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a b s t r a c t

Global optimization techniques exist in the literature for finding the optimal shape param-

eter of the infinitely smooth radial basis functions (RBF) if they are used to solve partial dif-

ferential equations. However these global collocation methods, applied directly, suffer

from severe ill-conditioning when the number of centers is large. To circumvent this, we

have used a local optimization algorithm, in the optimization of the RBF shape parameter

which is then used to develop a grid-free local (LRBF) scheme for solving convection–dif-

fusion equations. The developed algorithm is based on the re-construction of the forcing

term of the governing partial differential equation over the centers in a local support

domain. The variable (optimal) shape parameter in this process is obtained by minimizing

the local Cost function at each center (node) of the computational domain. It has been

observed that for convection dominated problems, the local optimization scheme over uni-

form centers has produced oscillatory solutions, therefore, in this work the local optimiza-

tion algorithm has been experimented over Chebyshev and non-uniform distribution of the

centers. The numerical experiments presented in this work have shown that the LRBF

scheme with the local optimization produced accurate and stable solutions over the non-

uniform points even for convection dominant convection–diffusion equations.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The radial basis function (RBF) based grid-free local schemes are becoming very attractive choice for solving fluid flow

and heat transfer problems due to their better conditioning and flexibility in handling the non-linearities. Application of

RBF based schemes to various equations governing diverse physical phenomena can be seen in [1–8]. When infinitely

smooth RBFs are used in the computations then the shape parameter of these RBFs plays a very significant role in obtaining

accurate and stable solutions. In most of the existing literature, researchers have chosen a constant optimal shape parameter

over the full domain either by trail and error or by some ad hoc means and mostly validated over Poisson type equations.

This strategy may not be good for the convection dominated convection diffusion equations (CDE), wherein clustering of

the centers in the selected areas is necessary to capture the layer solutions accurately. Due to the high gradients of the solu-

tion in these regions, a variable shape parameter may be more suitable to produce accurate solutions.

The collocation matrices of the globally supported RBFs are highly dense and ill-conditioned when they are applied di-

rectly. The effect of ill-conditioning also increases with the number of centers. Recently Shu et al. [9], Wright and Fornberg

[10], Chandini and Sanyasiraju [11] and Sanyasiraju and Chandini [12] used some RBF-based local schemes, by sacrificing the
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spectral accuracy which is inherent in the global collocation schemes. It has been observed that the local schemes produced

better conditioned linear systems and also more flexible in handling the non-linearities.

According to Franke [13], MQ–RBF, /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðerÞ2

q
, where r ¼ kxk2; x 2 Rd; d� is the dimension of the problem, e is the

shape parameter, provides the best approximation, when compared with the other radial functions like Gaussian and

Splines. However, recently Boyd [14] has compared Gaussian (GA), hyperbolic secant (HS), inverse quadrics (IQ), multiqua-

dric (MQ) and inverse multiquadric (IMQ) and shown that the corresponding cardinal functions of these RBFs over uniform

unbounded grid are all approximated by the same function.

For infinitely smooth RBF’s like MQ, there is a trade-off [15] between the accuracy and conditioning due to the ill-condi-

tioning of the direct computation at small values of e. To produce stable solutions at small values of the shape parameter (flat

RBFs), Fornberg and Wright [16] proposed Contour-Pad�e method and Fornberg and Piret [17] proposed RBF–QR method in

which the former method is limited to work over small number of RBF centers and the latter one is developed to work for the

centers distributed over the surface of a sphere. Recently Fornberg et al. [18], have presented stable computations with

Gaussian RBF using RBF–QR method for one, two and three dimensional problems. Davydov and Oanh [19] developed an

adaptive scheme based on RBF–QR method for Poisson equation. In these stable schemes, the flat RBF bases in the compu-

tations have been replaced with a well behaved bases that spans the same approximated space.

Another direction, to improve the accuracy of the computations, attempted by the researchers in the literature is the opti-

mization of the shape parameter. For the interpolation with scattered data, there is some work on the optimal choice of the

shape parameter based on the number of centers and the distance between them [13,20,21]. Rippa [22] proposed a ‘‘leave-

one-out cross-validation’’ (LOOCV) algorithm, according to which the shape parameter should depend on the number of cen-

ters, distribution of centers, RBF interpolant (/), condition number of the matrix and finally the machine precision. Kansa and

Carlson [23], Fornberg and Zuev [24] proposed to use spatially variable shape parameters to improve the accuracy in

MQ–RBF interpolation instead of the constant shape parameter. Fasshauer and Zhang [25] extended the LOOCV algorithm

in finding the optimal shape parameter in pseudo-spectral (PS) methods. Roque and Ferreira [26] experimented the LOOCV

algorithm to find the optimal shape parameter in global RBF collocation for solving partial differential equations. The global

optimization techniques may be good for the problems having smooth solutions, however, they suffer from the ill-condition-

ing as the number of centers increase. For the problems like convection diffusion equations (CDE), particularly for convection

dominated problems, special attention may be required in the choice of the numerical scheme, selection of the centers, and

the optimization of the shape parameter, in order to get stable and accurate solutions.

The authors have proposed a local optimization algorithm to optimize the shape parameter of the Multi-quadric RBF used

in the development of a grid-free local (LRBF) scheme [27]. The algorithm is based on the re-construction of the forcing term

of the governing CDE using the collocation over the centers in a local support domain. In order to reduce the computational

complexity of the proposed algorithm, Rippa’s [22] LOOCV formula, which has been originally been developed for interpo-

lation, has been extended to calculate the residual errors. The variable optimal shape parameter is obtained by minimizing

the local Cost function at each center (node) of the computational domain. The local algorithm truly depends on the problem

and the local distribution of the centers. The procedure is easy to implement and also can be used to find a constant shape

parameter. The constant optimal shape parameter is obtained by minimizing the global Cost function, which is defined based

on the average residual error over the full domain. In the present work, the local optimization algorithm is first validated

using Poisson equations and then tested for one and two dimensional linear CDEs with strong boundary layer solutions over

the Chebyshev and a non-uniform points and the results have been compared with the corresponding solutions obtained

with uniform centers.

Rest of the paper is organized as follows. In Section 2, the derivation of the RBF grid-free local (LRBF) scheme is presented.

In Section 3, the derivation of the local optimization algorithm to optimize the shape parameter is highlighted. In Sections 4

and 5, the numerical validation and verification of the developed algorithm is undertaken and finally, some concluding re-

marks are made in the last section.

2. Development of a grid-free local scheme using RBF’s

In the local RBF scheme, the support for any reference node, xi, is pre-fixed as shown in Fig. 1 for any two-dimensional

domain d ¼ 2. Let L be a linear convection–diffusion operator defined in a domain, say, X, N be the total number of centers

in the computational domain, then Lui, at any center ‘xi’, is expressed as a linear combination of the function values u at

nið� NÞ centers Ci ¼ fx1; x2; . . . ; xnig in the neighborhood of xi. Symbolically, this is given by

LuðxiÞ �
Xni

j¼1

cjuðxjÞ; for each xi 2 X ð1Þ

Then, the computation of the weights cj gives the required approximation. To compute the weights cj, consider the

Lagrange’s representation of RBF interpolant, for ni nodes, given by

uðxÞ � sðxÞ ¼
Xni

j¼1

wjðxÞuðxjÞ ð2Þ
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where wjðxÞ’s satisfy the cardinal conditions

wjðxkÞ ¼ djk; j; k ¼ 1;2; . . . ;ni ð3Þ

The closed form representation for wjðxÞ, in terms of /ðkx� xjk; eÞ0s, and the polynomial basis, fpjðxÞg
l
j ¼ 1, l ¼

dþm� 1
m� 1

� �
,

where m is the order of / (for MQ, m ¼ 1), is found by constructing a set of RBF interpolation problems for which the data is

obtained from the cardinal conditions on wj. That is,

wjðxÞ ¼
detðAjðxÞÞ

detðAÞ
; where AðxÞ ¼

U p

pT 0

� �
ð4Þ

where U :¼ /ðkxi � xjk; eÞ, i; j ¼ 1;2; . . . ;ni, pi;j :¼ pjðxiÞ, j ¼ 1;2; . . . ; l; i ¼ 1;2; . . . ;ni, AjðxÞ is same as the matrix A with size

ðni þ lÞ, except that jth row is replaced by the vector

BðxÞ ¼ ½/ðkx� x1k; eÞ; . . . ;/ðkx� xnik; eÞjp1ðxÞ; . . . ;plðxÞ� ð5Þ

The representation derived through (2)–(4) can be used to approximate the derivatives of a function or in general, values

of Lu at a given set of centers, say xi. Applying the operator L to the Lagrange’s representation of RBF interpolant (2) gives

LuðxiÞ � LsðxiÞ ¼
Xni

j¼1

LwjðxiÞuðxjÞ ð6Þ

Comparing Eqs. (1) and (6), gives

cj ¼ LwjðxiÞ ¼ L
detðAjðxiÞÞ

detðAÞ
; j ¼ 1;2; . . . ; ni ð7Þ

If cj’s are as given in (7), then using the Cramer’s rule backwards they can also be obtained by solving the linear system

(refer [12], for the complete derivation),

A½c=�c� ¼ ðLBðxiÞÞ
T ; for each xi 2 X ð8Þ

where A is a matrix given in (4), BðxÞ is a vector given in (5) and c is the vector containing the weights. A similar procedure is

applied to discretize the boundary operator B. For any center xi 2 X [ @X, the system (8) is of size only ni þ l and can be

solved using any direct method say, Gauss elimination. It is clear from the development of the final linear system (8) that,

though it is dense, the size ðni þ lÞ is very small, that makes the system more stable for a wide range of e. Further, only the

right-hand side of (8) depends on the operatorL, for which the weights are to be computed. This optimizes the computation,

if the weights have to be computed for many operators with the same distribution of the centers, as in the case of non-linear

equations.

3. A local algorithm for optimization of the shape parameter

The procedure given in the earlier section for the descritization of any differential operator, at any center xi, highly de-

pends on the nature of the basis function. Therefore, the LRBF scheme, developed in the earlier section, is made more accu-

rate by incorporating the optimization of its shape parameter. The complete derivation of the local optimization algorithm,

initially been proposed in [27] (also refer [22]), however over Chebyshev and a set of non-uniform points is as follows:

Fig. 1. Schematic diagram of the local RBF stencil.
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The collocation conditions, when the collocation is used at any center xi 2 X over a local support domain Ci, are given by

fxj; f ðxjÞ ¼ LuðxjÞg
ni
j ¼ 1.

Let

C
ðkÞ

i ¼ fx1; . . . ; xðk�1Þ; xðkþ1Þ; . . . ; xnig

f
ðkÞ

i ¼ ffiðx1Þ; . . . ; fiðxðk�1ÞÞ; fiðxðkþ1ÞÞ; . . . ; fiðxni Þg ð9Þ

be the set of data points and their function values f, respectively, after removing the k-th center and its function value from

the support Ci. Then the forcing term f can be re-constructed, locally over CðkÞ

i using the collocation, as

bf ðkÞi ðxÞ ¼
Xniþl

j ¼ 1ðj – kÞ

lðkÞ

i;j ðL/ÞjðxÞ ð10Þ

where j is the local index, i is the global index, and the basis vector, ðL/ÞðxÞ is given by,

ðL/ÞðxÞ ¼ ½L2/ðkx� x1k; eÞ; . . . ;L
2/ðkx� xnik; eÞ;p1ðxÞ; . . . ; plðxÞ� ð11Þ

L
2 is a linear differential operator applied on RBF as a function of the second argument (center). It is a common practice in

the RBF literature to add the polynomial basis fpjðxÞg
l
j ¼ 1 in (11) which requires additional l conditions

Xni

j¼1ðj – kÞ

lðkÞ

i;j pi0 ðxjÞ ¼ 0; i
0
¼ 1;2; . . . ; l ð12Þ

The coefficients, lðkÞ

i ¼ ðlðkÞ

i;1 ; . . . ;l
ðkÞ

i;ðk�1Þ;l
ðkÞ

i;ðkþ1Þ; . . . ;l
ðkÞ

i;niþlÞ
T , in the Eq. (10) can be obtained by imposing the collocation

conditions

bf ðkÞi ðxjÞ ¼ f
ðkÞ

i ðxjÞ; j ¼ 1;2; . . . ;ni; j – k ð13Þ

and the orthogonality conditions (12). Mathematically it is equivalent to solving the nonsingular linear system

AðkÞ
L
lðkÞ

i ¼ F
ðkÞ

i ð14Þ

where AðkÞ
L

is obtained, after removing the k-th row and the k-th column, from the collocation matrix,

AL ¼
L

2
U p

pT 0

" #
and F i ¼ ðfi;0Þ

T ð15Þ

System (15) uses the data, over Ci; F
ðkÞ

i ¼ ðf
ðkÞ

i ;0ÞT , L
2
U :¼ L

2/ðkxi0 � xjk; eÞ, i
0
; j ¼ 1;2; . . . ;ni and pi0 ;j :¼ pjðxi0 Þ,

j ¼ 1;2; . . . ; l; i
0
¼ 1;2; . . . ;ni.

If fiðxkÞ is the function value at the point that has been removed from Ci and bf ðkÞi ðxkÞ is the corresponding reconstructed

value using (10) then the residual error, ri;k, can be computed using

ri;kðeÞ ¼ fiðxkÞ �
bf ðkÞi ðxkÞ; k ¼ 1;2; . . . ;ni ð16Þ

For each center xi 2 X, (16) gives residual errors for k ¼ 1;2; . . . ;ni, therefore it requires Oððni þ lÞ4Þ operations for each

center. To reduce the computational complexity, the Rippa’s [22] formula, has been suitably modified to calculate the resid-

ual errors of the local optimization algorithm. This formula is originally been developed for the interpolation and also with

out any polynomial augmentation. In the present work, the polynomial augmentation is included to guarantee the non-sin-

gularity of the obtained collocation matrix. The modification of the Rippa’s interpolation formula [22] to the local collocation

is as follows:

If yi ¼ ðyi;1; yi;2; . . . ; yi;niþlÞ
T and zi ¼ ðzi;1; zi;2; . . . ; zi;niþlÞ

T are such that yi;k ¼ 0, then we have

AL yi ¼ zi ) AðkÞ
L

y
ðkÞ

i ¼ z
ðkÞ

i ð17Þ

Then, consider the solution x
½k�

i to the system

AL x
½k�

i ¼ e
½k�

i ð18Þ

where e
½k�

i is the k-th column of the ðni þ lÞ � ðni þ lÞ identity matrix. It is easy to verify that x½k�
i;k
– 0. Indeed, if x½k�

i;k
¼ 0, then by

(17) and (18), we have

AðkÞ
L
ðx

½k�

i;1; . . . ; x
½k�

i;ðk�1Þ; x
½k�

i;ðkþ1Þ; . . . ; x
½k�

i;niþlÞ
T ¼ 0 ð19Þ

which implies, from the non-singularity of AðkÞ
L
, that, x½k�i ¼ 0. This is impossible because x

½k�

i is the solution of (18). Consider

the vector b
½k�

i ¼ ðb
½k�

i;1; b
½k�

i;2; . . . ; b
½k�

i;niþlÞ
T , defined by
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b
½k�

i ¼ li �
li;k

x
½k�

i;k

x
½k�

i ð20Þ

Then we have

ALb
½k�

i ¼ ALli �
lk;i

x
½k�

i;k

ALx
½k�

i ¼ F i �
li;k

x
½k�

i;k

e
½k�

i ð21Þ

¼ fi;1; . . . ; fi;ðk�1Þ; fi;k �
li;k

x
½k�

i;k

; fi;ðkþ1Þ; . . . ; fi;ni ;0; . . . ; 0

 !T

ð22Þ

And, since b
½k�

i;k ¼ 0, we use (17) once again to conclude that

lðkÞ

i ¼ ðb
½k�

i;1; . . . ; b
½k�

i;ðk�1Þ; b
½k�

i;ðkþ1Þ; . . . ; b
½k�

i;niþlÞ
T ð23Þ

This implies that,

bf ðkÞi ðxkÞ ¼
Xniþl

j¼1ðj–kÞ

lðkÞ

i;j ðL/ÞjðxkÞ ¼
Xniþl

j¼1ðj–kÞ

b
½k�

i;j ðL/ÞjðxkÞ ¼
Xniþl

j¼1

b
½k�

i;j ðL/ÞjðxkÞ ¼ ðALb
½k�

i Þk ¼ fi;k �
li;k

x
½k�

i;k

ð24Þ

Using (24) in the Eq. (16), the residual error, ri;k, also can be obtained by

ri;kðeÞ ¼
li;k

ðA�1
L
Þkk

; k ¼ 1;2; . . . ;ni; for each xi 2 X ð25Þ

where li;k is the k-th component in the vector li and ðALÞ�1
kk is the kth diagonal element of the inverse of the collocation

matrix AL. Since (25) requires the inversion only once, the computational complexity is now Oððni þ lÞ3Þ. By adopting a sim-

ilar procedure for the boundary operator, B, the residual error is computed using

ri;kðeÞ ¼
li;k

ðA�1
B
Þkk

; k ¼ 1;2; . . . ;ni; for each xi 2 @X ð26Þ

Eqs. (25) and (26) can be used to calculate the optimal shape parameter in the following way:

3.1. Optimization of the shape parameter

Using Eqs. (25) and (26), define the (global) cost function as

globalcostðeÞ ¼
1

N

XN

i¼1

kRik
2
2

 !1=2

ð27Þ

where the vector Ri ¼ ri;kðeÞ=ni

� �
; k ¼ 1;2; . . . ;ni for each i and N is the total number of centers in the domain. By minimizing

the (global) cost function (27), which is realized using the fminbnd function in MATLAB, the (near) optimal shape parameter

is obtained.

The global cost functions those exist in the literature are prone to severe ill-conditioning due to their size, however, the

(global) cost function (27) is better conditioned than such functions. In the present case, the size of the coefficient matrices,

AL;AB, in the Eqs. (25), (26) is only ðni þ lÞ which is vary small, when compared to the size (N þ l) of the existing global col-

location matrices. The smaller size makes the present system more stable for wide range of shape parameters.

For different values of the shape parameter (e), in the neighborhood of the optimal shape parameter, the (global) Cost

function (27) has been compared with the (RMS) error function of various test problems to show that the pattern of global

cost function with respect to different shape parameters is similar to that of the RMS error function. The RMS error function,

for different test problems, is calculated using

RMS errorðeÞ ¼
1

N

XN

i¼1

Analytical solutionðiÞ � LRBF solutionðiÞj j
2

 !1=2

ð28Þ

Due to the similarity of their pattern, minimizing the global cost function leads to minimization of the RMS error function

which can’t be computed unless the exact solution of the test problem is known.

The optimized shape parameter obtained from the minimization of the (global) cost function is then compared with the

best shape parameter which has been defined as the value of the shape parameter at which the error function is minimum.

One should note that the best shape parameter can be obtained only when the analytical solution of the problem is known.

Therefore, the purpose of the computation of the global cost function is twofold. One is to compare with the error function

to show the similarity of their patterns and the other is to compare its optimum value with the best shape parameter. The

two comparisons of the cost function given above verbalize the best solution one can obtain with a constant shape parameter

and the next task is to experiment with a variable shape parameter obtained as follows:
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Define a (local) Cost function

localcostðeiÞ ¼ kRik2 ð29Þ

where the vector Ri ¼ ri;kðeÞ=ni

� �
; k ¼ 1;2; . . . ;ni and ri;kðeÞ is as given in Eqs. (25), (26) for every xi 2 X or xi 2 @X, respectively.

In this process, the (near) optimal shape parameter is calculated by minimizing the (local) Cost function at each center of the

computational domain. Therefore, this procedure gives a variable shape parameter as a function of x.

Fig. 2. Centers in two-dimensional computational domain (N ¼ 41� 41).

Fig. 3. Comparison of RMS errors with the present and [28] (Figs. 8(a) and 10(c) of [28]) with the Gaussian and Multiquadric RBFs. (a) Problem P1, (b)

problem P2.
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4. Numerical validation

The developed scheme is first validated over the following two Poisson equations taken from [28].

1. Poisson problem P1

uxx þ uyy ¼ �2p2sinðpxÞsinðpyÞ; 0 < x; y < 1 ð30Þ

uðx; yÞ ¼ sinðpxÞsinðpyÞ ð31Þ

2. Poisson problem P2

uxx þ uyy ¼ ðy2 þ ð�2xþ 0:2Þ2 � 3Þe�ðx�0:1Þ2�0:5y2 ; 0 < x; y < 1 ð32Þ

uðx; yÞ ¼ e�ðx�0:1Þ2�0:5y2 ð33Þ

In [28], Poisson problems P1 and P2 have been solved using Gauss – QR algorithmwith optimum shape parameter. There-

fore, by validating the developed scheme over these problems with the best solutions presented in [28] demonstrates the

accuracy of the developed scheme for the linear diffusion problems. Further, these comparisons have been carried out using

both multiquadric and Gaussian RBFs, so that the better RBF, in terms of accuracy, can be used in the later computations with

CDE. By varying the number of centers, the RMS errors obtained with the developed scheme, for the problems P1 and P2,

have been compared in the Fig. 3. The Alg1a GA curves presented in these figures are the best solutions (among the two algo-

rithms presented) obtained in [28]. It is clear from these comparisons that for both the problems, the RMS errors obtained

with the present scheme are much smaller than the literature values. Further, for problem P1, the MQ solution is better than

the solution obtained with GA but for the second problem P2, both RBFs gave similar solutions.

5. Numerical experiments with CDE

After validating with the Poisson problems, the following one and two dimensional convection dominated CDEs, two for

each case, with known analytical solutions are chosen to experiment the LRBF scheme with the developed optimization algo-

rithms. The forcing term and the Dirichlet boundary conditions are taken from the analytical solutions where ever they are

needed.

Table 1

Comparison of RMS errors obtained using Multiquadric (MQ) and Gaussian (GA) RBFs with local optimal shape parameters calculated over the uniform,

Chebyshev and the non-uniform points for the Test problem 1, at N ¼ 81.

N ! Uniform points Chebyshev points Non-uniform points

MQ GA MQ GA MQ GA

a ¼ 10�2 Local (5.4285, 11.4600) (0.9935, 0.9936) (0.12, 0.8118) (0.9926, 0.9937) (0.6624,1.1373) (0.9934, 0.9937)

RMS error 6.65(�3) 6.10(�3) 3.31(�3) 2.49(�3) 1.36(�3) 1.06(�3)

a ¼ 10�3 Local (0.7860, 0.8107) (0.9935, 0.9936) (0.3662, 2.2537) (0.9930, 0.9937) (0.6483, 2.1634) (0.9934, 0.9938)

RMS error 1.17(�1) 1.17(�1) 2.85(�2) 1.03(�2) 3.85(�3) 4.04(�3)

a ¼ 10�4 Local (0.8102, 1.010) (0.9931, 0.9935) (0.01, 0.8447) (0.9934, 0.9937) (0.8313, 1.8686) (0.9934, 0.9938)

RMS error 4.78(�1) 4.75(�1) 3.33(�2) 3.84(�2) 6.67(�3) 5.36(�3)

Table 2

Comparison of RMS errors obtained using Multiquadric (MQ) and Gaussian (GA) RBFs with local optimal shape parameters calculated over the uniform,

Chebyshev and the non-uniform points for the Test problem 1, at N ¼ 161.

N ! Uniform points Chebyshev points Non-uniform points

MQ GA MQ GA MQ GA

a ¼ 10�2 Local (1.1369, 2.5124) (0.9934, 0.9936) (0.4289, 2.9084) (0.9932, 1.6421) (0.7360, 1.2639) (0.9934, 0.9935)

RMS error 1.67(�3) 1.65(�3) 9.26(�4) 9.89(�4) 2.92(�4) 2.65(�4)

a ¼ 10�3 Local (0.7860, 1.0831) (0.9934, 0.9935) (0.3673, 1.5000) (0.9866, 1.3508) (0.6964, 3.4399) (0.9920, 0.9951)

RMS error 4.76(�2) 4.75(�2) 3.80(�3) 5.92(�3) 4.91(�4) 3.01(�4)

a ¼ 10�4 Local (0.8298, 1.0373) (0.9930, 0.9934) (0.2118, 0.8354) (0.9908, 0.9985) (0.5114, 2.1113) (0.9930, 0.9969)

RMS error 2.14(�1) 2.13(�1) 3.76(�3) 3.13(�3) 1.01(�3) 9.16(�4)
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Test problem 1

ux � auxx ¼ p2asinðpxÞ þ pcosðpxÞ; 0 < x < 1; uð0Þ ¼ 0;uð1Þ ¼ 1 with ð34Þ

uðxÞ ¼ sinðpxÞ þ
ex=a � 1

e1=a � 1
ð35Þ

Test problem 2

1

1þ x
ux � auxx ¼

1

1þ x
� a

� �
ex; 0 < x < 1 with ð36Þ

Fig. 4. Comparison of RMS error & (global) Cost function against the Shape parameter for the Test problems 1 and 2, at N ¼ 41;81;161 (from the top to

bottom) over the uniform points.
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uð0Þ ¼ 1þ 2�1=a;uð1Þ ¼ eþ 2; uðxÞ ¼ ex þ 2�1=að1þ xÞð1þ1=aÞ ð37Þ

Test problem 3

2ux � aðuxx þ uyyÞ ¼ f ðx; yÞ; 0 < x; y < 1 ð38Þ

uðx; yÞ ¼ e
x
2a sinðpyÞ

2e�
1
2a sinhðrxÞ þ sinhðrð1� xÞÞ

sinhr

 !
ð39Þ

Fig. 5. Comparison of RMS error & (global) Cost function against the Shape parameter for the Test problems 1 and 2, at N ¼ 41;81;161 (from the top to

bottom) over the Chebyshev points.
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where r2 ¼ p2 þ 0:25a�2.

Test problem 4

ux þ uy � aðuxx þ uyyÞ ¼ f ðx; yÞ;0 < x; y < 1 ð40Þ

uðx; yÞ ¼ e�ð1�xÞð1�yÞ=2a ð41Þ

For the discretization of the domains of the chosen test problems, uniform, Chebyshev and two types of non-uniform [29]

distribution of points are considered. A typical case of two-dimensional (2D) computational domain in 0 6 x; y 6 1, with the

chosen point distributions is presented in the Fig. 2. These points are generated using.

Fig. 6. Comparison of RMS error & (global) Cost function against the Shape parameter for the Test problems 1 and 2, at N ¼ 41;81;161 (from the top to

bottom) over non-uniform points.
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� Chebyshev points

xi ¼
1

2
1� cos

i� 1

Nx � 1
: p

� �� �
; i ¼ 1;2; . . . ;Nx ð42Þ

yj ¼
1

2
1� cos

j� 1

Ny � 1
: p

� �� �
; j ¼ 1;2; . . . ;Ny ð43Þ

� Non-uniform points (I),

xi ¼
i� 1

Nx� 1
þ

f

p
sin

i� 1

Nx� 1
:p

� �
; i ¼ 1;2; . . . ;Nx ð44Þ

yj ¼
j� 1

Ny� 1
; j ¼ 1;2; . . . ;Ny ð45Þ

Table 3

Comparison of optimal shape parameters and the RMS errors calculated over the uniform, Chebyshev and the non-uniform points for the Test problem 1.

N ! Uniform points Chebyshev points Non-uniform points

81 161 81 161 81 161

a ¼ 10�2 Global 0.7661 0.7661 0.8176 0.8176 0.8176 0.8176

RMS error 7.14(�3) 1.68(�3) 4.03(�3) 9.89(�4) 1.83(�3) 9.89(�4)

Best 3.4966 3.501 0.1343 0.3843 0.8176 0.909

RMS error 7.10(�3) 1.67(�3) 3.91(�3) 1.09(�3) 1.83(�3) 4.71(�4)

Local (5.4285, 11.4600) (1.1369, 2.5124) (0.12, 0.8118) (0.4289, 2.9084) (0.6624,1.1373) (0.7360, 1.2639)

RMS error 6.65(�3) 1.67(�3) 3.31(�3) 9.26(�4) 1.36(�3) 2.92(�4)

a ¼ 10�3 Global 0.7760 0.7760 0.8176 0.8176 0.8176 0.8176

RMS error 1.17(�1) 4.76(�2) 2.85(�2) 5.66(�3) 5.43(�3) 2.80(�3)

Best (0, 50) (0, 50) 0.1676 0.4010 0.8509 1.2510

RMS error 1.17(�1) 4.76(�2) 2.31(�2) 1.44(�2) 3.94(�3) 2.59(�3)

Local (0.7860, 0.8107) (0.7860, 1.0831) (0.3662, 2.2537) (0.3673, 1.500) (0.6483, 2.1634) (0.6964, 3.4399)

RMS error 1.17(�1) 4.76(�2) 2.85(�2) 3.80(�3) 3.85(�3) 4.91(�4)

a ¼ 10�4 Global 0.801 0.801 0.8176 0.8176 0.8176 0.8176

RMS error 4.78(�1) 2.14(�1) 3.11(+2) 8.85(�1) 3.91(�2) 3.34(�2)

Best (0, 50) (0, 50) 0.1177 0.8009 0.8509 1.917

RMS error 4.78(�1) 2.14(�1) 1.58 6.40(�1) 1.494(�2) 7.92(�3)

Local (0.8102, 1.010) (0.8298, 1.0373) (0.01, 0.8447) (0.2118, 0.8354) (0.8313, 1.8686) (0.5114, 2.1113)

RMS error 4.78(�1) 2.14(�1) 3.33(�2) 3.76(�3) 6.67(�3) 1.01(�3)

Table 4

Comparison of optimal shape parameters and the RMS errors calculated over the uniform, Chebyshev and the non-uniform points for the Test problem 2.

N ! Uniform points Chebyshev points Non-uniform points

81 161 81 161 81 161

a ¼ 10�2 Global 0.5821 0.5948 0.6407 0.6341 0.8103 0.8103

RMS error 4.87(�3) 1.19(�3) 4.67(�3) 1.17(�3) 1.55(�3) 3.89(�4)

Best 0.3587 0.4149 0.1548 0.2480 0.1773 0.7264

RMS error 4.86(�3) 1.19(�3) 4.48(�3) 1.37(�3) 1.58(�3) 3.89(�4)

Local (0.0010, 4.9048) (0.6765, 6.6094) (0.1250, 7.1465) (0.3493, 15.4545) (0.0038, 3.4044) (0.2723, 6.2708)

RMS error 4.63(�3) 1.19(�3) 3.88(�3) 9.95(�4) 1.50(�3) 3.85(�4)

a ¼ 10�3 Global 0.5948 0.6346 0.6607 0.6407 0.8304 0.8083

RMS error 1.36(�1) 4.25(�2) 2.98(�2) 5.70(�3) 5.50(�3) 1.44(�3)

Best (0, 50) (0, 50) 0.1614 0.3412 0.3035 0.9414

RMS error 1.36(�1) 4.25(�2) 2.48(�2) 1.20(�2) 9.12(�3) 1.80(�3)

Local (0.1022, 4.1568) (0.1022, 5.9024) (0.1240, 26.9759) (0.3176, 390.567) (0.4980, 2.7375) (0.8522, 3.9433)

RMS error 1.36(�1) 4.25(�2) 2.10(�2) 4.83(�3) 4.71(�3) 6.78(�4)

a ¼ 10�4 Global 0.6497 0.5926 0.6532 0.6470 0.8087 0.8087

RMS error 6.39(�1) 2.95(�1) 8.18(+2) 9.24(�2) 5.51(�2) 1.29(�2)

Best 1.0 1.0 0.1682 0.5040 0.3050 0.5599

RMS error 6.39(�1) 2.95(�1) 2.09 1.32(�1) 4.22(�2) 5.13(�3)

Local (0.1022, 4.1568) (0.1022, 4.8596) (0.002, 1.5009) (0.0460, 41.921) (0.2639, 3.500) (0.8276, 3.8832)

RMS error 6.39(�1) 2.95(�1) 6.58(�1) 3.75(�2) 4.90(�2) 2.08(�3)
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� Non-uniform points (II)

xi ¼
i� 1

Nx� 1
þ

f

p
sin

i� 1

Nx� 1
:p

� �
; i ¼ 1;2; . . . ;Nx ð46Þ

yj ¼
j� 1

Ny� 1
þ
g
p

sin
j� 1

Ny� 1
:p

� �
; j ¼ 1;2; . . . ;Ny ð47Þ

where Nx, Ny are the number of points in the x; y directions respectively, f and g (0 6 f;g < 1) are the stretching parameters

used to control the point density. That is, with f ¼ g ¼ 0, these formulae generate uniform distribution of points. In all the

numerical experiments carried out in this work, the values of f and g are fixed as 0:8 when the diffusion parameter is 10�2

and it is raised to 0.95 for all the other smaller values of a. Point wise errors are compared, to study the performance of the

developed algorithm over different nodal distributions. The point wise errors are calculated using

Pointwise error ðiÞ ¼ jUi � uij; i ¼ 1;2; . . . ;N ð48Þ

where U is the analytical solution, u is the numerical solution and N is the total number of points in the computational do-

main. While computing the (near) optimal shape parameter, the number of centers in the local support domain is fixed as

ni ¼ 4 for one dimension and ni ¼ 7 for two dimensional problems. However, while solving the CDE, the number of centers in

the local support domain is fixed as 3;5 for one and two dimensional problems, respectively. The final algebraic systems are

solved using BiCGstab solver.

5.1. One dimensional problems

The developed scheme is first applied on the Test problem 1 with Gaussian and also with multiquadric and the corre-

sponding RMS errors are compared in Tables 1 and 2 with number of centers 41 and 161, respectively. These comparisons

show that both RBFs produce similar solutions, therefore, the rest of the computations are carried out with multiquadric.

Fig. 7. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 1.
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In order to study the correlation between the (RMS) error function and the (global) Cost function for the convection dom-

inated problems, test problems 1 and 2 are solved over uniform, Chebyshev and a non-uniform distribution of the points, in a

fixed interval of the shape parameter. The number of points is varied as N ¼ 41;81 and 161, with the diffusion parameter

changing from a ¼ 10�2;10�3 and to 10�4 and the corresponding error curves have been compared in the Figs. 4–6. In the

Fig. 4, the comparisons over uniform distribution of points N = 41, 81 and 161 are demonstrated. It is clear from this figure

that the (global) Cost function and the error function are following a similar pattern. Therefore, cost function can be mini-

mized, particularly for a ¼ 10�2 due to its variation with respect to e, instead of error function since the latter can’t be com-

puted unless the exact solution of the problem is known. In Figs. 5 and 6, the cost and error functions are compared for one

dimensional problems over Chebyshev and non-uniform points, respectively. It is clear from the Fig. 5 that, both error and

Cost functions have their global minima in almost same interval for all the chosen cases. If the points are non-uniform, it can

Fig. 8. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 1, at a ¼ 10�4;N ¼ 81.
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be observed from the Fig. 6 that, the error and Cost functions are having a very good agrement when compared with the

other two cases. Therefore, optimizing the cost function computed over the chosen non-uniform point distribution must give

the best possible solution.

The one dimensional test problems are also solved with variable shape parameter and the RMS errors have been com-

pared in Tables 3 and 4 for problems 1 and 2, respectively. The RMS errors obtained with the global optimum shape param-

eter (referred as Global), best shape parameter (referred as Best) and local variable shape parameter (referred as Local) are

compared in these tables for the diffusion parameter 10�2;10�3;10�4. The best shape parameter is the value of the shape

parameter at which the RMS curves have a global minimum with in the chosen range of the shape parameter. The number

of centers is varied as 81 and 161 and the computations are carried out over uniform, Chebyshev and non-uniform distribu-

tion of centers. Since the local shape parameter is a variable unlike the other two, its minimum and maximum values are

reported in the tables for all the chosen cases. It is clear from these comparisons that the results obtained with variable shape

parameter are better than the other two for all the chosen cases. These comparisons also reveal that for the convection dom-

inated problems, the non-uniform distribution of points is giving the best solution and then the Chebyshev points for both 81

and 161 centers. Further, the accuracy of the solutions obtained over these two distributions have improved by an order

when 161 centers are used, however, the same is not seen with uniform points. To highlight the accuracy of solutions with

different point distributions, the solutions and their RMS errors are compared in Figs. 7–14. For the sack of comparison, the

analytical solutions are also included in these figures.

It is clear from Figs. 7 and 9 that, when the diffusion parameter a is 10�2, the numerical solutions are non-oscillatory,

however when a is reduced to 10�3, the solutions are started becoming oscillatory particularly over the uniform points. If

a is further reduced to 10�4, Figs. 8 and 10 show that the solutions over Chebyshev points are also marginally oscillatory

but the amplitude of these oscillations is much less than the corresponding uniform case. The results with non-uniform

points are remained non-oscillatory and better than the other two cases. The oscillations with uniform points are anyway

anticipated but the interesting observation is the oscillations with Chebyshev points. The RMS-error comparisons reported

in these plots also confirm that the solutions obtained using non-uniform point distributions are best among the chosen

three point distributions. It is also clear from these figures that, near the boundary layer, the magnitude of the point wise

error obtained over the uniform points is much more when compared to the point wise errors obtained over the Chebyshev

Fig. 9. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 2.

7258 Y.V.S.S. Sanyasiraju, C. Satyanarayana / Applied Mathematical Modelling 37 (2013) 7245–7272



as well as the non-uniform points. These oscillations are disappeared when the problems are solved over the non-uniform

points, with the same number of points (N ¼ 81). Also, looking at the Figs. 8(e) and 10(e), near the boundary layer, the point

wise errors obtained over the non-uniform points are less than the point wise errors over the uniform and the Chebyshev

points.

To understand the improvement in the accuracy, the test problems are also solved with N ¼ 161 centers and the corre-

sponding solutions and the point wise errors are reported in the Figs. 11–14. The results for a ¼ 10�2 and a ¼ 10�3 are shown

in Figs. 11 and 13 while results for a ¼ 10�4 are shown in Figs. 12 and 14. For the case with a ¼ 10�4, the numerical solutions

obtained over the uniform points are still oscillatory and the improvement is marginal, however, for the other two cases, the

accuracy is improved by an order. One safe conclusion one can make with these observations is for the convection dominated

problems, the LRBF scheme with the local optimal shape parameter applied over the non-uniform points produces more

Fig. 10. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 2, at a ¼ 10�4;N ¼ 81.
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accurate and stable results, with the minimum number of points. Further, observing the comparisons of the point wise errors

of these three point distributions, for all a, the solutions obtained over Chebyshev points are initially (in the smooth regions

of the domain) are more accurate when compared with the other two followed by the results with uniform case. However,

once the region of interest comes close to the boundary layer, slowly, the errors in these solutions grow, and the solutions

with non-uniform points becomes better. This is the trend generally observed for all a and for all N. This peculiar behavior

can be attributed to the distribution of the points in each of these cases. Since the point distribution in Chebyshev points is

finer in the ends and coarser in the center, the accuracy, at the end region (non-layer end of the region because in the layer

region, the points with non-uniform is more finer), with these points is expected to be better over the other two. The second

best, in terms of the finer points in non-layer regions, is the uniform points, therefore the same is faring better over the non-

uniform points. That is the fineness of the points in non-uniform distribution is obtained at the cost of the smooth region

however, this is not a big draw back because the growth in the errors for uniform and Chebyshev are such that if we compare

the mean errors (over the whole domain) of the three cases, the RMS error obtained with non-uniform points is much less

than the other two.

The comparisons, through figures and tables, made until now brought out the effect of distribution of points on the accu-

racy of the solutions, however to highlight the effect of the shape parameter on the accuracy, one should compare the results

with the corresponding results obtained with a constant shape parameter. To realize this, the RMS errors (variable), previ-

ously presented in Tables 3 and 4 for problems 1 and 2, respectively, are now compared with the corresponding error norms

obtained with some constant shape parameters. Looking at the variation of global cost function presented in the Figs. 4–6

(for e > 2, the cost function in these figures is more or less a straight line, showing a possibility of minimum error only

for e < 2), the shape parameter is fixed as 1.0, 0.5, 0.1, 0.05 and the corresponding errors (mean and max) are obtained

and compared in Table 5. For the sake of comparison, the values with variable shape parameter are also included in this table.

It is clear from this comparison that, the results obtained with variable shape parameter, particularly with Chebyshev and

non-uniform points, are better than with the constant shape parameter. The improvement is substantial with the Chebishev

points but not felt much with the unform points. This is an expected behavior, because there is hardly any variation in the

global cost function plotted in Fig. 4 for uniform points.

Fig. 11. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 1.
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5.2. Two dimensional problems

It is clear from the earlier section that the LRBF scheme with a variable shape parameter, obtained using (29), has pro-

duced the most accurate results. Therefore, the two dimensional test problems have been solved using the LRBF scheme with

a variable shape parameter. Test problem 3 has been taken from Gartland [30]. This problem represents a convection dom-

inated flow, for small values of a. The analytical solution of this problem has a steep boundary layer along the edge x ¼ 1, and

shear layers along the top and bottom edges, that is, at y ¼ 0 and y ¼ 1. The number of centers, Nx� Ny ¼ 81� 81, is fixed to

find the numerical solutions over the uniform, Chebyshev and the non-uniform (I) distribution of the points, for various dif-

fusion parameters, a ¼ 10�2;10�3 and 10�4. The obtained numerical solutions over the chosen three point distributions are

compared with the corresponding analytical solutions in Figs. 15–17 for the diffusion parameters a ¼ 10�2;10�3 and 10�4,

respectively. The comparison of surface plots, u is constant contours and point wise errors along y ¼ 0:5 (center line) with

Fig. 12. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 1, at a ¼ 10�4;N ¼ 161.
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the three point distributions are included in these figures. The comparison of surface and contour plots in Fig. 15 at a ¼ 10�2

confirm that all the three numerical solutions are close to the analytical solution at this diffusion parameter. The comparison

of point wise errors at the y center line also confirms the pattern which has been observed for one dimensional problems.

That is, in the smooth regions (close to x ¼ 0 in this example), the solution obtained with Chebyshev points is most accurate

followed by the solution obtained with uniform points. However, the errors in these solutions have gradually increased if the

region of observation is moved towards the boundary layer (x ¼ 1 in this example). On the other hand, the solutions obtained

with non-uniform points maintained a uniform accuracy through out the region and their mean error is also smaller than the

corresponding mean errors of the solutions obtained with uniform and Chebyshev points.

When the diffusion parameter a is reduced to 10�3, as shown in Fig. 16, the surface and the contour plots near x ¼ 1 for

the uniform case (subplot 16b) show some deviation from the analytical solution however the solutions presented with

Chebyshev and non-uniform points are still close to the corresponding analytical solution. The comparison of the point wise

errors, shown in this figure, unveils that the solution obtained with uniform points started with a better accuracy when com-

pared with the other two, however once x crosses 0.25, the errors in this solution sharply increased and became very inac-

curate near x ¼ 1. The Chebyshev solution still maintained a reasonable accuracy and became oscillatory only in the region

which is very close to x ¼ 1. The Non-uniform solution maintained a uniform accuracy and once again the best in terms of

mean error when compared with the other two. Finally, when the diffusion parameter a is further reduced to 10�4, as shown

in Fig. 17, the solutions with uniform and Chebyshev points became inaccurate, but the non-uniform solution preserved its

supremacy over the other two by producing stable solutions. As shown in the figure, the Chebyshev solution particularly

oscillated in the range �20 to 10 making the scheme completely unstable. The solution with uniform points, though with

in the range of �1 to 2, it is failed to capture the sharp raise in the solution near x ¼ 1 but produced a smooth solution.

In this case, the u = constant contours also deviated substantially from the corresponding analytical solution. The comparison

of point wise errors presented in this figure also confirms that the solution obtained with non-uniform points is the best

through out the region from x = 0 to 1 though it has small oscillations in the range of 10�3 to 10�4. Similar oscillations

are also visible with uniform case but in the range 10�2 to 10�1 near x ¼ 0 and raises to order one near x ¼ 1. The solution

with Chebyshev points is much above these points (errors are of order one form x ¼ 0 itself) and a huge kink can be seen

Fig. 13. Comparison of analytical & numerical solutions and point wise errors, for the Test problem 2.
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Fig. 14. Comparison of analytical & numerical solutions and the corresponding point wise errors, for the Test problem 2, at a ¼ 10�4;N ¼ 161.

Table 5

Comparison of maximum and RMS errors computed with a fixed shape parameter at a ¼ 10�4;N ¼ 81.

e Uniform points Chebyshev points Non-uniform points

RMS error Max error RMS error Max error RMS error Max error

Test problem 1 0:05 4.71(�1) 1.12 5.62 9.23 3.95(�1) 1.17

0:1 4.78(�1) 1.13 4.19 6.90 2.01 9.70

0:5 4.78(�1) 1.13 3.31(+2) 5.42(+2) 2.87 2.21(+1)

1:0 4.78(�1) 1.13 3.11(+2) 5.09(+2) 1.72(�2) 1.52(�1)

evar 4.78(�1) 1.13 3.33(�2) 2.26(�1) 6.67(�2) 4.38(�2)

Test problem 2 0:05 6.34(�1) 1.96 2.12 3.38 9.65 1.63(+1)

0:1 6.39(�1) 1.96 2.16 3.45 4.52(�1) 2.01

0:5 6.39(�1) 1.96 7.12(+2) 1.13(+3) 5.44(�2) 4.80(�1)

1:0 6.39(�1) 1.96 1.02(+3) 1.63(+3) 5.50(�2) 4.86(�1)

evar 6.39(�1) 1.96 6.58(�1) 2.16 4.90(�2) 4.03(�1)
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clearly near x ¼ 0:7 revealing the unstable nature of the solution. For the sack of quantitative comparison, the minimum and

the maximum values of the variable shape parameter and the corresponding RMS and the maximum error norms are re-

ported in the Table 6. Interestingly, the variation in the shape parameter has followed a similar pattern for all the three point

distributions at a ¼ 10�2, but the same is not true for smaller values of a. It is found that the minimum and maximum values

Fig. 15. Comparison of analytical and numerical solutions and point wise errors along y ¼ 0:5 for the Test problem 3, at a ¼ 10�2 with 81� 81.
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have no such similarity between the three cases. The mean error with uniform points is started with 10�3 at a ¼ 10�2 but

dropped to 10�1 when a is reduced to 10�4. The trend in the case of Chebyshev points is also similar except that the max-

imum error is very large at a ¼ 10�4. The mean errors with non-uniform points are the smallest and the drop in the accuracy,

when a is reduced to a ¼ 10�4 is only one order and still maintained at 10�3. The maximum errors are also very satisfactory

in this case.

The test problem 4, has two-sided boundary layer near the edges x ¼ 1 and y ¼ 1. Once again, the numerical solutions

have been obtained over the uniform, Chebyshev and the non-uniform (II) distribution of points for different values of

the diffusion parameter, a ¼ 10�2;10�3 and 10�4 with number of centers, Nx� Ny ¼ 81� 81. First to give an overview of

the performance of the scheme at the chosen diffusion parameters, the point wise errors along y ¼ 0:95 for a ¼ 10�2 and

a ¼ 10�3 and y ¼ 0:25; :5; :75; :95 for a ¼ 10�4 are presented in the Fig. 18. Instead of center line, in the first two cases,

the point wise errors are presented at y ¼ 0:95, because due to the double sided boundary layer in this problem, the accuracy

in the region close to x ¼ 1 or y ¼ 1 may be effected more when compared with other regions. However, for a ¼ 10�4, point

wise errors are presented at four distinct lines distributed through out the domain.

Fig. 16. Comparison of analytical and numerical solutions and point wise errors along y ¼ 0:5 for the Test problem 3, at a ¼ 10�3 with 81� 81.
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As expected, at a ¼ 10�2, the three error plots are almost similar to what was observed for the earlier problem except

that the solution with Chebychev points is slightly inferior when compared with the other two but very much with in the

tolerance limits. This is also clear from the Fig. 19 wherein the analytical and numerical solutions are compared for this

diffusion parameter. When the diffusion parameter is reduced to a ¼ 10�3 initially (in the smooth region) the Chebyshev

and nonuniform solutions became very accurate but the errors with the former scheme increased suddenly in a very nar-

row region and then stabilized in the remaining part of the domain. For the latter case, though there is an increase in the

error through out the domain but it was steady and also less than the other two. The point wise errors with uniform

points is high when compared with the other two and the same is also can be seen in the Fig. 20 wherein the analytical

and numerical solutions are compared for this diffusion parameter. When the solution with the nonuniform points imi-

tated nicely the analytical solution, the other two show some deviation, particularly in the boundary layer region. To high-

light the magnitude of deviation, the point wise error plots for the entire region for the chosen three point distributions

Fig. 17. Comparison of analytical and numerical solutions and point wise errors along y ¼ 0:5 for the Test problem 3, at a ¼ 10�4 with 81� 81.
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Table 6

Comparison of RMS and maximum errors computed with a variable shape parameter for the Test problem 3 & 4, at Nx � Ny ¼ 81� 81.

a Uniform points Chebyshev points Non-uniform points

Variable e RMS error Variable e RMS error Variable e RMS error

(min. e, max. e) (Max.error) (min. e , max. e) (Max.error) (min. e , max. e) (Max.error)

Test problem 3 10�2 (0.0831, 3.0182) 2.66(�3) (0.0062, 3.1637) 1.87(�3) (0.0843, 3.0140) 8.75(�4)

(2.68(�2)) (1.15(�2)) (3.00(�3))

10�3 (0.5003, 1.1502) 8.25(�2) (0.1054, 1.4600) 1.08(�2) (0.1143, 2.4999) 2.49(�3)

(7.29(�1)) (1.28(�1)) (1.62(�2))

10�4 (0.15003, 1.9953) 1.55(�1) (0.5000, 4.3623) 7.66(�1) (0.5000, 3.5630) 8.80(�3)

(8.98(�1)) (1.67(+1)) (2.50(�1))

Test problem 4 10�2 (0.1018, 3.0499) 3.08(�3) (0.0077,3.0499) 2.09(�3) (0.0805, 3.0499) 1.20(�3)

(2.26(�2)) (8.25(�3)) 5.63(�3)

10�3 (0.1229, 2.4996) 1.18(�1) (0.1294, 3.4999) 1.59(�2) (0.1108, 2.4999) 1.36(�3)

(7.29(�1)) (1.21(�1)) (1.20(�2))

10�4 (0.2099, 2.2499) 5.68(�1) (0.1257, 2.4996) 2.05(�1) (0.2578, 2.4999) 1.03(�2)

(2.44) (1.59) (1.07(�1))

Fig. 18. Comparison of pointwise errors, for the Test problem 4;N ¼ 81� 81.
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Fig. 19. Comparison of analytical and numerical solutions for the Test problem 4, at a ¼ 10�3;N ¼ 81� 81.

Fig. 20. Comparison of analytical and numerical solutions for the Test problem 4, at a ¼ 10�3;N ¼ 81� 81.
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are presented in Fig. 21. It is clear from this figure that, in the boundary layer region, the errors in the solutions with uni-

form points is five times more with respect to the solution with the Chebyshev points and ten times more with the non-

uniform points. Another important observation of this plot is the symmetric nature of the raise in the errors in the bound-

ary layers of both x and y directions.

When the diffusion parameter is reduced to 10�4, the point wise errors presented in Fig. 18 for various values of y

show that the point wise errors with Chebyshev points are almost zero in most of the region except in the vicinity of

x ¼ 1. The nonuniform solution is marginally oscillatory and the uniform solution has the maximum errors particularly

in the layer region. The inaccuracy of the solutions with uniform and Chebyshev points is also reflected in the compar-

ison of numerical and analytical solutions presented in Fig. 22. When the nonuniform solution once again nicely mim-

icked the analytical solution, the other two have shown substantial deviation in the layer regions. To highlight the

magnitude of the errors, the point wise errors in the whole domain for all the three cases are presented in Fig. 23.

This figure shows that the errors with the nonuniform points are once again many times better than the other two.

The quantitative comparison of the mean and maximum errors for all the three point distributions can be seen in

the Table 6. The corresponding, minimum and maximum values of the variable optimal shape parameter are also re-

ported in this table.

Once again, to highlight the performance of the scheme with variable shape parameter, a comparison of RMS and max-

imum error norms at different (fixed) shape parameters are compared with the errors obtained with variable shape param-

eter in Table 7 for both problems 3 and 4. The constant shape functions are chosen in the region wherein the scheme

supposed to be more accurate. Its clear from these comparisons that, when nonuniform points are used, there is a two orders

improvement for problem 3 and one order improvement for problem 4 while not much improvement is seen with uniform

points. For Chebyshev points, in problem 3, there is an improvement of one order however, there not much change for prob-

lem 4. With in the variable shape parameter, the solutions with nonuniform points are two orders better than the other two

for problem 3 and at least one order better for problem 4.

Fig. 21. Comparison of point wise errors for the Test problem 4, at a ¼ 10�3;N ¼ 81� 81.
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Fig. 22. Comparison of analytical and numerical solutions for the Test problem 4, at a ¼ 10�4;N ¼ 81� 81.

Fig. 23. Comparison of point wise errors for the Test problem 4, at a ¼ 10�4;N ¼ 81� 81.
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6. Conclusions

In this article, a local optimization algorithm to optimize the shape parameter of the infinitely smooth RBFs (multi-quad-

ric in the present case) has been presented. The local optimization has been coupled with an RBF based local grid free (LRBF)

scheme for solving highly convection dominated convection–diffusion equations. Uniform, Chebyshev and two sets of non-

uniform point distributions have been considered, for solving some one and two dimensional test problems. Some of the

important observations of the present work are:

� The optimization algorithm is based on the reconstruction of the forcing term of the CDE, therefore it depends on the

problem under consideration and adjusts the shape parameter accordingly.

� It has been shown with verification that the (global) Cost function follows the (RMS) error function closely, therefore min-

imization of the cost function leads to the minimization of the error function. This has been observed for all the three

types of the nodal distributions considered in the work.

� The comparison of the mean errors obtained using the LRBF scheme with the global, best and variable optimal shape

parameters demonstrated that the LRBF scheme with the variable optimal shape parameter is most accurate among

the all.

� For highly convection dominated problems, it is observed that the numerical solutions obtained over the uniform distri-

bution of points are oscillatory than the other two nodal distributions.

� For smaller and smaller diffusion parameters, the accuracy with the nonuniform points, irrespective of constant or var-

iable shape parameter, became better than the accuracy obtained with uniform and Chebyshev points.

� The error comparisons with fixed and variable shape parameters unveils that, the accuracy with Chebyshev and nonuni-

form points with variable shape parameter is many orders better, though the same is not reflected with the uniform

points particularly at very low diffusion parameters.

Though the entire discussion in this work is centered around steady problems, the same can be extended to time depen-

dent problems through method of lines.
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