ,bn).

For a set L of literals we also use the notation f [L ← b] for the n-ary boolean function where for any literal x1
i

∈ L,

variable xi is set to b and for any literal x0i ∈ L, xi is set to 1 −b. If L contains contradictory literals x0i and x1i , we let f [L ← b]
be the constant 0 function.

We proceed with a few simple observations.

Observation 2.1. Given a decision tree T of size s, it can be checked in time O (s) and in space O (log s) whether f = 0 or f = 1,

where f is the boolean function represented by T .

Proof. The first step of the algorithm is to obtain a decision tree T ′ that is equivalent to T and in which all variables occur

only once on each path from the root to a leaf. As mentioned before, this amounts to removing repeated variables and the

unreachable subtrees below them. This step can be implemented in linear time and in logspace. Afterwards, it suffices to

check whether all leaves of T ′ are labeled with the desired constant. ✷

42 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

Observation 2.2. Let T be a decision tree of size s and rank r > 0 for some n-ary boolean function f and let xb
i
be a literal. Then a

decision tree T [xbi] of rank at most r computing the function f [xi ← b] can be computed in time O (s) and in space O (log s). Moreover,

there exists some literal xb
i
such that T [xb

i
] has rank at most r − 1.

Proof. To obtain T [xb
i
] from T , remove each inner node labeled with xi along with the subtree rooted at its unreachable

child. Then T [xb
i
] computes the function f [xi ← b] and its rank is not larger than the rank of T .

To show the second part, assume that the root of T is labeled with variable xi . Since T has rank r > 0, one of the

children of the root must have rank at most r − 1. If it is the left child, then T [x0
i
] has rank at most r − 1. Otherwise T [x1

i
]

has rank at most r − 1. ✷

Notice that if we eliminate several variables xi from T by using operations of the form T �→ T [xb
i
], the result is indepen-

dent of the order in which we apply these operations as long as the conjunction of the corresponding literals is satisfiable.

Hence, for a set L of non-contradicting literals we can denote the resulting tree by T [L].
Using the above observations, we can minimize the rank of a given decision tree.

Theorem 2.3. Given as input a number r and a decision tree T for a boolean function f , we can check if f has rank at most r and, if

so, construct a decision tree of minimal rank for f in time (nr · |T |)O (1) .

Proof. Let f be the function represented by the given decision tree T . The algorithm is recursive. In the base case r = 0, it

suffices to check if f = 0 or f = 1; this can be done by Observation 2.1. If it is, the algorithm returns a decision tree whose

root is a leaf labeled by the respective constant.

In case r > 0, the algorithm first computes, for each literal xb
i
such that T has a node labeled by xi , the decision tree T [xb

i
]

using Observation 2.2. Then it recursively checks for each tree T [xb
i
] if the represented function f [xi ← b] has rank at most

r − 1. In the positive case it also obtains a decision tree T i,b of minimum rank ri,b for the function f [xi ← b], otherwise it

lets ri,b = r. If all answers are negative, the algorithm rejects. Otherwise, it computes for each variable xi that occurs in T

the value

ri =
{

max(ri,0, ri,1) if ri,0 �= ri,1
ri,0 + 1 if ri,0 = ri,1

and determines rmin = mini ri as well as the smallest index j for which r j = rmin . If r j,b = r for some b ∈ {0,1}, the algorithm

recursively checks if the function f [x j ← b] represented by T [xbj] has rank at most r. If the answer is negative, the algorithm

rejects, otherwise it obtains a decision tree T j,b of rank r for f [x j ← b]. Finally, the algorithm returns the decision tree T ′

with x j at its root, and T j,0 and T j,1 as its left and right subtree, respectively.

By Observation 2.2, the algorithm never rejects if f has rank at most r. The returned decision tree T ′ has minimum rank,

because the recursively computed subtrees T j,0 and T j,1 of T ′ have minimum rank and because the algorithm selects the

root x j of T ′ in such a way that the rank r j of the resulting tree is minimal.

In order to give a bound on the running time of the algorithm, let t(n, r, s) denote the worst case running time on all

inputs (T , r), where T is a decision tree of size at most s whose inner nodes are labeled with n variables. Since there are

exactly 2n recursive calls with parameters (n − 1, r − 1, s − 1) and at most one with parameters (n − 1, r, s − 1), we have

the recurrence

t(n, r, s) ≤ 2n · t(n − 1, r − 1, s − 1) + t(n − 1, r, s − 1) + O (n · s).
It is easy to verify by induction that t(n, r, s) = O (sn2r). ✷

3. Canonizing decision trees for rank 1 functions

In this section we show that the isomorphism problem for boolean functions f having rank 1 is decidable in logarithmic

space if f is given as a decision tree (of arbitrary rank). In fact, we will first give a polynomial-time algorithm and then

a logspace algorithm for computing a canonical representation for this class. Additionally, we show that the isomorphism

problem for decision trees of rank 1 is complete for logspace.

3.1. Computing a normal form for rank 1 functions

Let f be an n-ary boolean function of rank 1 given by some decision tree T , not necessarily of rank 1. For c ∈ {0, 1}, let
L(f , c) = {xb

i
| f [xi ← b] = c}.

Let f0 = f and for k ≥ 1, define Lk(f) = L(fk−1, k mod 2) \
⋃

j<k L j(f) and fk = fk−1[Lk(f) ← 0], and let m be the

smallest index k for which fk has rank 0.

Intuitively, the set Lk(f) contains all literals xb
i
for which the assignment xi = b forces fk−1 to the constant function

fk−1[xi ← b] = k mod 2, and fk is obtained from fk−1 by assigning the opposite value to these variables. Observation 2.2

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 43

implies that for each literal xb
i
there is an index k ≤m +1 such that xb

i
∈ Lk(f). We call this index the level of xb

i
and denote

it by lv f (x
b
i).

We also notice that there might be no literals at level 1.

To compute a normal form, we transform the decision tree T into a list

NT = S1(f), . . . , Sm(f),
{

〈1,m + 1 mod 2〉
}

,

where Sk(f) = {〈xb
i
,k mod 2〉 | xb

i
∈ Lk(f)}. By definition, the list NT represents the same function as the 1-decision list LT

obtained from it by replacing each set with the list of pairs contained in it.

Example 3.1. Consider the 5-ary boolean function f (x1, . . . , x5) represented by the decision tree T1 in Fig. 1. Then the literal

sets are L1(f) = ∅, L2(f) = {x05}, L3(f) = {x02}, L4(f) = {x13, x04}, and L5(f) = {x01, x11, x12, x03, x14, x15}. The functions fk at level k

are f1 = f , f2 = x2 ∨ x3 ∧ x4 , f3 = x3 ∧ x4 and f4 = 1. Thus, m gets value 4 and the normal form for T1 is

NT1 = ∅,
{〈

x05,0
〉}

,
{〈

x02,1
〉}

,
{〈

x13,0
〉

,
〈

x04,0
〉}

,
{

〈1,1〉
}

.

The next lemma proves that NT is indeed a normal form for T .

Theorem 3.2. The mapping T �→ NT defined above is a polynomial-time computable normal form representation for decision trees T

that represent boolean functions of rank 1.

Proof. To compute NT on input T , starting with k = 1 iteratively compute the sets Lk(f) = L(fk−1, k mod 2) and the deci-

sion trees Tk = Tk−1[Lk(f)] for the function fk = fk−1[Lk(f) ← 0] using Observations 2.1 and 2.2, until fk has rank 0 (i.e.,

k =m).

We next show that NT and T represent the same function. For a given assignment a = a1 · · ·an ∈ {0, 1}n , let j(a) be the

smallest index j such that L j(f) contains a literal xb
i
satisfied by a (i.e., b = ai). Then, by the way the semantics of NT

is defined it follows that NT (a) = j(a) mod 2. On the other hand, by the definition of the sets L j(f) it follows that also

T (a) = j(a) mod 2, implying that NT (a) = T (a).

Further, since NT only depends on the function f represented by T (and not on the structure of T), equivalent decision

trees T ≡ T ′ yield identical lists NT = NT ′ .

It remains to prove the third property of a normal form. For a permutation π , let Tπ be the decision tree obtained

from T by replacing each label xi in it by the label xπ(i) . Then we have to show that the list NTπ of Tπ coincides with the

list (NT)π that is obtained from NT by replacing each literal xb
i
in it with the literal xbπ(i)

. Since Tπ computes the function

g = f π and since the normal form NTπ only depends on g , it suffices to prove for any level k = 1, . . . , m that π maps Lk(f)

to Lk(g).

In fact, for all bits c, b ∈ {0, 1}, we have f [xi ← b] = c if and only if g[xπ(i) ← b] = c, so π maps L(f , c) to L(g, c), proving

the claim for level k = 1. Additionally it follows that π is an isomorphism from f1 = f [L1(f) ← 0] to g1 = g[L1(g) ← 0].
Hence, the claim follows inductively over k by using the induction hypothesis that π is an isomorphism from fk−1

to gk−1 . ✷

Since it is easy to syntactically canonize a given normal form NT , we immediately get the following result.

Corollary 3.3. Given a decision tree T that represents a boolean function of rank 1, a canonical form CT of T can be computed in

polynomial time. Thus, isomorphism for such decision trees is decidable in P.

Proof. Define CT as the rank 1 decision tree that is obtained from the rank 1 decision list corresponding to NT by renaming

its variables (and adding missing variables if necessary) such that the inner nodes of the longest path starting from the root

are labeled by x1, . . . , xn . ✷

We now show that rank 1 functions can even be canonized in logspace.

Lemma 3.4. Let T be a decision tree that represents a function f of rank 1, let xbi be a literal and let x j be a variable. Then lv f (x
b
i) ≤

min{lv f (x
0
j
), lv f (x

1
j
)} if and only if f [xi ← b] does not depend on x j . Moreover, the latter condition can be checked in logspace.

Proof. Let NT = S1(f), . . . , Sm(f), {〈1,m + 1 mod 2〉} be the normal form of T as defined above and suppose that the

literal xb
i

has level k, i.e., 〈xb
i
,k mod 2〉 ∈ Sk(f). Cutting off NT before level k, we obtain a list R = S1(f), . . . , Sk−1(f),

{〈1,k mod 2〉} that represents f [xi ← b]. If the levels of x0
j
and of x1

j
are at least k, the variable x j does not occur in R and

thus f [xi ← b] does not depend on x j . Conversely, if the level of x
0
j or of x1j is less than k, the structure of R makes it easy

to find two assignments that differ only on x j and that lead to different values of f [xi ← b].

44 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

Fig. 2. The reduction from Ord to DiPathCenter.

To prove checkability in logspace, notice that f [xi ← b] does not depend on x j if and only if the two functions g =
f [xi ← b, x j ← 0] and h = f [xi ← b, x j ← 1] are the same. Since by Observation 2.2, it is possible to compute the decision

trees T g = T [xb
i
, x0

j
] for g and Th = T [xb

i
, x1

j
] for h in logspace, it remains to note that the polynomial-time equivalence test

for decision trees described in the introduction can also be implemented in logspace. ✷

Using this lemma, the collection of sets Lk(f), k = 1, . . . , m of literals having the same level can be found in logspace by

determining for each literal xb
i
the set D(f [xi ← b]) of variables x j on which the function f [xi ← b] depends. Based on the

sizes of these dependency sets, the obtained literal sets can also be ordered by level. If level 1 is non-empty, i.e., if there is

a literal xbi such that f [xi ← b] = 1, then these literal sets can be assigned ascending levels starting from 1, otherwise the

smallest non-empty level is 2. Once the sets Lk(f) are known, we can compute the canonical form of T as before.

Example 3.5. Consider once more the 5-ary boolean function f (x1, . . . , x5) represented by the decision tree T1 in Fig. 1.

Then the dependency sets D(f [xi ← b]) are given by the following table:

i 1 2 3 4 5

D(f [xi ← 0]) {x2, x3, x4, x5} {x5} {x2, x4, x5} {x2, x5} ∅

D(f [xi ← 1]) {x2, x3, x4, x5} {x3, x4, x5} {x2, x5} {x2, x3, x5} {x2, x3, x4}

The dependency sets corresponding to literals of level at most m = 4 are in bold print.

Theorem 3.6. Given a decision tree T that represents a boolean function of rank 1, a canonical form CT of T can be computed in

logspace. Thus, isomorphism for such decision trees is decidable in logspace.

3.2. Isomorphism of rank 1 decision trees is hard for logspace

All our L-hardness results are w.r.t. DLOGTIME-uniform AC
0 reductions. To show the logspace completeness, we will give

a reduction from the problem Ord, which is known to be complete for L [12]. The input to Ord is a directed path P (given

as a set of edges) and two vertices s and t . The problem is to test if s occurs before t on P (i.e., whether t is reachable

from s).

As an intermediate step, we show that the problem DiPathCenter is L-complete, which asks whether a given vertex u

is the center of a given directed path P (which is again given as a set of its edges). The problem PathCenter, which asks

the same question for undirected paths, is already known to be L-complete [1]. The following lemma adapts the reduction

given there to the directed setting.

Lemma 3.7. DiPathCenter is L-complete. The hardness also holds for paths of even length.

Proof. The problem can easily be solved in logspace. To prove the hardness, we reduce from Ord using (P , s, t) �→ (P ′, n)

as reduction, where n is the vertex having no successor and 1 is the vertex having no predecessor in P , and where P ′ is

defined by

V
(

P ′) = V (P) ∪
{

i′
∣

∣ i ∈ V (P)
}

∪ {ŝ}
E
(

P ′) =
{

(i, j)
∣

∣ (i, j) ∈ E(P) ∧ j �= t
}

∪
{(

j′, i′
) ∣

∣ (i, j) ∈ E(P) ∧ j /∈ {s, t}
}

∪
{(

ŝ, i′
) ∣

∣ (i, s) ∈ E(P)
}

∪
{(

s′, ŝ
)

,
(

t′,1
)

,
(

1′, t
)

,
(

n,n′)}.

The path P ′ consists of a forward and a reversed copy of P that are joined together, where the part before the first copy

of t is swapped with the part after the second copy of t , and where the second copy of s is duplicated; see Fig. 2 for an

illustration. If s precedes t in P (left side), then n is the center of P ′ , but if t precedes s then n′ is the center of P ′ (right

side). ✷

Now let (P , u) be an instance of DiPathCenter. In our reduction to isomorphism of rank 1 decision trees, we construct

two decision trees T and T ′ from P : For each v ∈ V (P) there is a variable xv , and both T and T ′ contain one internal node

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 45

for each xv . If v is the successor of v ′ in P , xv becomes the right child of xv ′ in T , and xv ′ becomes the right child of xv
in T ′ . Let v1 be the vertex having no predecessor, and let vn be the vertex having no successor in P . In T , the node xv1
is the root and the right child of xvn is a leaf labeled with 0. In T ′ , these roles are reversed: xvn is the root, and the right

child of xv1 is a leaf labeled with 0. In both trees, the left child of xu is a leaf labeled with 0, and the left children of all

other variables are leaves labeled with 1.

Lemma 3.8. Let T and T ′ be the decision trees constructed from an instance (P , u) of DiPathCenter. Let f and g be the functions

represented by the decision trees, respectively. Then, f ∼= g if and only if (P , u) ∈ DiPathCenter.

Proof. For the purposes of this proof, we identify the vertices of P with the integers 1, . . . , n such that the vertex i is the

successor of i − 1. To prove the lemma, it is sufficient to show that f is isomorphic to g if and only if u = (n + 1)/2.

In the case of T , we obtain L1(f) = {x01, . . . , x0u−1}, L2(f) = {x0u}, and L3(f) = {x0u+1, . . . , x
0
n}. Similarly for T ′ , we obtain

L1(g) = {x0u+1, . . . , x
0
n}, L2(g) = {x0u}, and finally L3(g) = {x01, . . . , x0u−1}. Thus f ∼= g if and only if u = (n + 1)/2. ✷

Combining Theorem 3.6 and Lemma 3.8, we obtain the following completeness result.

Corollary 3.9. The isomorphism problem for rank 1 decision trees is L-complete.

4. Isomorphism of decision trees for arbitrary functions

In this section we first generalize the normal form representation for decision trees computing rank 1 functions to

arbitrary decision trees. Next, we exploit the structure of this normal form to give a polynomial-time reduction of the

isomorphism problem for decision trees computing functions of rank at most r to the isomorphism problem for O (r) rank

hypergraphs. This yields a moderately exponential time algorithm for isomorphism testing of decision trees. We conclude

this section by showing that graph isomorphism reduces to isomorphism of rank r decision trees, for any fixed r ≥ 2.

4.1. Computing a normal form for decision trees

Let f be an n-ary boolean function of rank r ≥ 0 given by some decision tree T . If r = 0 (which can be checked by

Observation 2.1), we use the decision tree whose root is a leaf labeled by the respective constant as its normal form.

For r > 0, the normal form is defined as follows. Let L(f) be the set of literals xb
i
such that f [xi ← b] has rank at most

r − 1. Let f0 = f , and for k ≥ 1, let Lk(f) = L(fk−1) \
⋃

j<k L j(f) and let fk = fk−1[Lk(f) ← 0]. As before, the level lv f (x
b
i)

of a literal xbi is the index k such that xbi ∈ Lk(f). By Observation 2.2, all literals occur in Lk(f) for some k, so the notion of

level is well-defined. Further, let m be the smallest index k for which fk has rank at most r −1. Note that m ≤ n, as for each

level k ≤m, the set Lk(f) must contain a literal of a new variable. Indeed, Lk(f) cannot be empty as rk(fk−1) = r. Further,

if Lk(f) contains a literal which is complementary to one in
⋃

j<k L j(f), then rk(fk−1) ≤ r − 1. Similarly, if Lk(f) contains

two complementary literals, then rk(fk) ≤ r − 1.

Generalizing the normal form for rank 1 functions, which is a list of pairs that comprise of one literal and one

constant each and that are grouped into sets, the normal form for f is a list N f of pairs that comprise of one lit-

eral and one normal form of a boolean function of rank at most r − 1 that are grouped into sets. We define N f =
S1(f), . . . , Sm(f), {〈1,N fm 〉}, where Sk(f) = {〈xb

i
,N fk−1[xi←b]〉 | xb

i
∈ Lk(f)} and where the normal forms N fk−1[xi←b] and N fm

for the functions fk−1[xi ← b] and fm are defined recursively based on the decreasing rank.

To evaluate N f on a given assignment a = a1 · · ·an ∈ {0, 1}n , find the first set in N f that contains a pair whose first

component is satisfied by a, and recursively evaluate the normal form in the second component of this pair.

Theorem 4.1. Given a number r and a decision tree T of size s for a boolean function f : {0,1}n → {0,1} of rank at most r, the normal

form N f described above can be computed in time (snr)O (1) .

Proof. We first show that the function N: T �→ N f is indeed a normal form representation for decision trees. Clearly, N f rep-

resents the function f . Also, N f only depends on the function f (and not on the structure of T), so equivalent decision

trees T and T ′ receive the same normal form N(T) = N(T ′) = N f .

To prove that N is permutation preserving, we use induction over the rank r of f . The base case is clear. If r > 0,

let T and T ′ be isomorphic decision trees for n-ary boolean functions f and g of rank r and let π be an isomorphism

from f to g . Then xb
i
∈ L(f) implies xbπ(i)

∈ L(g) and vice versa, meaning that π maps L(f) to L(g). Additionally, (f1)
π =

(f [L(f) ← 0])π = f π [L(f)π ← 0] = g[L(g) ← 0] = g1 . Hence, an inductive argument over k gives (fk)
π = gk and Lk(f)

π =
Lk(g) for k = 1, . . . , m. Further, as (fk−1[xi ← b])π = gk−1[xπ(i) ← b] for k = 1, . . . , m and (fm)π = gm , we can use the

induction hypothesis for rank at most r − 1 functions to get the identities (N fk−1[xi←b])π = Ngk−1[xπ(i)←b] and (N fm)π = Ngm ,

implying that (N(f))π = N(g).

46 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

The algorithm for computing N f on input T is very similar to the algorithm in the proof of Theorem 2.3 and in fact has

the same worst case running time. The only difference is that in each recursive step, the algorithm does not only select a

single variable x j for which r j = rmin but it determines all such variables and stores all literals xbj for which x j occurs in T

and r j,b ≤ r − 1 in the set L. (We assume that initially all n variables occur in T .) For each xbj ∈ L, the algorithm collects the

pair 〈xb
j
,N f [x j←b]〉 in S , where N f [x j←b] is the normal form of T [xb

j
] returned by the recursive call. Finally, it computes the

decision tree T [L] and, using a last recursive call, its normal form NT [L] . If the rank of T [L] is at most r − 1, the algorithm

returns the list S, {〈1,NT [L]〉}, otherwise it returns the list S, NT [L] obtained by prepending the set S to the list NT [L] . ✷

4.2. Reducing decision tree isomorphism to hypergraph isomorphism

We now describe our reduction of rank r decision tree isomorphism to rank O (r) hypergraph isomorphism, where the

rank of a hypergraph is the maximum size of its hyperedges.

Let T be a decision tree of size s for an n-ary boolean function f of rank r. We first compute the normal form N f for f

in time (snr)O (1) , as described in Theorem 4.1. The next step is to construct a vertex-colored hypergraph H f that encodes

the normal form in a suitable way. The vertex set V (n, r) for H f is

V (n, r) =
{

vdi

∣

∣ 1 ≤ i ≤ n,0 ≤ d ≤ r
}

∪ {0,1} ∪
{

(j,b,d)
∣

∣ 0 ≤ j ≤ n,b ∈ {0,1},1 ≤ d ≤ r
}

.

The hyperedge set of H f is E(n, r) ∪ E(N f), where E(n, r) = {{vd
i
| 0 ≤ d ≤ r} | 1 ≤ i ≤ n} and where E(N f) is defined induc-

tively below. The vertex coloring c of H f is defined by c(0) = −2, c(1) = −1, c(vd
i
) = d for 1 ≤ i ≤ n and 0 ≤ d ≤ r, and by

c((j,b,d)) = (j, b, d). Each permutation π ∈ Sn induces a permutation π̃ on V (n, r) that maps vdi to vdπ(i) for 1 ≤ i ≤ n and

0 ≤ d ≤ r and is the identity on all other vertices. Note that all permutations on V (n, r) that respect the coloring c and the

hyperedges in E(n, r) have this form.

We now turn to the definition of E(N f). In the base case r = 0, we define E(N f) = {{0}} if f = 0, and E(N f) = {{1}}
if f = 1. For r > 0, let N f = S1(f), . . . , Sm(f), {〈1,N fm 〉} be the normal form of f as defined above. Then for each entry

〈xb
i
,Nh〉 ∈ S j(f) and for each hyperedge e ∈ E(Nh), we include the hyperedge e ∪ {vr

i
, (j,b, r)} in E(N f). We also include all

hyperedges e ∈ E(N fm) into E(N f). Notice that E(N f) is well-defined since h and fm have rank at most r − 1. Further, the

algorithm of Theorem 4.1 can be easily modified to compute H f on input T in time (snr)O (1) .

Lemma 4.2. Let H f andHg be the hypergraphs corresponding to the decision trees T f and T g . Then, T f and T g compute isomorphic

functions f and g if and only if the hypergraphs H f andHg are isomorphic.

Proof. We use induction over the rank r of f and g to prove the stronger claim that every permutation π ∈ Sn is a syntactic

isomorphism from N f to Ng if and only if the mapping π̃ defined as above is an isomorphism from H f to Hg .

In the base case r = 0, the functions f and g are constant, implying that E(N f) = {{c f }} and E(Ng) = {{cg}} for the

respective constants c f , cg ∈ {0, 1}. As the vertices 0 and 1 have different colors, the hypergraphs H f and Hg are isomorphic

if and only if f = g . In this case, each permutation π ∈ Sn maps N f to Ng , and its induced vertex permutation π̃ maps H f

to Hg .

For rank r > 0, let π ∈ Sn be a syntactic isomorphism from N f = S1(f), . . . , Sm(f), {〈1,N fm 〉} to Ng = S1(g), . . . , Sm(g),

{〈1,Ngm 〉}. In particular, for any entry 〈xb
i
,Nh〉 ∈ Sk(f), there must be a corresponding entry 〈xbπ(i)

, (Nh)
π 〉 ∈ Sk(g). By the

induction hypothesis, π̃ maps E(Nh) to E((Nh)
π) = E(Nhπ). Thus for any e ∈ E(Nh), the hyperedge e ∪{vri , (k,b, r)} included

in E(N f) is mapped by π̃ to the hyperedge eπ̃ ∪ {vrπ(i)
, (k,b, r)} included in E(Ng). Also, the hyperedges in E(N fm) are

mapped to the hyperedges in E(Ngm). Thus π̃ maps E(N f) to E(Ng).

For the converse direction, suppose that for some π ∈ Sn , the vertex permutation π̃ maps E(N f) to E(Ng). For each

entry 〈xb
i
,Nh〉 in Sk(f), E(N f) contains for every hyperedge e′ ∈ E(Nh) the hyperedge e = e′ ∪ {vr

i
, (k, b, r)}. Since the image

eπ̃ of e contains the two vertices vrπ(i)
and (k, b, r), it follows that the set Sk(g) contains an entry of the form 〈xbπ(i)

,Nh′ 〉.
Further, by the construction of E f and of E g it follows that

E(Nh) = E(N f)i,k,b,r and E(Nh′) = E(Ng)π(i),k,b,r,

where for a set E of hyperedges, E i,k,b,r = {e ∈ E | vr
i
∈ e, (k,b, r) ∈ e}. Hence, π̃ maps E(Nh) to E(Nh′). Also, π̃ must map

the remaining hyperedges of E(N f) to those of E(Ng) and thus maps E(N fm) to E(Ngm). By the induction hypothesis we

get Nh′ = (Nh)
π and Ngm = (N fm)π , implying that Ng = (N f)

π . ✷

According to the construction, the hypergraph H f corresponding to the rank r function f has O (nr) vertices and rank

2r + 1.

Theorem 4.3. Let f and g be n-ary boolean functions of rank at most r given by decision trees T f and T g of size at most s. There is an

algorithm running in time (snr)O (1) that outputs two hypergraphs H f andHg of rank at most 2r + 1 having O (nr) vertices such that

f and g are isomorphic if and only if the hypergraphs H f andHg are isomorphic.

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 47

By combining this with the isomorphism algorithm for hypergraphs of rank R on N vertices of Babai and Codenotti [3],

which takes 2R2
√
N(log N)O (1)

time, we get an (snr)O (1) + 2
√
nr5(log n)O (1)

time isomorphism algorithm for n-ary boolean func-

tions of rank r that are given by decision trees of size s. Since any decision tree of size s has rank at most O (log s), this

gives the following corollary.

Corollary 4.4. Given two n-ary boolean functions f and g as decision trees of size s, there is a 2
√
n(log s)O (1)

time algorithm to check if

f ∼= g.

We note that the canonization problem for bounded rank decision lists also polynomial-time reduces to the canonization

problem for bounded rank hypergraphs. However, to the best of our knowledge, not even a 2O (n) algorithm is known for

computing canonical forms for hypergraphs of rank 3.

4.3. Isomorphism of decision trees is GI-hard

We next show that isomorphism testing even for rank 2 decision trees is GI-hard.

Let G = (V , E) be a graph with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We encode G as a boolean function fG
on the variable set V ∪ E as follows: fG(v1, . . . , vn, e1, . . . , em) = 1 if and only if exactly three variables ei, v j, vk are 1, all

remaining variables are 0, and ei = {v j, vk} ∈ E . Here the boolean variables v i and e j correspond, by abuse of notation, to

elements of V ∪ E . We can write fG as fG =
∨

e={u,v}∈E(e ∧ (
∧

e′ �=e e
′) ∧ u ∧ v ∧ (

∧

w �=u,v w)).

Lemma 4.5. For any graph G = (V , E), the function fG is of rank 2 and can be represented by a rank 2 decision tree of size O (|E|2|V |).

Proof. Note that if any edge variable e is set to 1 where e = {u, v}, all the terms in fG disappear, except the one where the

variable appears un-negated. Thus, fG [e ← 1] =
∧

e′ �=e e
′ ∧ u ∧ v ∧

∧

w �=u,v w . Since fG [e ← 1] is a conjunction of literals, it

is a rank 1 function. Since fG is zero if all the edge variables are set to 0, this proves that fG is a rank 2 function. ✷

Theorem 4.6. Let G = (VG , EG) and H = (V H , EH) be two graphs in which all vertices have at least two neighbors, and let fG and fH
be the functions as defined above. Then, G ∼= H if and only if fG ∼= fH .

Proof. The function fG encodes the graph G in the sense that for an assignment a to the variables, fG(a) = 1 exactly if

a encodes an edge e = {u, v} ∈ EG , i.e., ae = au = av = 1 and ax = 0 for all x ∈ (VG ∪ EG) \ {e, u, v}.
Any isomorphism π from G to H can be extended to map each edge e = {u, v} ∈ EG to π(e) = {π(u), π(v)}. Then π

sends the satisfying assignments of fG to the satisfying assignments of fH , implying that fG ∼= fH .

Conversely, if π is an isomorphism from fG to fH , it induces a bijection between the satisfying assignments of the two

functions. As a variable is an edge variable if and only if it occurs in only one satisfying assignment, π maps edge variables

to edge variables and vertex variables to vertex variables. It follows that π restricted to VG is an isomorphism from G

to H . ✷

As any pair of graphs can be modified to meet the degree requirement of Theorem 4.6 by adding two universal vertices

to each graph, we have the following corollary.

Corollary 4.7. GI ≤p
m DT-Iso.

5. Isomorphism of decision lists

In this section, we consider C-DL isomorphism as defined in Section 1. We first observe that satisfiability of C-DLs is

related to the Constraint Satisfaction Problem (CSP) where the constraints come from the class C .

Definition 5.1. A constraint of arity k is a boolean function C : {0, 1}k → {0, 1}. For a constraint C of arity k and a se-

quence of variables xi1 , . . . , xik with 1 ≤ i1, . . . , xik ≤ n, the corresponding n-ary constraint application is the boolean function

f (x1, . . . , xn) = C(xi1 , . . . , xik). For a finite class C of constraints, a C-CSP instance I is a set of n-ary applications of constraints

in C and represents the conjunction of these constraint applications. A constraint C is called

• 0-valid, if C(0, . . . , 0) = 1,

• 1-valid, if C(1, . . . , 1) = 1,

• Horn, if it is a Horn-CNF, i.e., each clause has at most one positive literal,

• anti-Horn, if it is an anti-Horn-CNF, i.e., each clause has at most one negative literal,

• bijunctive, if it is a 2-CNF,

• affine, if it is a conjunction of parities of literals, and

• 2-affine, if it is a conjunction of parities where each parity consists of at most 2 literals.

48 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

A class C of constraints is called 0-valid, 1-valid, Horn, anti-Horn, bijunctive, affine, or 2-affine, if every constraint in it has

the respective property. C is called Schaefer if it is Horn, anti-Horn, bijunctive or affine.

Schaefer proved the following dichotomy result regarding the satisfiability of CSP instances.

Theorem 5.2. (See [21].) Let C be a class of constraints. The satisfiability problem for C-CSP instances is in P if C is 0-valid, 1-valid or

Schaefer, and NP-complete otherwise.

Böhler et al. considered the isomorphism problem for CSP instances, which asks whether the boolean functions computed

by two given CSP instances are isomorphic.

Theorem 5.3. (See [7].) Let C be a class of constraints. The isomorphism problem for C-CSP instances is inP if C is 2-affine, GI-complete

if C is Schaefer but not 2-affine, and both coNP-hard and GI-hard otherwise.

Our main result on decision lists is the following extension of this trichotomy result to C-DLs. Most of this section is

devoted to its proof.

Theorem 5.4. Let C be a class of constraints. The isomorphism problem for C-DLs is in L if C is 2-affine, GI-complete if C is Schaefer

but not 2-affine, and both coNP-hard and GI-hard otherwise.

Recall that in a C-DL L = 〈 f1, c1〉, . . . , 〈 fm, cm〉, for each f i there are a function C ∈ C and indices i1, . . . , ik such that

f i(x1, . . . , xn) = C(xi1 , . . . , xik); cf. Definition 1.2. Thus f i can be viewed as an application of the constraint C . For a class of

constraints C , we define its complement as C = {¬C | C ∈ C}, and observe the following.

Lemma 5.5. For any C-CSP instance I , there is an equivalent C-DL L I .

Proof. Given a C-CSP instance I = {C j(xi(j,1), . . . , xi(j,k j)) | j = 1, . . . , m}, we define

L I =
〈

¬C1(xi(1,1), . . . , xi(1,k1)),0
〉

, . . . ,
〈

¬Cm(xi(m,1), . . . , xi(m,km)),0
〉

, 〈1,1〉.
The decision list L I represents the function

∧m
j=1 C j(xi(j,1), . . . , xi(j,k j)) and thus is equivalent to I . ✷

Combining this lemma with Theorem 5.3 gives the lower bounds featuring in our trichotomy for C-DLs. It remains to

show the upper bounds for the cases where C is Schaefer, i.e., where C consists of either: (i) disjunctions of conjunctions

of literals of which at most one is negative, (ii) disjunctions of conjunctions of literals of which at most one is positive,

(iii) disjunctions of parities of literals or (iv) disjunctions of conjunctions of two literals.

In Section 5.2, we show that in all these cases, the isomorphism problem for C-DLs is reducible to GI. Moreover, in

Section 5.1 we show that the isomorphism problem is even decidable in logspace when C is 2-affine, i.e., C consists of

disjunctions of parities of at most two literals. Further, we show that C-DL-Iso is L-hard, unless C contains only constant

functions. Finally, in Section 5.3 we consider the general case and show for any class C of constraints that C-DL-Iso can be

solved in polynomial time by asking parallel queries to an NP oracle.

5.1. Canonizing decision lists in the 2-affine case

A 2⊕-condition is a formula of the form xi , xi ⊕1, xi ⊕ x j , or xi ⊕ x j ⊕1. A 2⊕-DL L is a list of pairs 〈D1, c1〉, . . . , 〈Dm, cm〉
where ci ∈ {0, 1} for i = 1, . . . , m and each D i is a disjunction of 2⊕-conditions. We assume that each D i is represented as a

set containing all the 2⊕-conditions in the disjunction. We say that a pair 〈D i, ci〉 fires on an assignment a, if i is the least

index such that p(a) = 1 for some p ∈ D i .

We next describe a normal form representation for 2⊕-DLs. The construction is very similar to the one for functions of

rank 1 which correspond to 1-DLs. We then exploit the structure of the normal form to give a logspace algorithm for the

2⊕-DL isomorphism problem.

The normal form NL for a 2⊕-DL L computing an n-ary boolean function f is a 2⊕-DL of the form

NL =
〈

P1(f),1
〉

,
〈

P2(f),0
〉

, . . . ,
〈

Pm(f),m mod 2
〉

, 〈1,m + 1 mod 2〉.
The idea behind the definition of NL is to include in each level k as many 2⊕-conditions as possible, even if some of them

are redundant, as this choice does not depend on the order of the variables.

More precisely, for two n-ary boolean functions f , g and a bit c ∈ {0,1}, let P (f , g, c) denote the set of all

2⊕-conditions p such that f evaluates to c under all assignments that satisfy p ∧ g . Let g0 = 1 and for k ≥ 1, let

Pk(f) = P (f , gk−1, k mod 2) \
⋃

j<k P j(f) and let gk be the function gk−1 ∧
∧

p∈Pk(f)
¬p. Further let m be the largest

index k for which gk is not the constant 0 function. The level lv f (p) of a 2⊕-condition p is the smallest index k such that

p ∈ Pk(f).

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 49

Example 5.6. The 2⊕-DL

L =
〈

{x1 ⊕ x2 ⊕ 1, x2 ⊕ x3, x5 ⊕ x6 ⊕ 1},1
〉

,
〈

{x1 ⊕ 1, x4 ⊕ x5},0
〉

,
〈

{x1 ⊕ x6 ⊕ 1},1
〉

, 〈1,0〉
has the 2⊕-DL NL = 〈P1,1〉, 〈P2,0〉, 〈P3,1〉, 〈1,0〉, where

P1 = {x1 ⊕ x2 ⊕ 1, x1 ⊕ x3 ⊕ 1, x2 ⊕ x3, x5 ⊕ x6 ⊕ 1},
P2 = {x1 ⊕ 1, x2, x3, x4 ⊕ x5, x4 ⊕ x6 ⊕ 1} and

P3 = {x1 ⊕ x4, x1 ⊕ x5, x1 ⊕ x6 ⊕ 1, x2 ⊕ x4 ⊕ 1, x2 ⊕ x5 ⊕ 1,

x2 ⊕ x6, x3 ⊕ x4 ⊕ 1, x3 ⊕ x5 ⊕ 1, x3 ⊕ x6, x4 ⊕ 1, x5 ⊕ 1, x6}
as its normal form. Moreover, g0 = 1, g1 = (x1 ⊕ x2) ∧ (x1 ⊕ x3) ∧ (x5 ⊕ x6), g2 = x1 ∧ x2 ∧ x3 ∧ (x4 ⊕ x6) ∧ (x5 ⊕ x6),

g3 = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 and g4 = 0 as the set P4 contains all 2⊕-conditions over the variable set {x1, . . . , x6} that

are missing in P1 ∪ P2 ∪ P3 .

The following lemma summarizes our normal form construction.

Lemma 5.7. The function L �→ NL is a normal form representation for 2⊕-decision lists.

Proof. Let L be a 2⊕-DL computing some n-ary boolean function f . To show that L and NL represent the same function, we

assume that all pairs in L can fire and split L into subsequences C1, . . . , Cℓ so that all pairs 〈D i, ci〉 in Ck satisfy ci = k mod 2

and all Ck (except possibly C1) are non-empty. For k = 1, . . . , ℓ, it follows by induction over k that the disjunction of the

conditions D i with 〈D i,k mod 2〉 in Ck is equivalent to the disjunction of the 2⊕-conditions p with p ∈ Pk(f) under all

assignments for which no pair in C1, . . . , Ck−1 fires. This also proves that ℓ =m + 1.

Further, since the sets Pk(f) depend only on f , equivalent 2⊕-DLs will lead to the same sets. To show that NL is

permutation preserving, suppose that π is an isomorphism between two boolean functions f and g . Then a 2⊕-conditions p

is in the set Pk(f) if and only if pπ is in the set Pk(g). Thus (N f)
π = N f π = Ng . ✷

Next, we describe a logspace algorithm for computing NL . For this we need a generalized notion of restriction of

boolean functions represented by decision lists: For a decision list L = 〈 f1, c1〉, . . . , 〈 fℓ, cℓ〉 and a function g , let L[g] =
〈 f1, c1〉, . . . , 〈 f i−1, ci−1〉〈1, ci〉, where i is the smallest index for which g ∧

∧i−1
j=1 ¬ f j implies f i . It is clear that L[g] yields

the same value as L on all assignments a for which g(a) = 1. Moreover, an inductive argument along the same lines as in

the proof of Lemma 5.7 shows that L[g] and NL[g] compute the same function.

Lemma 5.8. Let L be a 2⊕-DL that represents a function f and let p and p′ be 2⊕-conditions. Then lv f (p) ≤ min{lv f (p
′), lv f (¬p′)}

if and only if L[p, p′] and L[p, ¬p′] are equivalent.

Proof. Let NL = 〈P1,1〉, . . . , 〈Pm,m mod 2〉, 〈1,m + 1 mod 2〉 be the normal form of L. As argued above, the deci-

sion list L[p] is equivalent to NL[p] = 〈P1(f),1〉, . . . , 〈P i−1(f), i − 1 mod 2〉, 〈1, i mod 2〉, where i = lv f (p). If lv f (p) ≤
min{lv f (p

′), lv f (¬p′)}, the constraint applications p′ and ¬p′ do not occur in NL[p]. By construction of NL , this implies

NL[p, p′] = NL[p, ¬p′] = NL[p]. Thus L[p, p′] and L[p, ¬p′] are equivalent.

In case j = min{lv f (p
′), lv f (¬p′)} < lv f (p), let a be an assignment such that 〈P j+1(f), j + 1 mod 2〉 fires upon evalua-

tion of NL[p]. As max{lv f (p
′), lv f (¬p′)} =m + 1, we have NL[p, p′](a) �= NL[p, ¬p′](a). Thus L[p, p′] and L[p, ¬p′] are not

equivalent. ✷

Lemma 5.9. Given a 2⊕-DL L, its normal form NL can be computed in logspace.

Proof. The satisfiability of a conjunction of 2⊕-conditions of size at most 2 can be checked in logspace by constructing

the equivalence graph of literals and checking that no variable occurs together with its negation in the same connected

component. The latter is possible in logspace using Reingold’s algorithm [18].

The decision list L[p] = 〈D1, c1〉, . . . , 〈D i−1, ci−1〉〈1, ci〉 for a given 2⊕-DL L = 〈D1, c1〉, . . . , 〈Dℓ, cℓ〉 and a 2⊕-condition p

can be computed in logspace by finding the smallest i such that p ∧
∧i

j=1 ¬D i is not satisfiable.

Two 2⊕-DLs L = 〈D1, c1〉, . . . , 〈Dℓ, cℓ〉 and L′ = 〈D ′
1, c

′
1〉, . . . , 〈D ′

ℓ′ , c
′
ℓ′ 〉 are not equivalent if and only if there are en-

tries 〈D i, ci〉 of L and 〈D ′
j
, c′

j
〉 of L′ such that ci �= c′

j
and for some pi ∈ D i and p′

j
∈ D ′

j
the following conjunction of

2⊕-conditions is satisfiable:

pi ∧ p′
j ∧

(

i−1
∧

k=1

¬Dk

)

∧
(

j−1
∧

k=1

¬D ′
k

)

.

50 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

Fig. 3. The graph representation G L of the normal form NL considered in Example 5.11. The levels are omitted from the vertex names as they are clear
from the graph structure.

Thus the condition given by Lemma 5.8 can be evaluated in logspace. This allows to partition the set of all 2⊕-conditions

by level and to find the linear order between the levels. It remains to check whether P1 is empty. This can be done by

checking if L[p] = 1 for some 2⊕-condition p in the smallest level. ✷

Let L be a 2⊕-DL and let NL = 〈P1,1〉, . . . , 〈Pm,m mod 2〉, 〈1,m + 1 mod 2〉 be its normal form. We will encode the

structure of NL as a graph G L of tree distance width 2 such that NL and NL′ are syntactically isomorphic if and only if

G L and G L′ are isomorphic. Das et al. proved that this graph class can be canonized in logspace [10].

We can rewrite a 2⊕-condition as an equation over literals and constants. For example, the 2⊕-condition x1 ⊕ x2 can be

rewritten as the equations x01 = x12 or x11 = x02 and the 2⊕-condition x1⊕1 can be rewritten as x01 = 1 or x11 = 0. The idea is to

represent NL as a sequence of equation sets representing the conjunctions of 2⊕-conditions
∧k

i=1 ¬P i for k = 0, . . . , m + 1.

More precisely, we call two literals or constants l, l′ ∈ X(n) = {0,1} ∪ {xb
i

| i ∈ {1, . . . ,n},b ∈ {0,1}} equivalent after level k

(denoted l ≡k l
′) if l = l′ or if the 2⊕-condition corresponding to l ⊕ l′ is contained in P1 ∪ · · · ∪ Pk .

Lemma 5.10. The relations ≡k are transitive on X(n) for k = 0, . . . , m + 1.

Proof. Assume that xi ≡k x j and x j ≡k xh (the cases that some of these three variables are negated or replaced by a constant

are handled in exactly the same way). Then P1 ∪ · · · ∪ Pk contains the two 2⊕-conditions p = xi ⊕ x j and p′ = x j ⊕ xh .

If p and p′ belong to the same set Pr , then p′′ = xi ⊕ xh is in P1 ∪· · ·∪ Pr , since any assignment a that satisfies gr−1 ∧ p′′ ,
either satisfies gr−1 ∧ p or gr−1 ∧ p′ , implying that f (a) = r mod 2.

If p and p′ belong to different sets Pr and P s with r < s, then any assignment that satisfies gs−1 assigns to xi and x j the

same value, implying that gs−1 ∧ p′ and gs−1 ∧ p′′ describe the same function. Hence, the level of p′′ is at most the level

of p′ , implying that p′′ ∈ P1 ∪ · · · ∪ P s . ✷

The relation ≡k partitions the set X(n) into the equivalence classes [l]k = {y ∈ X(n) | l ≡k y}, l ∈ X(n). The complementary

equivalence class of [l]k is [l̄]k = {y ∈ X(n) | l̄ ≡k y}.

Example 5.11. Consider L = 〈{x1 ⊕ x2 ⊕ 1, x2 ⊕ x3, x5 ⊕ x6 ⊕ 1},1〉, 〈{x1 ⊕ 1, x4 ⊕ x5},0〉, 〈{x1 ⊕ x6 ⊕ 1},1〉, 〈1,0〉. The equiv-
alence classes of ≡1 are {0}, {1}, {x1, x2, x3}, {x1, x2, x3}, {x4}, {x4}, {x5, x6}, and {x5, x6}. The classes [0]1 and [1]1 are

complementary to each other, as are [x1]1 and [x2]1 , and likewise [x4]1 and [x4]1 as well as [x5]1 and [x6]1 .
The equivalence classes of ≡2 are {0, x1, x2, x3}, {1, x1, x2, x3}, {x4, x5, x6}, and {x4, x5, x6}. The complementary pairs are

{[0]2, [1]2} and {[x4]2, [x6]2}.
The equivalence classes of ≡3 are {0, x1, x2, x3, x4, x5, x6} and {1, x1, x2, x3, x4, x5, x6}. They are complementary to each

other.

For ≡4 there is only one equivalence class X(6), i.e., it contains all literals and constants over {x1, . . . , x6} and is comple-

mentary to itself.

Given a normal form NL = 〈P1,1〉, . . . , 〈Pm,m mod 2〉, 〈1,m + 1 mod 2〉, we encode the sizes and inclusion structure

of these equivalence classes in the graph G L . For each k ∈ {0, . . . ,m + 1} and equivalence class [l]k of ≡k , the graph G L

contains a vertex ([l]k, k). By definition, the equivalence classes of ≡0 are singletons, the equivalence classes of ≡k are a

refinement of the equivalence classes of ≡k+1 for k = 1, . . . , m + 1, and ≡m+1 has just one equivalence class. Thus the edges

{{([l]k,k), ([l]k−1,k − 1)} | l ∈ X(n),1 ≤ k ≤m} form a tree and we add them all to G L . Additionally, G L contains an edge

between each pair of complementary equivalence classes. The vertices ([0]0, 0), ([1]0, 0), and ([0]m, m) receive the colors

0, 1, and root respectively, and for each variable xi , the vertex ([xi]0, 0) is colored with var. See Fig. 3 for an example.

Lemma 5.12. If two 2⊕-DLs L and L′ represent isomorphic functions f and f ′ , then the graphs G L and G L′ are isomorphic.

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 51

Proof. Let NL = 〈P1,1〉, . . . , 〈Pm,m mod 2〉, 〈1,m + 1 mod 2〉 and NL′ = 〈P ′
1,1〉, . . . , 〈P ′

m,m mod 2〉, 〈1,m + 1 mod 2〉 be the

normal forms of L and L′ , and let ≡k and ≡′
k
denote equivalence after level k in NL and NL′ , respectively. By Lemma 5.7,

any isomorphism π from f to f ′ is also a syntactic isomorphism from NL to NL′ . In particular, for any l, l′ ∈ X(n) and k ∈
{0, . . . ,m + 1}, we have l ≡k l

′ if and only if π(l) ≡′
k
π(l′). This implies that π induces an isomorphism from G L to G L′ . ✷

A tree distance decomposition for a graph G = (V , E) is a rooted tree T = (X, F) whose nodes X (which are called bags)

form a partition of V , such that

• for every edge {u, v} ∈ E , the vertices u and v are either in the same bag of T or in adjacent bags of T , and

• for each vertex v ∈ V , the minimum distance in G from v to a vertex in the root bag of T equals the distance in T of

the bag containing v to the root bag.

The width of T is the maximum size of its bags.

Using one bag for each pair of complementary equivalence classes results in a tree distance decomposition of

width 2 for G L , which has edges between {([l]k,k), ([l̄]k,k)} and {([l]k−1,k − 1), ([l̄]k−1,k − 1)} for each l ∈ X(n) and

k ∈ {1, . . . ,m + 1}. Thus we can use the logspace algorithm of Das et al. [10] to obtain a canon CL of G L .

The next lemma shows that a syntactically isomorphic copy of NL can be reconstructed from the canon CL of G L .

Lemma 5.13. Let L be a 2⊕-DL, and let G L be the graph that encodes the structure of its normal form NL as described above. Given an

isomorphic copy G ′
L of G L , a syntactically isomorphic copy S(G ′

L) of NL can be computed in logspace.

Proof. To construct S(G ′
L) = 〈P ′

1,1〉, . . . , 〈P ′
m,m mod 2〉, 〈1,m + 1 mod 2〉 from G ′

L , let n be the number of vertices with

color var in G ′
L and let m be the distance of the vertex colored root to any color var vertex in G ′

L . Call a vertex v of G ′
L a

level k vertex if it has distance m −k to the vertex colored root. This can be checked in logspace [10]. Let σ be the bijection

from the color var vertices in G ′
L to {1, . . . ,n} that maps the ith color var vertex in G ′

L to i. Because of the colors 0 and 1

and the edges between the vertices of complementary equivalence classes, σ induces a bijection σ ′ between the level m

vertices of G ′
L and X(n) = {0,1} ∪ {xb

i
| i ∈ {1, . . . ,n},b ∈ {0,1}}. Let T ′

L be the tree rooted at the vertex colored root that

is obtained from G ′
L by dropping all edges between vertices of the same level. For each k ∈ {1, . . . ,m}, the set P ′

k
consists

of all 2⊕-conditions σ ′(v) ⊕ σ ′(w) such that v and w are level m vertices and there is a level k vertex u in G ′
L such that

v and w are in subtrees of different children of u in T ′
L .

We claim that for any isomorphism π from G L to G ′
L , the mapping π̃(i) = j, where σ ′(π(([xi]0,0))) = x j , is a syn-

tactic isomorphism from NL to S(G ′
L). This holds because for two literals or constants l and l′ , the set Pk contains the

2⊕-condition l ⊕ l′ if and only if [l]k = [l′]k and [l]k−1 �= [l′]k−1 , i.e., if and only if ([l]0, 0) and ([l′]0, 0) are in the subtrees of

different children of ([l]k, k) in G L . ✷

Theorem 5.14. Let C be a 2-affine class of constraints. Then a canonical representation for C-DLs can be computed in logspace.

Proof. Given a 2⊕-DL L, compute its normal form NL (by Lemma 5.9), construct its graph representation G L (which is easily

possible in logspace), obtain a canon CL for the latter using the algorithm of Das et al. [10], and return the isomorphic

copy S(CL) of NL reconstructed from CL using the algorithm of Lemma 5.13 as the canonical form of L.

By Lemmas 5.7 and 5.13, S(CL) and L represent isomorphic functions. By Lemma 5.12, two 2⊕-DLs L and L′ that repre-
sent isomorphic input functions have isomorphic graph representations G L and G L′ , implying that CL = CL′ . As the canonical

form S(CL) only depends on CL , we have S(CL) = S(CL′) as required. ✷

We conclude this subsection by showing that deciding isomorphism of C-CSP instances is L-hard, unless C contains only

constant functions.

Theorem 5.15. Let C be a class of constraints that contains a non-constant function. Then C-DL-Iso is L-hard.

Proof. As Graph Isomorphism is L-hard even for trees [14], by Theorem 5.3 and Lemma 5.5 it suffices to consider the

case that C is 2-affine. Note that if ¬C is a non-constant and 2-affine constraint, then there is a constraint application

f (x1, . . . , xn) = C(xi1 , . . . , xik) that either corresponds to a single literal f (x1, . . . , xn) = xb
i
or to the parity f (x1, . . . , xn) =

xi ⊕ x j ⊕ b of two literals. If the application is a single negative literal, then it is easy to encode the rank 1 decision trees

T1 and T2 from the proof of Lemma 3.8 as C-DLs

L1 = 〈x1,1〉, . . . , 〈xu−1,1〉, 〈xu,0〉, 〈xu+1,1〉, . . . , 〈xn,1〉, 〈1,0〉 and

L2 = 〈xn,1〉, . . . , 〈xu+1,1〉, 〈xu,0〉, 〈xu−1,1〉, . . . , 〈x1,1〉, 〈1,0〉,
resulting in a reduction from the L-hard problem DiPathCenter to C-DL-Iso. If the application is a single variable, replacing

the negative literals with the corresponding positive ones encodes the dual functions f i(x1, . . . , xn) as C-DLs, implying

L-hardness also for this case.

52 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

If the application is the parity of two variables, we can add an additional variable xn+1 and include it in each condition:

L′
1 = 〈x1 ⊕ xn+1,1〉, . . . , 〈xu−1 ⊕ xn+1,1〉, 〈xu ⊕ xn+1,0〉, 〈xu+1 ⊕ xn+1,1〉, . . . , 〈xn ⊕ xn+1,1〉, 〈1,0〉 and

L′
2 = 〈xn ⊕ xn+1,1〉, . . . , 〈xu+1 ⊕ xn+1,1〉, 〈xu ⊕ xn+1,0〉, 〈xu−1 ⊕ xn+1,1〉, . . . , 〈x1 ⊕ xn+1,1〉, 〈1,0〉.

If C[L ← 1] is the negation of the parity of two variables, we include xn+1 ⊕ 1 instead of xn+1 in each condition. Either

way, xn+1 is the only variable such that the two restrictions f ′
i
[xn+1 ← 0] and f ′

i
[xn+1 ← 1] are dual to each other, so any

isomorphism from L′
1 to L′

2 must map xn+1 to itself. Thus we again obtain a reduction from DiPathCenter to C-DL-Iso. ✷

We remark that isomorphism of {x1}-CSP instances can be decided in TC
0 by comparing the number of variables that

occur in constraint applications, so Theorem 5.15 does not hold for C-CSP isomorphism.

5.2. Reducing isomorphism of Schaefer decision lists to graph isomorphism

In this section, we show that C-DL isomorphism is reducible to graph isomorphism if C is Schaefer, adapting the methods

of [6] for CSP instances to the layered structure of decision lists. We give a reduction from C-DL-Iso to the label-respecting

isomorphism problem of labeled trees, which is equivalent to graph isomorphism [20]. In this problem, we are given two

rooted trees where each vertex has a label. We ask if there is an isomorphism between the trees which is label-respecting,

i.e., two vertices in the first tree have the same label if and only if their images in the second tree have the same label.

A generalized version of this problem that is also GI-complete is isomorphism of colored labeled trees, where each vertex

additionally has a color and we ask for a color-preserving and label-respecting isomorphism.

Let L be a given C-DL, where C is Schaefer. The first step is to find a normal form. Since we will use the same normal

form representation again in the next subsection, we will describe it for arbitrary C-DLs. Let C(n) denote the set of all n-ary

applications of the constraints in C . Its cardinality is bounded by |C| ·nr , where r is the maximum arity of a constraint in C .

We partition C(n) into the sets C1(L), . . . , Cm(L), Cm+1(L) such that each Ck(L) contains all f ∈ C(n) \
⋃

i<k C i(L) that satisfy

∀a ∈ {0,1}n :
(

f (a) ∧
∧

g∈
⋃

i<k C i(L)

¬g(a)

)

= 1 ⇒ L(a) = k mod 2, (1)

where C1(L) might be empty. Given a constraint application f ∈ C(n), its level lvL(f) is the index k for which f ∈ Ck(L).

The normal form of L is defined as the decision list

NL =
〈

C1(L),1
〉

,
〈

C2(L),0
〉

,
〈

C3(L),1
〉

, . . . ,
〈

Cm(L),m mod 2
〉

, 〈1,m + 1 mod 2〉,
where for each k, the set Ck(L) represents the function

∨

f ∈Ck(L)
f .

Theorem 5.16. Let C be a class of functions, each depending on at most r variables, such that C is Schaefer. Then the C-DL isomorphism

problem is polynomial-time reducible to graph isomorphism.

Proof. Let L = 〈 f1, c1〉, . . . , 〈 fℓ, cℓ〉 be a given C-DL, where C is Schaefer. We can assume that in each pair 〈 f i, ci〉 in L, f i is

a conjunction (or parity) of literals, i.e., the outer disjunctions are resolved by splitting them into several pairs. Similarly, in

the normal form NL = 〈C1(L),1〉, . . . , 〈Cm(L),m mod 2〉, 〈1,m + 1 mod 2〉 of L we can assume that each set Ck(L) consists

only of such functions. In other words, it suffices to restrict C(n) to conjunctions (or parities) of literals of arity at most r

over {x1, . . . , xn}.
We first compute the normal form NL of L. By Theorem 5.2 we can check property (1) above in polynomial time, since

a condition f ∈ C(n) does not fulfill this property if and only if for some j ∈ {1, . . . , ℓ} with c j �= k mod 2, the function

f ∧
∧

g∈
⋃

i<k C i(L)

¬g ∧
∧

i< j

¬ f i ∧ f j

is satisfiable. This function can be encoded as C′-CSP instance for some Schaefer class C′ ⊇ C , as f and f j are parities if

C-CSP is affine, and conjunctions of literals otherwise.

The next step is to encode NL as a labeled tree T L (in the sense of [20]) such that two normal forms NL1 and NL2

are syntactically isomorphic if and only if there is a label-respecting tree isomorphism from T L1 to T L2 . As the type of the

constraints in C is fixed (i.e., either Horn, anti-Horn, bijunctive or affine), each constraint application f ∈ C(n) is already

uniquely determined by a set L f of literals and a bit b f . For example, when C is Horn, the set L f = {xi1 , . . . , xik−1
, xik }

uniquely identifies the corresponding function f = xi1 ∧ · · · ∧ xik−1
∧ xik , and if C is affine, the set L f = {xi1 , . . . , xik } and the

bit b f uniquely identify the function f = xi1 ⊕ · · · ⊕ xik ⊕ b f . As b f is only needed in the affine case, we fix it to 0 in the

other cases.

We now outline the encoding algorithm which computes a labeled colored tree T L on input NL . We create a root node

with m children corresponding to C1(L), . . . , Cm(L), where the node for Ck(L) is colored k. In the subtree rooted at the node

V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54 53

corresponding to Ck(L) we create a child c f with color b f for each function f ∈ Ck(L). The node c f will have |L f | children

which are leaves vk, f ,i,b corresponding to the literals xb
i
in L f , where vk, f ,i,b is labeled by the variable index i and colored

by the bit b. This completes the construction of the tree T L .

It is easy to verify that if NL1 and NL2 are syntactically isomorphic via a permutation π , then π maps the collection

{L f | f ∈ Ck(L)} of literal sets to the collection {L f | f ∈ Ck(L
′)}, and thus induces a label-respecting and color-preserving

isomorphism from T L1 to T L2 . Conversely, if there is a label-respecting and color-preserving isomorphism ψ from T L1 to T L2 ,

then ψ induces a permutation π on the leaf labels, which provides a syntactic isomorphism from NL1 to NL2 . ✷

5.3. An upper bound for isomorphism of general decision lists

Let C be any finite class of constraints. Böhler et al. have shown that the isomorphism problem for C-CSP instances is

in P
NP

‖ [6, Corollary 23], where the oracle queries are parallel and do not depend on the answers to previous oracle queries.

In this section, we extend this result to the more general isomorphism problem for C-DLs.

The following lemma is similar to Lemma 5.8 and allows us to compute the normal form defined in the preceding sub-

section in polynomial time by asking parallel queries to an NP oracle. Recall that for a C-DL L = 〈 f1, c1〉, . . . , 〈 fℓ, cℓ〉 and a

function g , we have defined L[g] = 〈 f1, c1〉, . . . , 〈 f i−1, ci−1〉〈1, ci〉, where i is the smallest index for which g ∧
∧

j<i ¬ f j im-

plies f i .

Lemma 5.17. Let C be any finite class of constraints that is closed under negation, let L be a C-DL on n variables and let f , g ∈ C(n).

Then lvL(f) ≤ min{lvL(g), lvL(¬g)} if and only if the two lists L[f , g] and L[f , ¬g] are equivalent.

Proof. Let NL be the normal form of L as defined above. The decision list L[f] is equivalent to NL[f] = 〈C1(L),1〉, . . . ,
〈C i−1(L), i − 1 mod 2〉, 〈1, i mod 2〉, where i = lvL(f). If lvL(f) ≤ min{lvL(g), lvL(¬g)}, the constraint applications g and ¬g

do not occur in NL[f]. By construction of NL , this implies NL[f , g] = NL[f , ¬g] = NL[f]. Thus L[f , g] and L[f , ¬g] are

equivalent.

In case lvL(f) > min{lvL(g), lvL(¬g)} = j, let a be an assignment with C j+1(L)(a) = 1 and Ck(L)(a) = 0 for all k ≤ j. As

max{lvL(g), lvL(¬g)} = ℓ + 1, we have NL[f , g](a) �= NL[f , ¬g](a), so L[f , g] and L[f , ¬g] are not equivalent. ✷

Theorem 5.18. C-DL-Iso is in P
NP

‖ for any finite class C of constraints.

Proof. To decide C-DL-Iso we can use a constant number of rounds of parallel NP queries as Buss and Hay have shown that

is equivalent to using one round of parallel NP queries [5].

Let L and L′ be the given C-DLs for n-ary boolean functions f and f ′ , respectively. Our algorithm first computes

the normal forms NL = 〈C1(L),1〉, . . . , 〈Cm(L),m mod 2〉, 〈1,m + 1 mod 2〉 and NL′ = 〈C1(L
′),1〉, . . . , 〈Cm(L′),m mod 2〉,

〈1,m + 1 mod 2〉 using two rounds of parallel queries; the algorithm is described below. To decide whether the functions

represented by them are isomorphic, it suffices to check whether NL and NL′ are syntactically isomorphic, i.e., whether there

is a permutation π ∈ Sn such that Ck(L)
π = Ck(L

′) for all levels k ∈ {1, . . . ,m}. This can be done using one more NP query.

To compute the normal form NL of L = 〈 f1, c1〉, . . . , 〈 fm, cℓ〉, we use the first round of parallel NP queries to compute

the decision lists L[f , g] for all f , g ∈ C(n). This is possible as f ∧ g ∧
∧

j<i ¬ f j implies f i if and only if f ∧ g ∧
∧

j≤i ¬ f j
is not satisfiable.

We may assume w.l.o.g. that C is closed under negation. In the second round of parallel queries, we ask for all

f , g ∈ C(n), whether L[f , g] and L[f , ¬g] are equivalent. By Lemma 5.17, this allows to partition C(n) by level. It remains

to check whether C1(L) is empty, which is true if for some f ∈ C(n) of minimum level, the decision list L[f] is a tautology

(this can be asked for all f ∈ C during the second round of parallel queries). ✷

An interesting question is whether it is also possible to compute a canonical representation for C-DLs in the class FP
NP

‖ .

However, this seems unlikely as it would imply that graphs can be canonized in FP
NP

‖ .

Acknowledgements

We thank Heribert Vollmer for bringing the question addressed in Section 5.3 to our attention, and the anonymous

referees for their detailed and helpful remarks.

References

[1] V. Arvind, Bireswar Das, Johannes Köbler, Sebastian Kuhnert, The isomorphism problem for k-trees is complete for logspace, Inform. and Comput. 217
(2012) 1–11.

[2] Manindra Agrawal, Thomas Thierauf, The formula isomorphism problem, SIAM J. Comput. 30 (3) (2000) 990–1009.
[3] László Babai, Paolo Codenotti, Isomorhism of hypergraphs of low rank in moderately exponential time, in: FOCS, 2008, pp. 667–676.
[4] Harry Buhrman, Ronald de Wolf, Complexity measures and decision tree complexity: a survey, Theoret. Comput. Sci. 288 (1) (2002) 21–43.
[5] Samuel R. Buss, Louise Hay, On truth-table reducibility to SAT, Inform. and Comput. 91 (1) (1991) 86–102.

54 V. Arvind et al. / Theoretical Computer Science 590 (2015) 38–54

[6] Elmar Böhler, Edith Hemaspaandra, Steffen Reith, Heribert Vollmer, Equivalence and isomorphism for Boolean constraint satisfaction, in: CSL, 2002,
pp. 881–920.

[7] Elmar Böhler, Edith Hemaspaandra, Steffen Reith, Heribert Vollmer, The complexity of Boolean constraint isomorphism, in: STACS, 2004, pp. 164–175.
[8] László Babai, Eugene M. Luks, Canonical labeling of graphs, in: STOC, 1983, pp. 171–183.
[9] Avrim Blum, Rank-r decision trees are a subclass of r-decision lists, Inform. Process. Lett. 42 (4) (1992) 183–185.

[10] Bireswar Das, Jacobo Torán, Fabian Wagner, Restricted space algorithms for isomorphism on bounded treewidth graphs, Inform. and Comput. 217
(2012) 71–83.

[11] Andrzej Ehrenfeucht, David Haussler, Learning decision trees from random examples, Inform. and Comput. 82 (3) (1989) 231–246.
[12] Kousha Etessami, Counting quantifiers, successor relations, and logarithmic space, J. Comput. System Sci. 54 (3) (1997) 400–411.
[13] Russell Impagliazzo, Ramamohan Paturi, Francis Zane, Which problems have strongly exponential complexity?, J. Comput. System Sci. 63 (4) (2001)

512–530.

[14] Birgit Jenner, Johannes Köbler, Pierre McKenzie, Jacobo Torán, Completeness results for graph isomorphism, J. Comput. System Sci. 66 (3) (2003)
549–566.

[15] Eyal Kushilevitz, Yishay Mansour, Learning decision trees using the Fourier spectrum, SIAM J. Comput. 22 (6) (1993) 1331–1348.
[16] Nathan Linial, Yishay Mansour, Noam Nisan, Constant depth circuits, Fourier transform, and learnability, J. ACM 40 (3) (1993) 607–620.
[17] Eugene M. Luks, Hypergraph isomorphism and structural equivalence of Boolean functions, in: STOC, 1999, pp. 652–658.
[18] Omer Reingold, Undirected connectivity in log-space, J. ACM 55 (4) (2008) 17:1–17:24.
[19] Ronald L. Rivest, Learning decision lists, Mach. Learn. 2 (3) (1987) 229–246.
[20] Sarnath Ramnath, Peiyi Zhao, On the isomorphism of expressions, Inform. Process. Lett. 74 (3–4) (2000) 97–102.
[21] Thomas J. Schaefer, The complexity of satisfiability problems, in: STOC, 1978, pp. 216–226.
[22] Thomas Thierauf, The Computational Complexity of Equivalence and Isomorphism Problems, Lecture Notes in Comput. Sci., vol. 1852, Springer, 2000.

	On the isomorphism problem for decision trees and decision lists
	1 Introduction
	2 Preliminaries and basic facts
	3 Canonizing decision trees for rank 1 functions
	3.1 Computing a normal form for rank 1 functions
	3.2 Isomorphism of rank 1 decision trees is hard for logspace

	4 Isomorphism of decision trees for arbitrary functions
	4.1 Computing a normal form for decision trees
	4.2 Reducing decision tree isomorphism to hypergraph isomorphism
	4.3 Isomorphism of decision trees is GI-hard

	5 Isomorphism of decision lists
	5.1 Canonizing decision lists in the 2-afﬁne case
	5.2 Reducing isomorphism of Schaefer decision lists to graph isomorphism
	5.3 An upper bound for isomorphism of general decision lists

	Acknowledgements
	References

