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a b s t r a c t 

The present work deals with the constitutive modelling and progressive failure analysis (PFA) of plain 
woven textile composites (PWTC). Two novel approaches, equivalent cross ply laminate (ECPL) coupled 
with classical laminate theory and Mori–Tanaka theory, are developed to compute homogenized proper- 
ties of PWTC lamina. The PFA of PWTC lamina is performed coupling isotropic damage mechanics with 
ECPL theory, and meso-scale failure modes are identified. The novelty in the proposed PFA is that, the 
stress-based failure is detected, and the strain-based damage evolution is computed. A user-defined ma- 
terial subroutine of PFA of PWTC lamina is finally developed and test problems are solved in ABAQUS. All 
the simulation results of the proposed approaches are finally compared with experiments and found to 
be closely matching. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Textile composites (TC) are made by textile manufacturing pro- 
cesses. The unidirectional (UD) lamina usually possesses good in- 
plane and poor out-of-plane properties due to lack of fiber rein- 
forcement in that direction. As compared to classical UD laminates, 
TC has a wider range of applications due to their good in-plane 
as well as out-of-plane material properties ( Dixit and Mali, 2013 ). 
There are two types of yarns in woven TC: longitudinal or warp, 
and transverse or fill ( Dixit and Mali, 2013 ). A pattern, consisting 
every warp (and fill) yarn interlaced with every alternating fill (and 
warp) yarn, is called plain woven textile composite (PWTC). 

Material modelling of PWTC : The PWTC initially considered 
as a chain of 2-layered cross-ply laminates by Ishikawa (1981) . 
The classical laminate theory (CLT) is used, ignoring fiber un- 
dulations, to compute lower and upper bounds of stiffness ma- 
trix. Ishikawa and Chou (1982) modelled longitudinal fiber undu- 
lations by a sinusoidal function ignoring fiber undulation along 
the transverse direction and gap between adjacent yarns. Naik and 
Ganesh (1995) proposed models accounting undulations along the 
warp and fill directions as well as the gap between adjacent 
yarns, but these models have complex implementation making 
them unsuitable to be used in a broader multiscale framework. 
These models also require strand width and gap parameters, which 
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are not uniform in a woven fabric and have to be obtained ex- 
posing laminate to scanning electron microscope (SEM). Several 
micromechanical-based PWTC homogenization models ( Tanov and 
Tabiei, 2001; Wen and Aliabadi, 2009; 2010; 2011; Aliabadi, 2015 ) 
proposed in literature require complex implementation and huge 
computational efforts making the evaluation of stiffness matrix 
cumbersome. The local fiber volume fractions along the warp 
and fill yarns are considered equal in most of the existing mod- 
els ( Naik and Ganesh, 1995; 1993; Tanov and Tabiei, 2001; Wen 
and Aliabadi, 2009; 2010 ), which is physically not true for some 
PWTC. The present work overcomes this assumption and demon- 
strate the consequences of an unequal local fiber volume frac- 
tion along the warp and fill yarns. The complex existing models 
highlighted above require an explicit solution of boundary value 
problem, and may not even provide complete 3D engineering con- 
stants of PWTC ( Ishikawa, 1981; Ishikawa and Chou, 1982; Naik 
and Ganesh, 1995 ). This is overcome in the present work, which 
analytically computes in-plane as well as entire 3D engineering 
constants of PWTC RVE. The regions of warp and fill yarns are con- 
sidered as pure fiber bundles ( Tanov and Tabiei, 2001; Wen and 
Aliabadi, 2009; 2010 ). Warp and fill yarns however really behave 
like UD lamina, as considered in the presented ECPL model, due to 
presence of matrix in-between the yarns. 

Mori–Tanaka (MT) approach has also been used to compute the 
effective material properties of two-phase composites ( Mori and 
Tanaka, 1973; Eshelby, 1957; Benveniste, 1987; Huysmans et al., 
2004; Gommers et al., 1998; Sko ̆cek et al., 2008 ). Fiber undula- 
tion is usually computed by rotation tensors, which are not easy 
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to evaluate. The method proposed here computes fiber undulation 
angle along the warp and fill directions and transforms the Es- 
helby tensor accordingly. The problem of complex perturbed stress 
field due to yarn interlacing is circumvented in equivalent PWTC 
RVE (including the effect of fiber undulation), MT method is then 
applied treating yarns as cylindrical inclusions. The methodology 
adopted here is thus completely different from the existing works 
( Gommers et al., 1998; Sko ̆cek et al., 2008; Huysmans et al., 2004 ) 
and facilitates computation of effective engineering constants of 
PWTC lamina by MT method (with fiber undulation angle) to be 
implemented in existing multiscale codes. 

Gorbatikh et al. (2007) has a detailed review on the application 
of damage mechanics to PWTC. The failure location in TC is found 
to be sensitive to the choice of failure models, but the exact modes 
of failure within PWTC lamina were not identified ( Gorbatikh et al., 
2007; Xu et al., 2015; Tabatabaei et al., 2014 ). The effect of in- 
plane shearing on PWTC lamina is largely ignored ( Gorbatikh et al., 
2007 ). This lacuna is the primary motivation for work reported 
in Section 5 , wherein detailed failure analysis of PWTC lamina is 
performed under normal (along warp and fill) as well as in-plane 
shear loading. 

The motivations are thus, (1) develop a simplified analytical 
methodology to compute the homogenized material constants of 
PWTC lamina in a more natural manner using CLT as well as MT 
methods, (2) study it’s failure under various loading conditions. 

The primary contributions of the present work are as follows. A 

novel equivalent cross-ply laminate (ECPL) model is developed first 
to compute homogenized material constants coupling it with clas- 
sical laminate theory as detailed in Section 2 . ECPL accounts for 
different fiber volume fractions along the warp and fill directions 
as well as constant fiber undulation angles ( Udhayaraman and 
Mulay, 2017 ). Secondly, MT method is applied in a novel manner 
to predict entire 3D homogenized constants of PWTC ( Section 3 ). 
A novel computation of the correct Eshelby tensor is performed 
including fiber undulation angle. Thirdly, The failure behaviour 
is studied coupling ECPL with isotropic damage mechanics (IDM) 
( Section 5 ). The meso-scale failure modes of PWTC lamina are thus 
identified under different type of loadings (tensile along warp and 
fill, and in-plane shear). The novelty is that, the stress-based fail- 
ure is detected and strain-based damage evolution by IDM is per- 
formed at meso-scale , and the evolution of macro-scale damage is 
found to be anisotropic in nature. Finally, the progressive failure 
of PWTC lamina is obtained by user-defined material subroutine 
(UMAT) in ABAQUS ®. The effect of the surface roughness, on max- 
imum failure stress, is demonstrated comparing the numerical re- 
sults of notched and un-notched models with in-house experiments 
as explained in Section 4 . The modelling results are compared with 
available experimental results wherever it is possible (in-house ex- 
periments performed or available literature referred and cited). 

2. Development of equivalent cross-ply laminate model for 

PWTC 

The ECPL model of PWTC RVE is developed that is coupled with 
CLT to analytically compute homogenized material constants. Thus, 
no boundary value problems are required to be solved. All the ab- 
breviations used in this paper are listed in Table 1 in order to fa- 
cilitate a quick reference. 

2.1. Formulation of ECPL model 

A PWTC material is obtained embedding plain weave fiber 
fabric into a matrix material (polymer based or ceramics). The 
continuum domain of PWTC can thus be seen as a sequence of 
cross-ply laminates along global X and Y axes with 0 ° and 90 ° plies 

alternating their positions as shown in Fig. 1 (a). A spatial repeat- 
ing structure or representative volume element (RVE) of PWTC can 
be obtained, as highlighted in Fig. 1 (a), and shown in Fig. 1 (c). This 
PWTC RVE is based on two assumptions that, the fiber undulations 
are ignored and the yarns are closely packed without an empty 
space in-between. 

The RVE thus sequentially contain [0/90] and [90/0] cross-ply 
laminates along global X and Y axes. The averaged stiffness ma- 
trices of [0/90] and [90/0] plies, [ Q ] 1 and [ Q ] 2 respectively, are 
obtained applying CLT, and a macroscale stiffness matrix [ Q ] RV E 
of RVE is obtained averaging [ Q ] 1 and [ Q ] 2 over a length of RVE 
( Ishikawa, 1981; Ishikawa and Chou, 1982; Naik and Ganesh, 1992 ). 
If all the four quadrants of PWTC RVE, as shown in Fig. 1 (c), are 
identical in dimensions and fiber volume fractions, the matrix [ B ] 
obtained by CLT for [0/90] and [90/0] laminates will have an oppo- 
site sign. The resulting [ Q ] RV E thus has average [ B ] = 0 ( Ishikawa, 
1981; Ishikawa and Chou, 1982; Naik and Ganesh, 1992; 1995; 
1993 ). The extensional stiffness [ A ] and bending stiffness [ D ], ob- 
tained by CLT, for [0/90] and [90/0] laminates are identical, result- 
ing in [ Q ] RV E with same [ A ] and [ D ] as that of [0/90] laminate 
( Daniel and Ishai, 2006 ). The lack of force-curvature and moment- 
strain coupling lead to conclude that, it is sufficient to convert only 
one-fourth portion of PWTC RVE into ECPL model while evaluating 
macroscale material constants of entire PWTC employing CLT. The 
ECPL model, as shown in Fig. 1 (b), thus act as a bridge linking CLT 
with PWTC RVE involving local fiber volume fractions along the 
warp (0 °) and fill (90 °) plies, and their individual ply thicknesses 
as primary variables. 

The warp and fill fiber plies are embedded without matrix as 
shown in Fig. 1 (c), where the fiber and matrix phases are con- 
sidered separately with the matrix phase equally divided into two 
plies, as shown in Fig. 1 (d). It is assumed that each of the matrix 
plies get embedded into the warp and fill directions resulting final 
ECPL model as shown in Fig. 1 (b). 

Let length l and width w of a quarter portion of PWTC RVE is 
maintained in ECPL as well. The different volumes in a quarter por- 
tion of PWTC RVE are 

V m = (v m ) g (l w t) 
︸ ︷︷ ︸ 

V RVE 

, V W 
f = (v w f ) g (l w t) , V F f = (v F f ) g (l w t) 

}

(1) 

where (v f ) g = (v w 
f 
) g + (v F 

f 
) g , and (v m ) g , (v 

w 
f 
) g , and (v F f ) g are the 

matrix, warp fiber and fill fiber volume fractions, respectively, 
computed with respect to the global volume of PWTC RVE, 
t, V m , V 

W 
f 

, V F 
f 

are the values of thickness, total volume correspond 

to the matrix, warp fibers and fill fibers, respectively, within quar- 
ter portion of PWTC RVE, and ( v f ) g is total global fiber volume 
fraction. The volume and mass of a single yarn, V y and M y re- 
spectively, are computed by apriori measuring total mass of fab- 
ric M fabric , total number of warp and fill yarns N W and N F re- 
spectively, and yarn density ρ f in a fabric mat ( Udhayaraman and 
Mulay, 2017 ). The fiber volumes along the warp and fill directions 
within a dry fabric are then computed as 

V W 
f = N W V y , V 

F 
f = N F V y , and V y = 

V fabric 

N W + N F 
(2) 

N F and N W are measured within fixed dimensions of plain woven 
fiber fabric, where it is possible to have N W � = N F . It is assumed 
in Eq. (2) that all the yarns are almost identical, irrespective of 
their direction. The total mass of matrix M m and matrix density 
ρm are also apriori measured to get the total volume of matrix 
V m = M m /ρm ( Udhayaraman and Mulay, 2017 ). All the global vol- 
umes given in Eq. (1) can be computed and the total volume of a 
quarter portion of PWTC RVE is thus computed as V RV E = (l w t) = 

V m + V W 
f 

+ V F 
f 
. All the global volume fractions are also computed 



S.S. Mulay, R. Udhayaraman / International Journal of Solids and Structures 156–157 (2019) 73–86 75 

Table 1 

List of abbreviations. 

Abbreviation Meaning Abbreviation Meaning 

TC Textile composites UD Unidirectional 
PWTC Plain woven textile CLT Classical laminate 

composite theory 
3D Three dimensional MT Mori–Tanaka 
RVE Representative volume SEM Scanning electron 

element microscope 
ECPL Equivalent cross-ply IDM Isotropic damage 

laminate mechanics 
GP Gauss point VM Voigt–Mandel 
ECPL + CLT ECPL model coupled UMAT User-defined material 

with CLT subroutine 
PWTC + MT PWTC RVE coupled PFA Progressive failure 

with MT analysis 
WiU Without undulation SU Sinusoidal undulation 
CU Constant undulation NU No undulation 
WU With undulation CCW Counterclockwise 
MSF Maximum stress failure KP Knee points 
2D Two dimensional DIC Digital image correlation 

Fig. 1. (a) PWTC as a chain of alternating cross-ply laminates, (b) ECPL model, (c) Complete PWTC RVE (without matrix), (d) modified PWTC RVE. 

by Eq. (1) , dividing each individual global volume by V RVE . The 
total volume of warp and fill plies is computed as 

(V wp ) l = V W 
f + 

V m 

2 
⇒ (V wp ) l = V RV E 

[

(v w f ) g + 
(v m ) g 
2 

]

(V F p ) l = V F f + 
V m 

2 
⇒ (V F p ) l = V RV E 

[

(v F f ) g + 
(v m ) g 
2 

]

⎫ 

⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎭ 

(3) 

where ( V wp ) l and ( V 
Fp ) l are the total local volumes along the warp 

and fill plies, respectively. Let (v w 
f 
) l and (v F 

f 
) l be the local fiber 

volume fractions along the warp and fill plies, respectively, with 
respect to the respective local total volumes ( V wp ) l and ( V 

Fp ) l , as 

given 

(v w f ) l = 
V W 
f 

(V wp ) l 
⇒ (v w f ) l = 

(v w 
f 
) g 

[ 

(v w 
f 
) g + 

(v m ) g 
2 

] , 

(v F f ) l = 
V F 
f 

(V F p ) l 
⇒ (v F f ) l = 

(v F 
f 
) g 

[ 

(v F 
f 
) g + 

(v m ) g 
2 

] 

⎫ 

⎪ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎪ 
⎭ 

(4) 

where Eqs. (1) and (3) are substituted in Eq. (4) . Let V wp and V F P 

be the warp and fill ply volume fractions with respect to ECPL as 
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Table 2 

Nomenclature of variables used in ECPL model. 

Variable Meaning 

l, w, t length, width and thickness of quarter portion of PWTC RVE 
V m , V 

W 
f , V F 

f volumes of matrix, warp fibers, and fill fibers 

in quarter portion of PWTC RVE 
(v m ) g , (v 

w 
f ) g , (v 

F 
f ) g global volume fractions of matrix, warp fibers and fill fibers 

( v f ) g global fiber volume fraction 
V RVE total volume of RVE 
V y , M y volume and mass of single yarn 
M fabric , V fabric , ρ f mass of fabric, volume of fabric, yarn density 
N W , N F total number of warp and fill yarns in a fiber mat 
M m , ρm matrix mass and density 
( V wp ) l , ( V 

Fp ) l local volumes of warp and fill plies 
(v w 

f ) l , (v 
F 
f ) l local fiber volume fractions within warp and fill plies 

V wp , V F p warp and fill ply volume fractions 
h w , h F warp and fill ply thicknesses 
h cp ECPL thickness 
( X, Y, Z ), (1, 2, 3) global and local (principal material) axis system 

V wp = 
(V wp ) l 
V RVE 

⇒ 

[

(v w f ) g + 
(v m ) g 

2 

]

, V F p = 
(V F p ) l 
V RVE 

⇒ 

[

(v F f ) g + 
(v m ) g 

2 

] }

(5) 

where Eq. (3) is substituted in Eq. (5) . The warp and fill ply thick- 
nesses h w and h F , respectively, within ECPL are computed as 

(V wp ) l = l w h w ⇒ (v w f ) l = 
V W 
f 

(V wp ) l 
= 

(v w 
f ) g (l w t) 

l w h w 
⇒ h w = 

(v w 
f ) g 

(v w 
f ) l 

t 

(V F p ) l = l w h F ⇒ (v F f ) l = 
V F 
f 

(V F p ) l 
= 

(v F 
f ) g (l w t) 

l w h F 
⇒ h F = 

(v F 
f ) g 

(v F 
f ) l 

t 

⎫ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎭ 

(6) 

The Z axis ply co-ordinates in Fig. 1 (b) are computed by Eq. (6) . 
The complete ECPL model is thus developed which can be analyzed 
employing CLT. All the variables used in the development of ECPL 
model are listed in Table 2 for a quick reference. The implemen- 
tation details and the results of ECPL model are discussed in the 
next section. 

2.2. Implementation and results of ECPL model 

Two co-ordinate systems are defined while analysing the RVE 
of PWTC. The global co-ordinate system ( X, Y, Z ) or ( x, y, z ) is de- 
fined similar to CLT ( Daniel and Ishai, 2006 ). The local or princi- 
pal material-axis system (1 − 2 − 3) of PWTC lamina is defined as 
1-along the warp, 2-along the fill, and 3-out-of-plane direction of 
lamina. Both systems coincide in the absence of off-axis lamina. 

Different length scales, referred in the subsequent section, are 
defined as follows. A single PWTC lamina is considered at macro- 

scale , and the warp and fill plies are considered at meso-scale , 
whereas PWTC laminate is considered at macro-scale and a single 
PWTC lamina in it is considered at meso-scale . 

The proposed ECPL model is tested by in-house experiments (as 
explained in Section 4 ). All ECPL model variables are computed and 
given in Table 5 with Z−coordinates Z 0 = −0 . 33 , Z 1 = 0 . 0132 , Z 2 = 

0 . 33 (in mm) as shown in Fig. 1 (b). 
The meso-scale compliance matrices of plies in Voigt-Mandel 

(VM) form (Appendix A) are developed by mechanics-of-materials- 
based approach by newly proposed parallel-series model (non- 
linear) to compute the transverse material properties of a ply 
( Udhayaraman and Mulay, 2017 ) ( E 2 and G 12 ). The macro-scale con- 
stants of PWTC lamina, as given in Table 6 , are computed by ECPL 
coupling with CLT. All the variables used for the PWTC material 
are listed in Table 3 for a quick reference. It is seen in Table 6 that 
the values obtained by ECPL model coupled with CLT (ECPL + CLT) 
are slightly higher than the corresponding experimental values, 
and E X � = E Y because (v w 

f 
) g � = (v F 

f 
) g . This is attributed, by post- 

processing of data, to two primary factors. The presence of micro- 
cavities and rough edges (machining), as seen in Fig. 4 , and the 

exclusion of fiber undulations in ECPL model. The fiber undula- 
tions lead to lower stiffness of material along the fiber direction 
( Udhayaraman and Mulay, 2017 ). The ECPL model defines consti- 
tutive response at a macro-scale integration or Gauss point (GP) in 
PWTC material assuming defect-free deterministic RVE (homoge- 
nized deformation) ( Gitman et al., 2007 ). The presence of geomet- 
ric nonlinearities (eg. edge notch), except the fiber undulations, 
is thus can not be explicitly included in the ECPL model. The ef- 
fect of fiber undulations is included in PWTC RVE coupled with MT 

method (PWTC + MT) ( Section 3 ), and ABAQUS ® user defined mate- 
rial (UMAT) program is written to simulate macro-scale PWTC ma- 
terial with a small notch (dominant edge defect) ( Section 5 ). 

The variation of in-plane constants of PWTC lamina with re- 
spect to (v w 

f 
) g is studied deriving close-form expressions using CLT 

( Daniel and Ishai, 2006 ) as 

E X = 

(

h w 

h cp 

)
( [

(E 1 + E 2 ) 
2 − 4 (ν12 E 2 ) 

2 
]

[ (E 1 + E 2 ) (1 − ν12 ν21 ) ] 

) 

, E X = E Y , (v 
F 
f ) g = (v w f ) g 

νXY = 
2 ν21 E 1 
(E 1 + E 2 ) 

, G XY = G 12 , and h 
w = h F = 

h cp 

2 

⎫ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎭ 

(7) 

where h w and h cp ( h cp = h w + h F ) are the warp ply and ECPL thick- 
ness values, respectively, and E 1 , E 2 , G 12 , ν12 and ν21 are warp 
ply meso-scale constants in it’s principal material co-ordinates. The 
constants given in Eq. (7) are plotted in Fig. 2 (a) varying (v w 

f 
) g and 

noted that νXY initially decreases, then increases due to nonlin- 
ear variation in E 2 . The off-axis PWTC lamina constants are com- 
puted by Tables 5 and 6 using Eq. (8) ( Appendix A ) and plotted in 
Fig. 2 (b). 

S = R −1 S eng ⇒ S V M = M S M 
−1 ⇒ S V M = (Q s ) 

T 
V M S V M (Q s ) V M 

}

(8) 

All values in Fig. 2 (b) do not converge to 1 at θ = 90 ◦ as E X � = E Y in 
Table 6 . The ECPL model is compared with Tanov and Tabiei (2001) , 
and Wen and Aliabadi (2009, 2010) , and all the results are given in 
Tables 7 and 8 , respectively. It is observed in Tables 7 and 8 that 
macro-scale G XY value is underestimated, and the primary reason 
could be the consideration of smallest RVE constituent in differ- 
ent models of PWTC material. It is observed by open literature 
that, different homogenization models expect different input vari- 
ables to be provided by the user. It is thus difficult to use exact 
input variables of one model and substitute them into other model 
for the purpose of comparison. The Graphite/epoxy composite in- 
put variables provided in Tanov and Tabiei (2001) and Wen and 
Aliabadi (2009, 2010) correspond to graphite yarn (may contain 
some matrix) properties. The present authors, for the purpose of 
comparison, considered them to be the graphite fiber properties 
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Table 3 

Nomenclature of variables used for PWTC material. 

Variable Meaning 

E, G, ν Young’s modulus, Shear modulus, Poisson’s ratio 
E 1 , E 2 , G 12 , ν12 , ν21 in-plane material constants of a ply in local axes 
E 1 f , E 2 f , G 12 f , ν12 f , E m , νm material constants of fiber f and matrix m 

E X , E Y , E Z , G XY , G XZ , macro-scale constants of PWTC lamina 
G YZ , νXY , νXZ , νYZ in global axes 

(•) ∗, (•) quantity in GPa, quantity defined in global axes 
σ , ǫ stress and strain components 
ǫ

′ 
VM , σ

′ 
VM VM form strain and stress components in local axes 

ǫVM , σ VM VM form strain and stress components in global axes 
ǫ

′ 
T , σ

′ 
T tensorial strain and stress components in local axes 

ǫ
′ 
eng , σ

′ 
eng engineering strain and stress components in 

local axes 
S 4th-order compliance tensor relating ǫ

′ 
T and σ

′ 
T 

S eng compliance matrix relating ǫ
′ 
eng and σ

′ 
eng 

S VM , S VM 2nd-order compliance tensor in local and 
global axes (in VM form) 

M matrix relating tensorial components of stresses 
(also strains) to corresponding VM components 

R matrix relating tensorial components 
of strain to engineering components 

( Q s ) VM 2nd-oder transformation matrix in VM form 

relating global to local axes 
S w VM , S 

F 
VM Eshelby tensors for warp and fill fibers in VM form 

Fig. 2. (a) Macro-scale constants of PWTC lamina varying (v w 
f ) g and CCW rotation angle θ (a, b) ECPL + CLT, (c, d) PWTC + MT WU. 

(smallest micro-scale constituent is fiber in present work, and not 
yarn that may contain some matrix material). It can be seen in 
Table 8 that, the macro-scale properties computed by the proposed 
model closely match with the already reported values. The global 

fiber volume fraction, along the warp and fill plies of PWTC RVE, 
also considered equal in Table 8 . 

The inclusion of fiber undulation requires transformation about 
Y axis ( Udhayaraman and Mulay, 2017 ), thus can not by fully cap- 



78 S.S. Mulay, R. Udhayaraman / International Journal of Solids and Structures 156–157 (2019) 73–86 

tured in ECPL model (possible for E X and E Y but not for G XY ). This 
limitation of ECPL model is overcame by coupling PWTC RVE with 
MT method in the next section. 

3. Homogenized material constants of PWTC by Mori–Tanaka 

approach 

Entire 3D effective material constants of PWTC lamina are com- 
puted in this section coupling PWTC RVE with MT method ( Hill, 
1965; 1963; Mori and Tanaka, 1973; Li et al., 2010 ). MT is one of 
the mean-field theory approaches with a detailed discussion given 
in Bohm (2016) , Benveniste (1987) and Eshelby (1957) . 

3.1. Formulation of MT approach for PWTC RVE 

The PWTC lamina is treated as a matrix containing warp and fill 
fibers as cylindrical (ellipsoidal) inclusions with separate Eshelby 
tensors ( Eshelby, 1957 ). 

S w V M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

0 0 0 0 0 0 
t 3 t 1 t 2 0 0 0 
t 3 t 2 t 1 0 0 0 
0 0 0 2 t 5 0 0 
0 0 0 0 2 t 4 0 
0 0 0 0 0 2 t 4 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, S F V M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

t 1 t 3 t 2 0 0 0 
0 0 0 0 0 0 
t 2 t 3 t 1 0 0 0 
0 0 0 2 t 4 0 0 
0 0 0 0 2 t 5 0 
0 0 0 0 0 2 t 4 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

⎫ 

⎪ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎪ 
⎭ 

(9) 

The inclusions and matrix are assumed to be homogeneous and 
transversely isotropic, and homogeneous and isotropic, respec- 
tively. The compliance matrices of warp and fill fibers are de- 
veloped as Daniel and Ishai (2006) and Udhayaraman and Mu- 
lay (2017) . The concentration and Eshelby tensors for warp and fill 
fibers are developed. The warp and fill fibers are along global 1 −
and 2 −axes, respectively. The planes 2 − 3 and 1 − 3 thus become 
planes of isotropy for warp and fill fibers, respectively. The respec- 
tive Eshelby tensors in VM form are given in Eq. (9) ( Benveniste, 
1987; Mori and Tanaka, 1973 ), where 

t 1 = 
(5 − 4 ν) 

8 (1 − ν) 
, t 2 = 

(4 ν − 1) 

8 (1 − ν) 
, t 3 = 

ν

2 (1 − ν) 
, t 4 = (1 / 4) , t 5 = 

(3 − 4 ν) 

8 (1 − ν) 

}

(10) 

where ν is Poisson’s ratio of matrix material. An effective stiffness 
matrix is finally computed ( Bohm, 2016; Daniel and Ishai, 2006 ), 
with the implementation details and results as discussed in the 
next section. 

3.2. Implementation and results of PWTC lamina coupled with MT 

approach 

The MT approach is implemented by Table 5 , and macro-scale 

constants of PWTC are given in Table 6 under column without un- 

dulation (WiU). 
The macro-scale material constants of PWTC RVE are computed 

varying (v w 
f 
) g ( (v w f ) g = (v F 

f 
) g ) and plotted in Fig. 3 (a) and (b). The 

macro-scale constants of an off-axis PWTC lamina are computed 
( (v w 

f 
) g = (v F 

f 
) g = 0 . 25 ), and plotted in Fig. 3 (c) and (d). The bal- 

anced behaviour of PWTC lamina is predicted as E X = E Y ( νXY = 

νY X ) , νXZ = νY Z , and G XZ = G Y Z is always true. 
It is concluded that PWTC lamina possess six linearly inde- 

pendent macro-scale material constants in principal material co- 
ordinates provided that (v w 

f 
) g = (v F 

f 
) g , and warp and fill fibers per- 

pendicular to each other (balanced orthotropic material). It is thus 
concluded that the approaches ECPL + CLT and PWTC + MT predict 
similar macro-scale behaviours of PWTC lamina closely matching 
with experiments ( Daniel and Ishai, 2006 ). 

3.3. Results of PWTC RVE coupled with MT method including fiber 

undulations 

Udhayaraman and Mulay (2017) recently proposed several 
novel approaches to include the fiber undulation effects on 
PWTC lamina. Different undulation approaches: sinusoidal undu- 
lation (SU), constant undulation (CU), and no undulation (NU) 
( Udhayaraman and Mulay, 2017 ) are combined firstly with ECPL 
model coupled with Voigt approximation ( Voigt, 1889 ) and sec- 
ondly PWTC + MT. All nine macro-scale constants of PWTC lamina 
are extracted and found to be almost equal. 

The CU angle approach is adopted, and the fiber undulation an- 
gles for the in-house experimental studies are found to be 6.7 ° and 
7.8 ° ( Udhayaraman and Mulay, 2017 ) for the warp and fill fibers, 
respectively. The warp and fill fiber matrices are firstly developed 
in principal material co-ordinates. The warp fiber undulation ef- 
fect is included by counterclockwise (CCW) rotating stiffness ma- 
trix about positive Y axis (6.7 °) as in Eq. (20) . The fill fiber stiff- 
ness matrix is CCW rotated about positive Y axis (7.8 °) followed by 

90 ° CCW rotation about positive Z axis as given in Eq. (18) . Similar 
transformations are performed on the respective Eshelby tensors 
S F V M and S 

w 
V M . The transformation of Eshelby tensors by fiber un- 

dulation angle is one of the important contributions of the present 
work. 

The macro-scale material constants of PWTC lamina, for an ex- 
perimental data given in Table 5 , are given in Table 6 under col- 
umn with undulation (WU). It is noted in Table 6 that, Young’s 
moduli with fiber undulation are slightly lower than ignoring fiber 
undulation, which is expected as the fiber stiffness along load- 
ing direction get off-set due to undulations. It is also seen in 
Table 6 that the fiber undulation only influences the principal di- 
rection stiffness values, leaving other stiffness matrix terms largely 
unaffected. 

The macro-scale in-plane constants of PWTC lamina are com- 
puted by PWTC + MT WU, using parameters given in Table 5 , and 
plotted in Fig. 2 (c) and (d), and found to be same by ECPL + CLT 
shown in Fig. 2 . It is thus shown that (v w 

f 
) g = (v F 

f 
) g lead to three 

(3) independent in-plane material constants. The macro-scale ma- 
terial constants adjust such that the ratio m = ( νXZ / E X ) = ( νY Z / E Y ) 

remain constant irrespective of rotation θ about Z axis, such that 
strain ǫZZ always remain constant for equal loading along X or Y 
axes. It is also observed from Fig. 2 (d) that, E X = 2 G XY (1 + νXY ) is 
satisfied by homogenized constants of PWTC for θ = 22 . 5 ◦ (2 n −
1) , where n = 1 , 2 , 3 , . . . . This implies, PWTC off-axis lamina shows 
isotropy in X − Y plane for a specific CCW rotation θ . The PWTC 
+ MT is applied to different materials with the results given in 
Tables 7 and 8 . 

The in-house experimental details (specimen preparation, test- 
ing, and SEM analysis) of PWTC laminate are provided in the next 
section. 

4. Experimental tests on PWTC material 

The in-house experimental results of PWTC material are briefly 
discussed in this section ( Udhayaraman and Mulay, 2017 ). There 
are several quantities, as given in Table 9 , that have to be mea- 
sured while preparing PWTC specimen. The measured quantities 
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Fig. 3. Macro-scale properties varying (v w 
f ) g (a) and (b), and varying in-plane angle θ (c) and (d), PWTC + MT ignoring fiber undulation. 

of all the input variables are used in the proposed ECPL model and 
all the required variables, as given in Table 5 , are computed. All 
the densities are measured by water displacement method Society , 
and fiber and matrix materials are identified as E-glass and LY556 
Araldite (epoxy), respectively, with their micro-scale properties as 
in GmbH (2007) and Daniel and Ishai (2006) . A PWTC speci- 
men of thickness 2.64 mm is prepared with 4 plies resulting in 
t = 0 . 66 mm. Several rectangular specimens along the longitudinal 
(warp) and transverse (fill) directions of PWTC laminate are cut 
according to the dimensions given in Table 10 . Four tabs are fixed 
along the ends of the specimen with the same adhesive, such that 
the specimen can be firmly held within machine jigs. The dimen- 
sions of the tabs have to be appropriately chosen such that the re- 
quired load must be correctly transferred to the specimen without 
causing any slip (or crushing) between tabs and machine jigs. 

All the specimens are then tested under uniaxial tension by 100 
KN hydraulic Instron machine (INSTRON 8801) with 0.5 mm/min. 
displacement rate. The strain field within specimen is measured by 
digital image correlation (DIC) technique with a single camera. The 
camera is focussed normal to the thickness of the specimen, such 
that X and Z direction strains are measured. The measured values 
of material constants and ultimate σ and ǫ are mentioned in the 
appropriate tables. 

A small portion of laminate from the fractured PWTC specimen 
is extracted by abrasive diamond cutter, and analyzed under SEM 

at low vacuum conditions. Some of the representative SEM images 
for both the specimens (warp and fill loading) are shown in Fig. 4 , 
and they are analysed in the next section based on the results of 
progressive failure analysis of PWTC lamina. 

The progressive damage analysis of PWTC lamina is per- 
formed in the next section by ECPL + CLT, in which the meso- 

scale failure modes are captured by isotropic damage mechanics 
( Lemaitre, 1985 ). 

5. Progressive failure analysis of PWTC by isotropic damage 

mechanics 

A progressive failure analysis (PFA) of PWTC lamina is per- 
formed in this section combining IDM with ECPL + CLT. Damage D 

is a meso-scale state variable that captures the initiation and evo- 
lution of defects in materials at micro-scale ( Lemaitre, 1985; Chow 

and Wang, 1987; Shahabi and Forouzan, 2017 ). 
A novel contribution of the present work is an identification of 

meso-scale failure modes (at any given GP), along the warp and fill 
directions, responsible for macro-scale failure ( macro-crack initia- 
tion at any given GP) in PWTC material. All the variables used in 
the PFA of PWTC are listed in Table 4 for a quick reference. 

5.1. Proposed methodology of the PFA of PWTC lamina 

The PWTC material is considered at macro-scale level, the meso- 

scale PWTC RVE is considered to be present at any macro-scale GP. 
The warp and fill ply stresses, in principal material co-ordinates, 
are computed by macro-scale strain assuming isostrain condition. 
The individual ply strengths are apriori computed, by local fiber 
volume fractions, using micromechanics-based strength theories 
( Daniel and Ishai, 2006 ). Five in-plane strengths are considered for 
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Fig. 4. SEM images (a) matrix crack towards Y axis in the top surface ( X − Y ) while 
loading along warp ( X axis), (b) matrix crack along Z axis ( X − Z) through the fill 
yarns while loading along warp, (c) fiber-matrix debonding in X − Z plane while 
loading along fill ( Y axis), (d) crack along X axis while loading along fill. 

Table 4 

Nomenclature of variables used in PFA of PWTC material. 

Variable Meaning 

C 0 , C D original undamaged, and damaged stiffness matrices 
ǫ0 , κ failure strain, and maximum strain reached so far 
D meso-scale damage variable 
ǫ f parameter controlling softening region of stress - strain plot 
D wp 
11 , D 

wp 
22 warp ply damage parameters in local longitudinal, 

and transverse axes 
ǫwp 
1 u , ǫ

wp 
2 u warp ply failure strains in local longitudinal, 

and transverse axes 
ǫxx , ǫyy strain components in global X , and Y axes 
D FP 11 , D 

FP 
22 fill ply damage parameters in local longitudinal, 

and transverse axes 
ǫFP 
1 u , ǫ

FP 
2 u fill ply failure strains in local longitudinal, 

and transverse axes 
{ ǫ}, �ǫ an incremental strain vector, and incremental strain value 
[ D ], I 2nd-order macro-scale damage tensor, and Identity matrix 
Q RVE , ( S RVE ) 0 damaged stiffness matrix, and 

undamaged compliance matrix of PWTC RVE 
�γ XY an incremental shear strain value 
γ wf , γ Ff shear softening parameters for warp, and fill plies 
γ wp 
12 u , γ

FP 
12 u shear failure strains in warp, and fill plies 

γ xy global shear strain component 

Table 5 

Parameters computed while preparing PWTC specimen for ECPL model. 

Parameter Value Parameter Value Parameter Value 

( v f ) g 0.4 V wp 0.52 V F p 0.48 
(v w 

f ) l 0.4231 (v F 
f ) l 0.375 (v w 

f ) g 0.22 

(v F 
f ) g 0.18 ( v m ) g 0.6 h w 0.3432 (mm) 

h F 0.3168 (mm) – – – –

each ply, namely tensile and compressive strength both along the 
local longitudinal ( F 1 t , F 1 c ) as well as transverse ( F 2 t , F 2 c ) direc- 
tions, and 1 − 2 plane shear strength ( F 6 ). Maximum stress failure 
(MSF) theory is applied in principal co-ordinates to predict failure 
in plies. 

The model equations for ply strength (or actual experimental 
values) given in Daniel and Ishai (2006) are used, and MSF theory 
is briefly discussed ( Daniel and Ishai, 2006 ). The application of IDM 

theory to PWTC lamina is then discussed in-details. 

5.1.1. Maximum stress failure theory 

The MSF theory enables the understanding of failure modes in 
PWTC RVE, which may not be true for other failure models for 
anisotropic materials, eg. Tsai–Wu theory, in which an effective 
stress is computed ( Daniel and Ishai, 2006 ). 

The MSF theory for 2D state of stress, in the principal material 
co-ordinates ( 1 − 2 − 3 ) of UD lamina, is expressed as Daniel and 
Ishai (2006) 

F 1 t ≤ σ1 ≤ F 1 c , F 2 t ≤ σ2 ≤ F 2 c , | F 6 | = σ12 (11) 

where σ 1 , σ 2 and σ 12 are transformed stresses, at any specific 
strain increment, from global ( X − Y − Z) to principal material co- 
ordinates. 

5.1.2. Application of IDM to PWTC lamina 

The damaged stress state in warp and fill plies is obtained by 
IDM as Lemaitre (1985) σi = (1 − D ) C 0 

i j 
ǫ j where σ and ǫ are meso- 

scale VM values, C 0 
i j 

and C D = (1 − D ) C ◦ are original undamaged 

and damaged VM stiffness matrices, respectively, and D (0 ≤D ≤1) 
is a scalar damage parameter. An exponential evolution of D is 
computed separately for the warp and fill plies (as well separately 
along the local longitudinal and transverse directions) ( Jirasek and 
Marfia, 2005 ) 

D = 

⎧ 

⎨ 

⎩ 

0 , κ < ǫ0 

1 −
ǫ0 
κ

exp 

[

−
(κ − ǫ0 ) 

(ǫ f − ǫ0 ) 

]

, ǫ0 ≤ κ ≤ ǫ f 

⎫ 

⎬ 

⎭ 
(12) 

where ǫ0 is a failure strain (correspond to failure stress), ǫf is a 
softening parameter (controlling slope), and κ is a maximum strain 
reached. The novelty is that, stress-based failure is detected, strain- 
based damage evolution is performed. 

The parameter D is computed separately in warp and fill plies 
based on failure modes. The parameters D 

wp 
11 and D 

wp 
22 for warp ply 

local longitudinal and transverse failure, respectively, are defined 
as 

D wp 
11 = 1 −

[
ǫwp 
1 u 
ǫxx 

]

exp 

[
−(ǫxx − ǫwp 

1 u ) 

(ǫ f − ǫwp 
1 u ) 

]

, D wp 
22 = 1 −

[
ǫwp 
2 u 
ǫyy 

]

exp 

[
−(ǫyy − ǫwp 

2 u ) 

(ǫ f − ǫwp 
2 u ) 

]}

(13) 

where ǫwp 
1 u and ǫwp 

2 u are failure strains in local warp longitudinal 
(global X ) and transverse (global Y ) directions, respectively, ǫxx and 
ǫyy are global strain components along global X and Y axes, respec- 
tively. The parameters D F P 11 and D F P 22 for fill ply local longitudinal 
and transverse failure, respectively, are defined as 

D F P 11 = 1 −
[

ǫF P 
1 u 

ǫyy 

]

exp 

[
−(ǫyy − ǫF P 

1 u ) 

(ǫ f − ǫF P 
1 u ) 

]

, D F P 22 = 1 −
[

ǫF P 
2 u 

ǫxx 

]

exp 

[
−(ǫxx − ǫF P 

2 u ) 

(ǫ f − ǫF P 
2 u ) 

]}

(14) 

where ǫF P 
1 u and ǫF P 

2 u are failure strains in local fill longitudi- 
nal (global Y ) and transverse (global X ) directions, respectively. 
Eq. (12) is thus applied to warp and fill plies in a novel manner, the 
C D are computed and macro-scale stiffness of PWTC RVE is com- 
puted by CLT. 

The results of PFA of PWTC lamina (at GP), employing IDM and 
MSF theories, are discussed in the next section. 
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Table 6 

Experimental Comparison of macro-scale constants of PWTC ( ∗ in GPa). 

Approach E 
∗
X E 

∗
Y E 

∗
Z G 

∗
XY G 

∗
XZ G 

∗
YZ νXY νXZ νYZ 

Experiment 18.3 15.6 – – – – – – –
ECPL + CLT 21.02 18.8 – 3.1 – – 0.133 – –
PWTC + MT 21.5 19.2 8.4 2.72 2.69 2.69 0.14 0.42 0.44 
(WU) 
PWTC + MT 23.3 21 8.7 2.73 2.62 2.6 0.14 0.41 0.42 
(WiU) 

Table 7 

Comparison of macro-scale constants of PWTC lamina with Tanov and Tabiei (2001) 
(

(v f ) g = 0 . 35 
and θ = 9 . 5 ◦, E-glass/Epoxy ) ( ∗ in GPa). 

Parameter 
Four-cell ( Tanov and 
Tabiei, 2001 ) 

Single-cell ( Tanov and 
Tabiei, 2001 ) ECPL + CLT PWTC + MT 

E 
∗
XX , E 

∗
YY 17.8 18.2 17.91 17.1 

G 
∗
XZ , G 

∗
YZ 2.5 2.3 – 2.55 

νXZ , νYZ 0.33 0.39 – 0.44 

E 
∗
ZZ 9.8 7.8 – 7.5 

G 
∗
XY 3.53 3.41 2.88 2.53 

νXY 0.172 0.174 0.133 0.13 

Table 8 

Comparison of macro-scale constants of PWTC with Tanov and Tabiei (2001) and Wen and Aliabadi (2009, 
2010) 

(

(v f ) g = 0 . 58 and θ = 1 . 4 ◦, Graphite/Epoxy ) ( ∗ in GPa). 

Models E 
∗
XX , E 

∗
YY E 

∗
ZZ G 

∗
XY G 

∗
YZ , G 

∗
XZ νYZ , νXZ νXY 

ECPL + CLT 44.75 – 2.79 – – 0.052 
PWTC + MT 49.33 10.2 2.71 2.5 0.47 0.06 
Four-cell ( Tanov and Tabiei, 2001 ) 45.08 10.12 3.815 2.763 0.46 0.056 
Single-cell ( Tanov and Tabiei, 2001 ) 45.17 9.782 3.813 2.585 0.478 0.054 
Smooth fiber I ( Wen and Aliabadi, 2009 ) 46.48 9.343 3.58 2.78 0.49 0.052 
Smooth fiber II ( Wen and Aliabadi, 2009 ) 46.29 9.176 3.5 2.834 0.496 0.052 
Model I (MLPG) ( Wen and Aliabadi, 2010 ) 44.86 9.338 3.546 2.53 0.49 0.054 
Model II (MLPG) ( Wen and Aliabadi, 2010 ) 44.84 9.228 3.46 2.509 0.49 0.054 

Table 9 

Experimental measurements for PWTC specimen. 

Quantity Variable Quantity Variable 

Weight of fabric (kg) m f weight of matrix (kg) m m 
Weight of laminate (kg) m c dimensions (mm) L, W, T 

Yarn density (gm/cm 3 ) ρ f matrix density (gm/cm 3 ) ρm 
Laminate effective density ρc 
(gm/cm 3 ) 

Table 10 

Warp and fill specimen dimensions. 

Specimen Dimensions ( L, W, T ) Specimen Dimensions ( L, W, T ) 
(in mm) (in mm) 

Warp 179, 18.64, 2.64 fill 245, 14.61, 2.66 

Table 11 

PFA of PWTC lamina by loading along X axis ( ∗ in MPa). 

Parameter Experiment ECPL + CLT ECPL + CLT 
KP ( % ǫXX , σ ∗

XX ) (in-house) (Gauss point) (UMAT) 

RVE 1st KP (0.5, 100) (0.55, 115.6) (0.55, 117.4) 
Warp 1st KP – (0.55, 183.1) (0.55, 185.9) 
Fill 1st KP – (0.55, 42.5) (0.55, 43.2) 
RVE 2nd KP (1.47, 265.6) (2.35, 402.8) (1.43, 270) 
Warp 2nd KP – (2.35, 774.7) (1.43, 475) 

5.2. Results of the PFA of PWTC lamina 

The PFA of PWTC lamina (at GP) is performed applying incre- 
mental strain vector, damage computed if MSF criterion satisfied. 

5.2.1. Longitudinal loading (global X axis) of PWTC lamina 

An incremental strain vector { ǫ} = { � ǫ ( −νXY � ǫ) 0 } where 
� ǫ = 1 × 10 −4 , is applied on PWTC RVE with variables and micro- 

scale properties given in Table 5 and Daniel and Ishai (2006) , re- 
spectively. The warp and fill softening parameters are (0.0245 and 
0.0055) and (0.0245 and 0.006), respectively, for longitudinal and 
transverse failures with the results shown in Fig. 5 (a). 

Two meso-scale modes of failure, or knee points (KP) are de- 
tected: fill ply transverse (global X axis) failure at ǫx = 0 . 55% , and 
warp ply longitudinal (global X axis) failure at ǫx = 2 . 35% . It is seen 
in Fig. 5 (a) that, once fill ply fails at ǫx = 0 . 55% , macro-scale stress 
within PWTC RVE decreases till ǫx = 0 . 94% (till σ x ≈0 in fill ply), 
it again starts increasing due to warp ply support. It is seen in 
Fig. 5 (d) and (b) that, meso-scale damage results in macro-scale bi- 
axial stress state ( σ yy � = 0) and anisotropic damage in PWTC RVE. 
One can take recourse of the concept of effective stress, associated 
with the principle of strain equivalence for linear elasticity, while 
analysing macro-scale damage given as Lemaitre (1985) 

[ D ] = I − Q RV E (S RV E ) 
0 (15) 

where [ D ] is 2nd-order damage tensor, I is an identity matrix, and 
Q RVE and ( S RVE ) 

0 are damaged stiffness and undamaged compliance 
matrices of PWTC RVE, respectively. The evolution of the diago- 
nal components of D is plotted in Fig. 5 (b) to see that macro-scale 

damage begins in a plane normal to Y axis ( D (2, 2)) due to failure 
in fill ply, and ends in a plane normal to X axis ( D (1, 1)) due to 
failure in warp ply. 

The simulation results of the PFA of PWTC lamina are compared 
with experiments given in Table 11 to find that, 1st KP is correctly 
predicted while the ultimate values are highly over-predicted. The 
presence of defects lead to lower experimental values, which are 
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Fig. 5. PFA of PWTC RVE loading along X axis, (a) σ xx vs ǫxx plots, (b) macro-scale damage, variation of (c) C XX component and (d) σ yy . 

not included in PWTC + CLT. A small notch (representative of dom- 
inant crack) PWTC model will be simulated later by ABAQUS ®

UMAT. 

5.2.2. Transverse loading (global Y axis) of PWTC lamina 

An incremental strain vector { ǫ} = { ( −νY X � ǫ) � ǫ 0 } where 
� ǫ = 1 × 10 −4 , is applied on PWTC RVE with variables and micro- 

scale properties given in Table 5 and Daniel and Ishai (2006) , re- 
spectively. All softening parameters, given earlier in Section 5.2.1 , 
are used with the results shown in Fig. 6 . 

Two meso-scale KP are detected: warp ply transverse (global Y 
axis) failure at ǫyy = 0 . 48% , and fill ply longitudinal (global Y axis) 
failure at ǫyy = 2 . 35% . This failure behaviour is similar to the one 
earlier observed in Section 5.2.1 . Bi-axial stress state exist in PWTC 
RVE once damage begins ( Fig. 6 (c)), and macro-scale damage is 
anisotropic ( Fig. 6 (d)). 

5.2.3. Shear loading (plane X − Y ) of PWTC lamina 

An incremental strain vector { ǫ} = { 0 0 ( �γXY ) } where 
� γXY = 1 × 10 −5 is applied on PWTC RVE with variables 
and micro-scale properties given in Table 5 and Daniel and 
Ishai (2006) , respectively. The warp and fill softening parame- 
ters are γwf = 0 . 00625 and γF f = 0 . 0075 , respectively, with the 
damage evolution given as 

(D 12 ) 
wP = 1 −

[

γ wP 
12 u 

γxy 

]

exp 

[

−
(γxy − γ wP 

12 u ) 

(γwf − γ wP 
12 u ) 

]

, 

(D 12 ) 
F P = 1 −

[

γ F P 
12 u 

γxy 

]

exp 

[

−
(γxy − γ F P 

12 u ) 

(γF f − γ wP 
12 u ) 

]

⎫ 

⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎭ 

(16) 

where γ wP 
12 u and γ

F P 
12 u are shear failure strains in warp and fill plies, 

respectively, and γ xy is a global shear strain component. 

All results are shown in Fig. 7 and KP are given in Table 13 . Two 
meso-scale failure modes are present: warp and fill plies in-plane 
( 1 − 2 ) shear failures at γxy = 0 . 62% and 0.72%, respectively. The 
shear failure is controlled by matrix phase ( Daniel and Ishai, 2006 ), 
which is present more in fill than warp ply ( Table 5 ) (fill ply 
stronger in shear loading than warp). The ultimate shear stress in 
RVE corresponds to 1st KP as shown in Fig. 7 (a), which is different 
from other loading cases. 

All results of the PFA of PWTC lamina are summarized as fol- 
lows. When PWTC lamina is loaded in global X axis, a fill ply plane 
having only matrix and normal to global X axis, fails first result- 
ing in pure matrix cracking as seen in Fig. 4 (b). A warp ply plane 
having fiber and matrix, normal to global X axis, fails resulting in 
PWTC lamina failure. When PWTC lamina is loaded along global Y 
axis, a warp ply plane having only matrix and normal to global Y 
axis, fails first. A fill ply plane having both fiber and matrix, normal 
to global Y axis, fails resulting in PWTC lamina failure (fiber-matrix 
debonding failure in SEM Fig. 4 (c)). When PWTC lamina is loaded 
in global X − Y plane, a warp ply plane having fiber and matrix, 
parallel to global X − Y plane, fails first. A fill ply plane having fiber 
and matrix materials, parallel to global X − Y plane, fails resulting 
in PWTC lamina failure. 

It is seen in Tables 11 –13 that, 1st KP is correctly captured, 
the macro-scale ultimate values are over-predicted. A notched bar 
PWTC material model (dominant macro-scale crack) is thus solved 
in next section by ABAQUS ® UMAT. 

5.2.4. PFA of PWTC material by UMAT subroutine 

The ECPL + CLT model coupled with IDM is implemented as 
UMAT subroutine. 2D notched bar (meshed) of PWTC material 
with length and height 10 and 1 units, respectively, is shown in 
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Fig. 6. PFA of PWTC loading along Y axis, (a) all σ yy vs ǫyy plots, and evolution of (b) meso-scale damage, (c) σ xx and (d) macro-scale damage components. 

Fig. 8 (a), and PWTC RVE is ( meso-scale ) present at every macro- 

scale GP. A small edge notch is considered (8% area reduction) rep- 
resenting a macro-scale dominant crack generated due to machin- 
ing of a specimen. The horizontal and vertical displacements are 
constrained along the left and bottom edges, respectively, of a bar. 

The homogenized stiffness matrix at a specific GP of PWTC ma- 
terial (obtained by coupling ECPL model with CLT and IDM) is a 
tangent matrix till no damage is detected within the corresponding 
meso-scale PWTC RVE. The homogenized stiffness matrix becomes 
secant matrix upon damage initiation at a specific GP. The required 
consistent tangent matrix in UMAT is thus approximated by secant 
matrix in the damaged state at any macro-scale GP. This approxi- 
mation works till the ultimate macro-scale σ is reached, i.e., till any 
one of GP within a model completely fails. The macro-scale soft- 
ening behaviour (after ultimate stress) of PWTC material model is 
consequently not captured by this UMAT. The results obtained by 
this approximation within proposed UMAT are still acceptable and 
serves the purpose, as all the KP values and ultimate σ and ǫ val- 
ues are correctly captured (values used in engineering design of 
PWTC material). 

The 2D notched bar model is discretized by 2084 2D plane- 
stress triangular elements (ABAQUS ® type CPS3, 3 nodes / ele- 
ment, and 1 GP / element) and loaded along the right edge by 
a displacement along the global X axis. The deformation and von 
Mises stress distribution in bar is shown in Fig. 8 , and KP values 
are obtained from an element (centroid) located along the loading 
boundary and given in 4th column of Table 11 . The experimental 
values are macro-scale values, and are fairly represented by load- 
ing edge element. The KP values correspond to notch tip element 
are found to be same as given in 3rd column of Table 11 irrespec- 

tive of the mesh size as shown in Fig. 9 (b). This is an expected 
behaviour, because whenever any element is fully failed, it has 
to have KP values as given in column 3 of Table 11 (same con- 
stitutive behaviour of fully failed element independent of mesh). 
However, the far-field element KP values are mesh dependent. The 
appropriate mesh should be the one that results in far-field ele- 
ment KP values close to the experiments in the presence of a fixed 
size notch. The degree of mesh refinement ( h -refinement), for a 
given size of a notch, can be identified that gives far-field (load- 
ing boundary) element KP values representing actual experimental 
fields. This statement is confirmed by the authors performing sev- 
eral numerical experiments. The KP values in crack tip and edge 
elements are observed for a fixed notch size (8%) and varying de- 
gree of mesh refinement as shown in Fig. 9 . It is seen that all the 
KP values in boundary (loading edge) element lie on a same macro- 

scale σ − ǫ plot (but ending at different ultimate values) when el- 
ement near crack tip fully fails as shown in Fig. 9 (a). Thus, out of 
all mesh refinements, only one mesh is feasible for a fixed size of 
a defect in the sense that it correctly capture the fields present 
in the corresponding experimental specimen. The constitutive be- 
haviour of PWTC material obtained by UMAT is thus independent 
of a mesh and macro-scale softening behaviour (after ultimate fail- 
ure) is not captured (as explained earlier), no mesh regularization 
techniques are thus warranted in the present work. The KP val- 
ues in the boundary element are thus used as an indication that 
correct experimental fields (stress and strain distributions) are nu- 
merically captured. 

The 2D notched bar is discretized by 578 elements (CPS3) and 
loaded along Y axis to get KP values as given in Table 12 . 
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Fig. 7. PFA of PWTC by shear loading in plane X − Y, (a) all σ xy vs γ xy plots, (b) meso-scale damage, (c) macro-scale damage and (d) stiffness matrix components. 

Fig. 8. Notched bar with X axis displacement solved by UMAT (a) deformation, (b) von Mises stress, shearing in X − Y plane (c) deformation, (d) von Mises stress. 

The 2D notched bar is discretized by 374 elements (CPS3) and 
loaded with γ XY within global X − Y plane. The nodal displacement 
u for the bottom and top edges are set as 0 and 0.1, respectively, 
and the nodal displacement v for the left and right edges are set 
as 0 and 0.1, respectively. The deformation and von Mises stress 
distribution is shown in Fig. 8 (c) and (d) with KP values as given 
in Table 13 . Another set of in-house axial loading experiments, by 

E-glass/epoxy PWTC specimens ( (v f ) g = 0 . 45 , (v w 
f 
) g = 0 . 26 , (v F 

f 
) g = 

0 . 19 ), are performed to demonstrate the validity of the proposed 
failure analysis. The numerical failure analysis is performed em- 
ploying ECPL + CLT, as explained earlier, at a given GP as well as by 
ABAQUS ® UMAT using 2D notched bar PWTC model (924 elements 
of type CPS3). The KP values, within GP ahead of crack tip and far- 
field, are obtained and all the results are tabulated in Table 14 . It 
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Fig. 9. Macro-scale results with mesh variation (a) in an element along loading boundary, (b) in an element ahead of crack tip. 

Table 12 

PFA of PWTC lamina by loading along Y axis (fill) ( ∗ in MPa). 

Parameter Experiment ECPL + CLT ECPL + CLT 
KP ( % ǫYY , σ ∗

YY ) (in-house) (Gauss point) (UMAT) 

RVE 1st KP (0.4, 88) (0.48, 90.23) (0.477, 89.8) 
Warp 1st KP – (0.48, 40.8) (0.477, 40.6) 
Fill 1st KP – (0.48, 143.8) (0.477, 143.4) 
RVE 2nd KP (1.69, 263.5) (2.35, 334.1) (1.64, 258.8) 
Fill 2nd KP – (2.35, 696.1) (1.64, 487.2) 

Table 13 

PFA of PWTC lamina with shear loading along X − Y plane ( ∗ in MPa). 

Parameter ECPL + CLT ECPL + CLT 
KP ( % γXY , σ

∗
XY ) (Gauss point) (UMAT) 

RVE 1st KP (0.62, 19.2) (0.619, 19.12) 
Warp 1st KP (0.62 20) (0.62, 19.97) 
Fill 1st KP (0.62, 18.23) (0.62, 18.2) 
RVE 2nd KP (0.72, 10.1) –
Fill 2nd KP (0.72, 21.0) –

Table 14 

PFA of PWTC lamina by loading along global X axis 
(

E-glass/Epoxy , (v f ) g = 0 . 45 , (v w 
f ) g = 0 . 26 , (v F 

f ) g = 0 . 19 
)

( ∗in MPa). 

Parameter Experiment ECPL + CLT ECPL + CLT 
KP ( % ǫXX , σ ∗

XX ) (in-house) (Gauss point) (UMAT) 

RVE 1st KP (0.5, 113.5) (0.5, 119.9) (0.5, 119.3) 
Warp 1st KP – (0.5, 184.6) (0.5, 187.4) 
Fill 1st KP – (0.5, 41.1) (0.5, 40.9) 
RVE 2nd KP (1.7, 317.8) (2.4, 469.9) (1.5, 322.4) 
Warp 2nd KP – (2.4, 877.8) (1.5, 558.4) 

is again observed from Table 14 that KP values in far-field element 
(4th column) are very close to the experimental mean values (2nd 
column), and KP values in element ahead of crack tip are closely 
matching with 3rd column (mesh independent unique constitutive 
behaviour). 

The results obtained by UMAT closely match with experimental 
values, as given in Tables 11 –14 . The PFA of PWTC material is per- 
formed in-details in this section, and conclusions are finally drawn 
in the next section. 

6. Conclusions 

The primary focus of the present work was to study the con- 
stitutive behaviour of PWTC material (undamaged and damaged). 
Two homogenization models are proposed to obtain the macro- 

scale material constants of PWTC lamina: ECPL + CLT by quarter 
portion of PWTC RVE, and PWTC + MT WU. The results obtained 
by these approaches are compared with other experiments as well 
as simulations. 

The PFA of PWTC lamina is performed, under different loadings, 
coupling ECPL + CLT with IDM, and the corresponding macro-scale 

KP values are compared with experiments. The PFA by ECPL + CLT 
is also implemented as UMAT subroutine, and 2D PWTC notched 
bar model is solved in ABAQUS ® under different loadings. The KP 
values in loading edge element are closely matching with the ex- 
perimental values, whereas KP stress values near crack tip are al- 
ways same as KP values correspond to PWTC lamina ( meso-scale 

GP computation). 
It is concluded that the proposed approaches correctly compute 

macro-scale material constants of PWTC lamina (undamaged and 
damaged). The present PWTC lamina model will be extended to 
study elasto-plastic damage in future. 
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Appendix A. Representation of matrices in Voigt–Mandel 

notation 

Strain and stress tensors are represented as vectors in VM 

form as { ǫV M } = 
{

ǫ11 , ǫ22 , ǫ33 , 
√ 
2 ǫ23 , 

√ 
2 ǫ13 , 

√ 
2 ǫ12 

}T 
and 

{ σV M } = 
{

σ11 , σ22 , σ33 , 
√ 
2 σ23 , 

√ 
2 σ13 , 

√ 
2 σ12 

}T 
, respectively, 

to get 2nd-order stiffness matrix. The compliance (and stiffness) 
matrices of all the plies are developed in local co-ordinate system 

in VM notation as 
{

ǫ
′ 
V M 

}

= S V M 

{

σ
′ 
V M 

}

. The tensorial strains { ǫT } 
(and tensorial stresses) are related to VM strains { ǫVM } (and VM 

stresses) as { ǫV M } = M { ǫT } , where M is defined as a diagonal 
matrix ( Udhayaraman and Mulay, 2017 ). The tensorial strains and 
stresses in local co-ordinate system are related as 

{

ǫ
′ 
T 

}

= S 
{

σ
′ 
T 

}

, 

where S is a 4 th −order compliance tensor. The tensor S is 
obtained by matrix S eng relating engineering components as 
{

ǫ
′ 
eng 

}

= S eng 
{

σ
′ 
eng 

}

⇒ S = R −1 S eng , where R is diagonal matrix 
( Daniel and Ishai, 2006 ). The VM compliance matrix is obtained as 

{

ǫ
′ 
T 

}

= S 
{

σ
′ 
T 

}

⇒ S V M = M S M 
−1 ⇒ S V M = M R −1 S eng M 

−1 
}

(17) 
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where S VM is a VM compliance matrix in principal material-axis 
system of a ply. 

The VM compliance matrix in global co-ordinates is obtained 
by transformation from local co-ordinates. Let Q be a transfor- 
mation matrix, obtained by θ ° CCW rotation about Z−axis to go 
to local co-ordinates ( Daniel and Ishai, 2006; Udhayaraman and 
Mulay, 2017 ). The tensorial stresses in local co-ordinates are given 
as (σ

′ 
T ) i j = Q im Q jn 

︸ ︷︷ ︸ 

M 

(σT ) mn , where matrix [ M ] 9 ×9 is initially com- 

puted without stress tensor symmetry. M do not possess minor 
symmetry, which is also evident from the definition of M . A sym- 
metric matrix (Q s ) i jmn = (Q im Q jn + Q in Q jm ) / 2 is proposed pos- 
sessing minor symmetry, the stress tensor symmetry is imposed 
to get [ Q s ] 6 ×6 . If tensorial str esses (and strains) ar e conv erted t o 
VM stresses (and strains), then ( Q s ) VM is obtained as 

σ
′ 
V M = M Q s M 

−1 

︸ ︷︷ ︸ 

(Q s ) VM 

σV M ⇒ (Q s ) V M = M Q s M 
−1 ⇒ 

(Q s ) V M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

c 2 s 2 0 0 0 
√ 
2 s c 

s 2 c 2 0 0 0 −
√ 
2 s c 

0 0 1 0 0 0 
0 0 0 c −s 0 
0 0 0 s c 0 

−
√ 
2 c s 

√ 
2 c s 0 0 0 (c 2 − s 2 ) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

⎫ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭ 

(18) 

such that ( Q s ) VM is 2nd-order tensor. The matrix ( Q s ) VM is orthog- 
onal and [ Q s (− θ )] V M = [ Q s (θ )] T 

V M . The VM compliance matrix in 

global co-ordinate system is given as { ǫV M } = S V M { σV M } , where 

S V M = (Q s ) 
T 
V M S V M (Q s ) V M ⇒ S V M = (Q s ) 

T 
V M M R −1 S eng M 

−1 (Q s ) V M 

(19) 

where Eq. (19) is computed by Eqs. (17) and (18) . 
A CCW rotation transformation matrix about global Y -axis is 

similarly given 

(Q s ) V M = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

c 2 0 s 2 0 −
√ 
2 c s 0 

0 1 0 0 0 0 
s 2 0 c 2 0 

√ 
2 c s 0 

0 0 0 c 0 s √ 
2 c s 0 −

√ 
2 c s 0 (c 2 − s 2 ) 0 

0 0 0 −s 0 c 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

⎫ 

⎪ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎪ 
⎭ 

(20) 
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