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A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it 
minimizes the ratio of sum of the distances in the tree between the end vertices of the 
graph edges and the number of graph edges. For a polygonal 2-tree on n vertices, we 
present an algorithm to compute a minimum average stretch spanning tree in O (n logn)

time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees. 
We show that there is a unique minimum cycle basis in a polygonal 2-tree and it can be 
computed in linear time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Average stretch is a parameter used to measure the quality of a spanning tree in terms of distance preservation, and 
finding a spanning tree with minimum average stretch is a classical problem in network design. Let G = (V (G), E(G)) be an 
unweighted graph and T be a spanning tree of G . For an edge (u, v) ∈ E(G), dT (u, v) denotes the distance between u and 
v in T . The average stretch of T is defined as

AvgStr(T ) = 1

|E(G)|
∑

(u,v)∈E(G)

dT (u, v) (1)

A minimum average stretch spanning tree of G is a spanning tree that minimizes the average stretch. Given an unweighted 
graph G , the minimum average stretch spanning tree (Mast) problem is to find a minimum average stretch spanning tree 
of G . Due to the unified notation for tree spanners, the Mast problem is equivalent to the problem, Mfcb, of finding a 
minimum fundamental cycle basis in unweighted graphs [17]. Minimum average stretch spanning trees are used to solve 
symmetric diagonally dominant linear systems [17]. Further, minimum fundamental cycle bases have various applications 
including determining the isomorphism of graphs, frequency analysis of computer programs, and generation of minimal 
perfect hash functions (see [4,11] and the references therein]). Due to these vast applications, finding a minimum average 
stretch spanning tree is useful in theory and practice. The Mast problem was studied in a graph theoretic game in the 
context of the k-server problem by Alon et al. [1]. The Mfcb problem was introduced by Hubika and Syslo in 1975 [12]. 
The Mfcb problem was proved to be NP-hard by Deo et al. [4] and APX-hard by Galbiati et al. [11]. Another closely related 
problem is the problem of probabilistically embedding a graph into its spanning trees. A graph G is said to be probabilistically 
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embedded into its spanning trees with distortion t , if there is a probability distribution D of spanning trees of G , such that 
for any two vertices the expected stretch of the spanning trees in D is at most t . The problem of probabilistically embedding 
a graph into its spanning trees with low distortion has interesting connections with low average stretch spanning trees.

In the literature, spanning trees with low average stretch have received significant attention in special graph classes such 
as k-outerplanar graphs and series-parallel graphs. In case of planar graphs, Kavitha et al. remarked that the complexity 
of Mfcb is unknown and there is no O (log n) approximation algorithm [13]. For k-outerplanar graphs, the technique of 
peeling-an-onion decomposition is employed to obtain a spanning tree whose average stretch is at most ck , where c is a 
constant [7]. In case of series-parallel graphs, a spanning tree with average stretch at most O (log n) can be obtained in 
polynomial time (see Section 5 in [8]). The bounds on the size of a minimum fundamental cycle basis are studied in graph 
classes such as planar, outerplanar and grid graphs [13]. The study of probabilistic embeddings of graphs is discussed in 
[7,8]. To the best of our knowledge, there is no published work to compute a minimum average stretch spanning tree and 
minimum fundamental cycle basis in any subclass of planar graphs.

We consider polygonal 2-trees in this work, which are also referred to as polygonal-trees. They have a rich structure that 
make them very natural models for biochemical compounds, and provide an appealing framework for solving associated 
enumeration problems.

Definition 1. (See [14].) A cycle is a polygonal 2-tree. For a polygonal 2-tree G such that (u, v) ∈ E(G), adding a path P
between u and v in such a way that E(G) ∩ E(P ) = ∅, V (G) ∩ V (P ) = {u, v}, and |E(P )| ≥ 2 results in a polygonal 2-tree.

A cycle consisting of k edges is a k-gonal tree. For a k-gonal 2-tree G such that (u, v) ∈ E(G), adding a path P between 
u and v in such a way that E(G) ∩ E(P ) = ∅, V (G) ∩ V (P ) = {u, v}, and |E(P )| = k − 1 results in a k-gonal 2-tree. For 
example, a 2-tree is a 3-gonal tree. The class of polygonal 2-trees is a subclass of planar graphs and it includes 2-connected 
outerplanar graphs and k-gonal trees. 2-trees, in other words 3-gonal trees, are extensively studied in the literature. In 
particular, previous work on various flavors of counting and enumeration problems on 2-trees is compiled in [10]. Formulas 
for the number of labeled and unlabeled k-gonal trees with r polygons (induced cycles) are computed in [15]. The family 
of k-gonal trees with same number of vertices is claimed as a chromatic equivalence class by Chao and Li, and the claim 
has been proved by Wakelin and Woodal [14]. The class of polygonal 2-trees is shown to be a chromatic equivalence class 
by Xu [14]. Further, various subclasses of generalized polygonal 2-trees have been considered, and it has been shown that 
they also form a chromatic equivalence class [14,19,20]. The enumeration of outerplanar k-gonal trees is studied by Harary, 
Palmer and Read to solve a variant of the cell growth problem [6]. Molecular expansion of the species of outerplanar k-gonal 
trees is shown in [6]. Also outerplanar k-gonal trees are of interest in combinatorial chemistry, as the structure of chemical 
compounds like catacondensed benzenoid hydrocarbons forms an outerplanar k-gonal tree.

Our results. We state our main theorem.

Theorem 2. Given a polygonal 2-tree G on n vertices, a minimum average stretch spanning tree of G can be obtained in O (n logn)

time.

Due to the equivalence of Mast and Mfcb (shown in Lemma 5), our result implies the following corollary. For a set B of 
cycles in G , the size of B, denoted by size(B), is the number of edges in B counted according to their multiplicity.

Corollary 3. Given a polygonal 2-tree G on n vertices, a minimum fundamental cycle basis B of G can be obtained in O (n logn +
size(B)) time.

We characterize polygonal 2-trees using a kind of ear decomposition and present the structural properties of polygonal 
2-trees that are useful in finding a minimum average stretch spanning tree (in Section 3). We then identify a set of edges in 
a polygonal 2-tree, called safe edges, whose removal results in a minimum average stretch spanning tree (in Section 4). We 
present an algorithm with necessary data-structures to identify the safe set of edges efficiently and compute a minimum 
average stretch spanning tree in sub-quadratic time (in Section 5). We finally characterize polygonal 2-trees using cycle 
bases, which is of our independent interest (in Section 6).

A graph G can be probabilistically embedded into its spanning trees with distortion t if and only if the multigraph 
obtained from G by replicating its edges has a spanning tree with average stretch at most t (see [1]). It is easy to observe 
that, a spanning tree T of G is a minimum average stretch spanning tree for G if and only if T is a minimum average stretch 
spanning tree for a multigraph of G . As a consequence of our result, we have the following corollary.

Corollary 4. For a polygonal 2-tree G on n vertices, the minimum possible distortion of probabilistically embedding G into its spanning 
trees can be obtained in O (n logn) time.
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2. Graph preliminaries

We consider simple, connected, unweighted and undirected graphs. We use standard graph terminology from [24]. Let 
G = (V (G), E(G)) be a graph, where V (G) and E(G) denote the set of vertices and edges, respectively in G . We denote 
|V (G)| by n and |E(G)| by m. The union of graphs G1 and G2 is defined as a graph with vertex set V (G1) ∪ V (G2) and 
edge set E(G1) ∪ E(G2) and is denoted by G1 ∪ G2. The intersection of graphs G1 and G2 written as G1 ∩ G2 is a graph 
with vertex set V (G1) ∩ V (G2) and edge set E(G1) ∩ E(G2). The removal of a set X of edges from G is denoted by G − X . 
For a set X ⊂ V (G), G[X] denotes the induced graph on X . An edge e ∈ E(G) is a cut-edge (bridge) if G − e is disconnected. 
A graph consisting of at least three vertices is 2-connected if it cannot be disconnected by removing less than two vertices. 
A 2-connected component of G is a maximal 2-connected subgraph of G .

Let T be a spanning tree of G . An edge e ∈ E(G) \ E(T ) is a non-tree edge of T . For a non-tree edge (u, v) of T , a cycle 
formed by the edge (u, v) and the unique path between u and v in T is referred to as a fundamental cycle. For an edge 
(u, v) ∈ E(G), stretch of (u, v) is the distance between u and v in T . The total stretch of T is defined as the sum of the 
stretches of all the edges in G . We remark that there are slightly different definitions existing in the literature that refer 
to the average stretch of a spanning tree. We use the definition in Eq. (1), presented by Emek and Peleg in [8], to refer to
the average stretch of a spanning tree. Proposition 14 in [17] states that, T is a minimum total stretch spanning tree of G if 
and only if the set of fundamental cycles of T is a minimum fundamental cycle basis of G . Then, we can have the following 
lemma.

Lemma 5. Let G be an unweighted graph and T be a spanning tree of G. T is a minimum average stretch spanning tree of G if and only 
if the set of fundamental cycles of T is a minimum fundamental cycle basis of G.

We use the following convention crucially. A path is a connected graph in which there are two vertices of degree 
one and the rest of the vertices are of degree two. An edge can be considered as a connected graph consisting of single 
edge.

Lemma 6. Let G ′ be a 2-connected component in an arbitrary graph G and T be a subgraph of G.

(a) If T is a spanning tree of G, then T ∩ G ′ is a spanning tree of G ′ .
(b) If T is a path in G, then T ∩ G ′ is a path.

Proof. We first prove the following claim: If T is a tree, then T ∩ G ′ is a tree.
Let T ′ = T ∩ G ′ . Suppose T ′ is not connected, then there exist two vertices x and y in V (G ′) such that there is no path 

between x and y in T ′ . Since T is a tree, there is a path P between x and y in T . Since T ′ is not connected, we can observe 
that V (P ) \ V (G ′) contains at least one vertex, say, u. Further, the two edges incident on u in P are not in G ′ . Now we 
can obtain a graph G ′ ∪ P which is a 2-connected component in G . This contradicts the maximality of the 2-connected 
component G ′ . Therefore, T ′ is connected. As T ′ is acyclic, we conclude that T ′ is a tree.

If T is a spanning tree of G , then the set of vertices in T ∩ G ′ is V (G ′). Therefore from the above claim, T ∩ G ′ is a 
spanning tree of G ′ . Thus (a) holds. Further, (b) also holds from the above claim. �
Special graph classes. A partial 2-tree is a subgraph of a 2-tree. A graph is a series-parallel graph, if it can be obtained 
from an edge, by repeatedly duplicating an edge between its end vertices or replacing an edge by a path. An alternative 
equivalent definition for series-parallel graphs is given in [9].

3. Structure of polygonal 2-trees and computation of induced cycles

In this section, we present crucial structural properties of polygonal 2-trees in Lemma 10. This lemma will be used 
significantly in proving the correctness of our algorithm. Another major result in this section is Theorem 14, which computes 
a kind of ear decomposition for polygonal 2-trees. This helps in obtaining an efficient algorithm to solve Mast. The notion of 
open ear decomposition is well known to characterize 2-connected graphs [24]. An open ear decomposition of G is a partition 
of E(G) into a sequence (P0, . . . , Pk) of edge disjoint graphs called ears such that,

1. for each i ≥ 0, Pi is a path,
2. P0 ∪ P1 is a cycle,
3. for each i ≥ 1, end vertices of Pi are distinct and the internal vertices of Pi are not in P0 ∪ . . . ∪ Pi−1.

Further, a restricted version of open ear decomposition called nested ear decomposition is used to characterize series-parallel 
graphs [9]. An open ear decomposition (P0, . . . , Pk) of G is said to be nested if it satisfies the following properties:
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Fig. 1. (a) For the polygonal 2-tree shown, (P0, . . . , P10) is a nice ear decomposition, where P0 = (a, b), P1 = (a, d, c, e, b), P2 = (a, f , b), P3 = (c, g, d), 
P4 = (c, h, e), P5 = (b, i, e), P6 = (a, j, d), P7 = (a, k, j), P8 = (a, l, j), P9 = (d, m, j), and P10 = (d, n, j) are paths in G . (b) For the polygonal 2-tree G
shown, let A = {(a, f ), (a, b), (b, p), (c, g)}. The edges in bound(A, G) are shown in thick. Support((a, d)) = Support((b, e)) = Support((c, e)) = {(a, b), (a, f )}
and Support((b, i)) = {(b, p)}. cost((a, d)) = 2, cost((c, e)) = 2, cost((b, e)) = 2, cost((b, i)) = 1 and for the rest of the edges in bound(A, G), cost is zero. 
(c) For the polygonal 2-tree G shown, let A = {(a, b), (a, f ), (c, g)}. The 2-connected components G1, G2 and G3 in G − A are polygonal 2-trees. Let 
P = (a, d, c, e, b, f ) be the shortest path between vertices a and f in G − A. Then P intersects exactly with one edge in the graphs G1, G2 and G3.

1. For each i ≥ 1, there exists j < i, such that the end vertices of path Pi are in P j .
2. Let the end vertices of Pi and Pi′ be in P j , where 0 ≤ j < i, i′ ≤ k and i 
= i′ . Let Q i ⊆ P j be the path between the 

end vertices of Pi and Q i′ ⊆ P j be the path between the end vertices of Pi′ . Then E(Q i) ⊆ E(Q i′ ) or E(Q i′ ) ⊆ E(Q i) or 
E(Q i) ∩ E(Q i′ ) = ∅.

We define nice ear decomposition to characterize polygonal 2-trees and we show how it helps in efficiently compute the 
induced cycles. A nested ear decomposition (P0, . . . , Pk) is said to be nice if it has the following property: P0 is an edge 
and for each i ≥ 1, if xi and yi are the end vertices of Pi , there is some j < i, such that (xi, yi) is an edge in P j . A nice ear 
decomposition of a polygonal 2-tree is shown in Fig. 1a. Definition 1 naturally gives a nice ear decomposition for polygonal 
2-trees. Further, a unique polygonal 2-tree can be constructed easily from a nice ear decomposition. Thus we have the 
following observation.

Observation 7. A graph G is a polygonal 2-tree if and only if G has a nice ear decomposition.

In the following lemmas, we present results from the literature that establish polygonal 2-trees as a subclass of 
2-connected partial 2-trees, which we formalize in Lemma 10.

Lemma 8. (See Theorem 42 in [2].) A graph G is a partial 2-tree if and only if every 2-connected component of G is a series-parallel 
graph.

According to Lemma 8, 2-connected series-parallel graphs and 2-connected partial 2-trees are essentially the same.

Lemma 9. (See Lemma 1, Lemma 7 and Theorem 1 in [9].) A graph G is 2-connected if and only if G has an open ear decomposition 
in which the first ear is an edge. Further, for a 2-connected series-parallel graph, every open ear decomposition is nested. A graph is 
series-parallel if and only if it has a nested ear decomposition.

The above lemma implies that every 2-connected partial 2-tree has a nested ear decomposition starting with an edge 
(first ear is an edge) and vice versa. We strengthen the first part of this result in Lemma 13.

3.1. Necessary and sufficient conditions

From Propositions 1.7.2 and 12.4.2 in [5], partial 2-trees do not contain a K4-subdivision (as a subgraph). The following 
lemma presents a few necessary properties of polygonal 2-trees, which are useful in the rest of the paper.

Lemma 10. Let G be a polygonal 2-tree. Then the following statements are true.

(a) G is a 2-connected partial 2-tree and G does not contain a K4-subdivision.
(b) Any two induced cycles in G share at most one edge and at most two vertices.
(c) For u, v ∈ V (G) such that (u, v) /∈ E(G), G − {u, v} has at most two components.
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Proof. From Lemma 9, a graph is a 2-connected partial 2-tree if and only if it has a nested ear decomposition starting with 
an edge. From Observation 7, a graph is a polygonal 2-tree if and only if it has a nice ear decomposition. Observe that 
nice ear decomposition is a restricted version of nested ear decomposition. Therefore, a polygonal 2-tree is a 2-connected 
partial 2-tree. Recall that partial 2-trees do not contain K4-subdivision as a subgraph. It follows that polygonal 2-trees do 
not contain K4-subdivision as a subgraph.

We now prove that any two induced cycles in G share at most one edge and at most two vertices. Let D = (P0, . . . , Pk)

be a nice ear decomposition of G . The proof is by induction on the number of ears in G . If the number of ears in D is one, 
then the claim is trivially true. If the number of ears in D is at least two, then we remove the internal vertices of Pk from G
and let G ′ be the resultant graph. Let D ′ = (P0, . . . , Pk−1). As G ′ is a polygonal 2-tree and D ′ is a nice ear decomposition 
of G ′ , inductively G ′ satisfies (b). Let u and v be the end vertices of Pk . For the induced cycle C = Pk ∪ (u, v), C ∩G ′ is (u, v). 
Therefore C has at most one edge and two vertices in common with the induced cycles in G ′ . Because V (Pk) ∩ V (G ′) = {u, v}
and (u, v) ∈ E(G ′), C is the only induced cycle not in G ′ . Hence, any two induced cycles in G share at most one edge and 
at most two vertices.

We now prove the last claim of this lemma. The proof is by contradiction. We assume that the removal of vertices u and 
v from G such that (u, v) /∈ E(G) disconnects G into at least three components G1, G2 and G3. Note that {u, v} is a minimal 
vertex separator in G , because G is 2-connected. It follows that, for each 1 ≤ i ≤ 3, there is an induced path Pi between 
u and v in G , such that the internal vertices of Pi are in Gi and |E(Pi)| ≥ 2. We have induced cycles C1 = P1 ∪ P3 and 
C2 = P2 ∪ P3 that share at least two edges, which contradicts that any two induced cycles in G have at most one common 
edge. �

We now present a sufficient condition for a graph to be a polygonal 2-tree.

Lemma 11. If G is a 2-connected partial 2-tree and every two induced cycles in G share at most one edge, then G is a polygonal 2-tree.

Proof. On the contrary, assume that G is not a polygonal 2-tree. By Lemma 13, since G is a 2-connected partial 2-tree, 
G has a nested ear decomposition D = (P0, . . . , Pk) such that P0 is an edge and for each i ≥ 1, |E(Pi)| ≥ 2. Since G is 
not a polygonal 2-tree, D is not a nice ear decomposition. Therefore, there exists an index i ∈ {1, . . . , k} with the property 
that, let u and v be the end vertices of Pi , then for every j < i, (u, v) /∈ E(P j). For every j ≥ i, since |E(P j)| ≥ 2 and no 
internal vertex of P j is in P1, . . . , P j−1, (u, v) /∈ E(P j). Thereby (u, v) /∈ E(G). As P0 ∪ . . . ∪ Pi−1 is 2-connected, there exist 
two internally vertex disjoint paths P ′

1 and P ′
2 between u and v . Since (u, v) /∈ E(G), P ′

1, P ′
2 and Pi are internally vertex 

disjoint paths and each of these paths have at least one internal vertex. Due to Lemma 12, for 1 ≤ i 
= j ≤ 3, there is no 
path between any internal vertex in Pi and any internal vertex in P j that excludes the vertices u and v . Now we have two 
induced cycles P ′

1 ∪ Pi and P ′
2 ∪ Pi that share at least two edges. This contradicts the premise of the lemma. Therefore, G is 

a polygonal 2-tree. �
3.2. Computation of induced cycles in polygonal 2-trees

Our algorithm will perform several computations on the induced cycles of a polygonal 2-tree. It is therefore important 
to obtain the set of induced cycles in a polygonal 2-tree in linear time. We prove this in Theorem 14. The proof is based on 
the following two lemmas and a linear-time algorithm for obtaining an open ear decomposition [21].

Lemma 12. Let G be a partial 2-tree and let P1, P2 and P3 be three internally vertex disjoint paths between vertices u and v in G such 
that (u, v) /∈ E(G). Then G − {u, v} has at least three components.

Proof. Assume that G − {u, v} has at most two components. Then without loss of generality, there is a path P between 
x ∈ V (P1) and y ∈ V (P2), such that V (P ) ∩ V (P3) = ∅, V (P ) ∩ V (P1) = {x}, and V (P ) ∩ V (P2) = {y}. Then there is a 
K4-subdivision on the vertices x, y, u and v in G . It contradicts that a partial 2-tree does not contain a K4-subdivision. Thus 
G − {u, v} has at least three components. �
Lemma 13. Let G be a 2-connected partial 2-tree. Then there exists a nested ear decomposition (P0, . . . , Pk) of G, such that P0 is an 
edge and for each i ≥ 1, |E(Pi)| ≥ 2.

Proof. From Lemma 9, G has a nested ear decomposition D = (P0, . . . , Pk) such that P0 is an edge. Suppose D does not 
satisfy the given constraint, then we update D as follows, so that the resultant nested ear decomposition satisfies the given 
constraint. Let Pi be the first path in the sequence D , such that |E(Pi)| = 1, where i ≥ 1. Let P j be the first path in the 
sequence D , such that the end vertices of Pi are in P j , where j < i. Let x and y be the end vertices of Pi . We obtain 
new paths Pi′ and P j′ from Pi and P j as follows: Pi′ is the path between x and y in P j and P j′ is P j ∪ Pi − X , where X
is the set of internal vertices in Pi′ . We replace P j with P j′ , delete Pi and add Pi′ immediately after P j′ . By performing 
the update steps mentioned above for at most k − 2 times, we obtain a nested ear decomposition that satisfies the desired 
constraint. �
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In the lemma below, we show that a nested ear decomposition as in Lemma 13 is a nice ear decomposition for polygonal 
2-trees and it can be computed in linear time.

Theorem 14. Let G be a polygonal 2-tree on n vertices. Let D be a nested ear decomposition of G as in Lemma 13 and B be the set of 
induced cycles in G. Then D is a nice ear decomposition. Further, D and B can be computed in linear time and size(B) is O (n).

Proof. On the contrary, assume that D is not a nice ear decomposition. By Lemma 13, G has a nested ear decomposition 
D = (P0, . . . , Pk) such that P0 is an edge and for each i ≥ 1, |E(Pi)| ≥ 2. Since D is not a nice ear decomposition, there exists 
an index i ∈ {2, . . . , k} with the property that, letting u and v be the end vertices of Pi , and for every j < i, (u, v) /∈ E(P j). 
For every j ≥ i, since |E(P j)| ≥ 2 and no internal vertex of P j is in P1, . . . , P j−1, (u, v) /∈ E(P j). Thereby (u, v) /∈ E(G). 
As P0 ∪ . . . ∪ Pi−1 is 2-connected, there exist two internally vertex disjoint paths P ′

1 and P ′
2 between u and v . Since 

(u, v) /∈ E(G), P ′
1, P ′

2 and Pi are internally vertex disjoint paths. Due to Lemma 12, G −{u, v} has at least three components, 
which is a contradiction to Lemma 10(c).

We now prove that a nice ear decomposition of G can be obtained in O (n) time. First obtain an open ear decomposition 
D ′ starting with an edge by using linear-time algorithm in [21]. We then apply Lemma 13 on D ′ . As we can use a linked 
list representation for the paths in D ′ , during the application of Lemma 13, we spend only a constant amount of time at 
each ear. Thus applying Lemma 13 takes linear time, because the number of ears in D ′ is at most n. From the first part of 
this lemma, the resultant ear decomposition is a nice ear decomposition. Also note that |E(G)| ≤ 2n − 3. Thus a nice ear 
decomposition (P0, . . . , Pk) is computed in O (n) time.

From the nice ear decomposition D = (P0, . . . , Pk) of G , we now present a linear-time procedure to obtain the set of 
induced cycles in G . Since P0 is an edge, C1 = P0 ∪ P1 is an induced cycle in G . For every i ≥ 2, by letting xi and yi be 
the end vertices of Pi , we obtain an induced cycle Ci = Pi ∪ (xi, yi) in G . Observe that C1, . . . , Ck are the only induced 
cycles in G . This can be proved easily by applying induction on the number of ears in D . The number of ears in D is at 
most n. Thus the set of induced cycles in G can be obtained in O (n). The ears P0, . . . , Pk are a partition of E(G). Therefore, 
|E(C0)| + . . . + |E(Ck)| ≤ |E(G)| + n. Thus size(B) is O (n). �
4. Structure of paths, trees and MASTs in polygonal 2-trees

For the rest of the paper, G denotes a polygonal 2-tree. In this section we design an iterative procedure to delete a subset 
of edges from a polygonal 2-tree, so that the graph on the remaining edges is a minimum average stretch spanning tree. 
This result is shown in Theorem 21.

Important definitions: We introduce some necessary definitions on polygonal 2-trees. Let G ′ be a subgraph of G . Two induced 
cycles in G ′ are adjacent if they share an edge. An edge in G ′ is internal if it is part of at least two induced cycles; otherwise 
it is external. An induced cycle in G ′ is external if it has an external edge; otherwise it is internal. A fundamental cycle of 
a spanning tree, created by a non-tree edge is said to be external if the associated non-tree edge is external. For a cycle C
in G ′ , the enclosure of C is defined as G ′[V (C)] and is denoted by Enc(C). A set A ⊆ E(G) consisting of k (≥ 0) edges is said 
to be an iterative set for G if the edges in A can be ordered as e1, . . . , ek such that e1 is external and not a bridge in G , and 
for each 2 ≤ i ≤ k, ei is external and not a bridge in G −{e1, . . . , ei−1}. Let A be an iterative set of edges in G . For every edge 
(u, v) ∈ A, both u and v are not present in the same 2-connected component in G − A. We define bound(A, G) to be the 
set of external edges in G − A that are not bridges. For an edge e ∈ bound(A, G), Ge denotes the 2-connected component in 
G − A that has e. The following definition is illustrated in Fig. 1b.

Definition 15. Let A be an iterative set of edges in G and e ∈ bound(A, G). The support of e is defined as {(u, v) ∈ A |
there is a path P joining u and v in G − A such that P ∩ Ge = e} and is denoted by Support(e). The cost(e) is defined as 
| Support(e)|.

4.1. Structural properties of paths

In the following lemmas we present a result on the structure of paths connecting the end vertices of edges in an iterative 
set A. This is useful for setting up an iterative approach for computing a minimum average stretch spanning tree. We apply 
the necessary properties of polygonal 2-trees (cf. Lemma 10) and sufficient condition for a graph to be a polygonal 2-tree 
(cf. Lemma 11) in the proofs of the following lemmas.

Lemma 16. Let A be an iterative set of edges for G and (u, v) ∈ A, P be a path joining u and v in G − A, G ′ be a 2-connected 
component in G − A that has at least two vertices from P , and let P ′ = P ∩ G ′ be a path with end vertices x and y. Then the following 
are true:

(a) (x, y) ∈ E(G ′).
(b) If P is a shortest path, then P ′ is an edge.
(c) Every 2-connected component in G − A is a polygonal 2-tree.
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Proof. To show that (x, y) ∈ E(G ′), assume to the contrary that (x, y) /∈ E(G ′). Since G ′ is 2-connected, there exist two 
internally vertex disjoint paths P1 and P2 between x and y in G ′ . Since A is an iterative set of edges for G and (u, v) ∈ A, 
|{u, v} ∩ V (G ′)| ≤ 1. It follows that P ′ ⊂ P . Then from the cycle P ∪ (u, v), we choose a path P3 joining x and y, in such a 
way that P3 is edge disjoint from P ′ . Consequently, none of the internal vertices in P3 are from G ′ . Therefore, P1, P2 and 
P3 are internally vertex disjoint paths joining x and y that have at least one internal vertex. By Lemma 12, G −{x, y} has at 
least three components. Then the contrapositive of Lemma 10(c) implies that G is not a polygonal 2-tree. This contradicts 
that G is a polygonal 2-tree. Thus (x, y) ∈ E(G ′).

If P is a shortest path and P ′ is not an edge, then we can replace P ′ in P by (x, y) and obtain a path shorter than P . 
Therefore, P ′ is an edge.

We now prove the third claim of this lemma. Let H be a 2-connected component in G − A. From Lemma 10(a), G is 
a partial 2-tree. Thereby H is a 2-connected partial 2-tree. Since A is an iterative set, the edges in A can be ordered 
as e1, . . . , ek , such that e1 is external and not a bridge in G and for each 2 ≤ i ≤ k, ei is external and not a bridge in 
G − {e1, . . . , ei−1}. We delete the edges in A from G one by one, in the order e1, . . . , ek . Observe that each time, when 
an edge ei is deleted, exactly one induced cycle is destroyed and no new induced cycles are created. Also we know that 
any two induced cycles in G share at most one edge. Consequently, any two induced cycles in H share at most one edge. 
Therefore, Lemma 11 implies that H is a polygonal 2-tree. �

Lemma 16 is illustrated in Fig. 1c.

Lemma 17. Let A be an iterative set of edges for G. Then (u, v) ∈ Support(e) if and only if there is a shortest path P joining u and v
in G − A and P has e.

We use the following lemma to prove Lemma 17.

Lemma 18. Let P be a path with end vertices u and v in G. Let G1, . . . , Gr be the 2-connected components in G from which P has at 
least two vertices. For each 1 ≤ i ≤ r, let Pi be a shortest path joining the end vertices of Gi ∩ P . Let P ′ be the path obtained from P by 
replacing every Gi ∩ P with Pi . Then P ′ is a shortest path joining u and v in G.

Proof. Assume that there exists a path P ′′ joining u and v in G such that |E(P ′′)| < |E(P ′)|. For each i, let xi and yi be the 
end vertices of Pi . The set of edges in P ′ that are bridges in G are definitely in P ′′ . Therefore, there exists an 1 ≤ i ≤ r, such 
that the subpath between xi and yi in P ′′ is shorter than Pi . This contradicts that Pi is a shortest path joining xi and yi . �

The above lemma holds for arbitrary graphs.

Proof of Lemma 17. (⇒) Let (u, v) ∈ Support(e). By the definition of Support(e), there is a path P ′ joining u and v in G − A
such that Ge ∩ P ′ is e. Let G1, . . . , Gr be the 2-connected components in G − A from which P ′ has at least two vertices. 
For each 1 ≤ i ≤ r, by Lemma 6(b), Pi = Gi ∩ P ′ is a path; let xi and yi be the end vertices of Pi ; due to Lemma 16(a), 
(xi, yi) ∈ E(Gi). Let P be the path obtained from P ′ after replacing every Pi by (xi, yi). Since Ge ∩ P ′ is e, P has e. From 
Lemma 18, P is a shortest path joining u and v in G − A and P has e.

(⇐) Let P be a shortest path joining u and v in G − A such that P has e. Let Ge be a 2-connected component containing 
e in G − A. Since P has e, Ge has at least two vertices from P . From Lemma 16(b), Ge ∩ P is an edge. Further, Ge ∩ P is e. 
Thus (u, v) ∈ Support(e). �
4.2. Structural properties of spanning trees

Lemma 19. Let T be a spanning tree of G and e be an external edge in G such that e ∈ E(T ). For the spanning tree T , let Cmin be the 
smallest fundamental cycle containing e and let Cmax be a largest fundamental cycle containing e. Let e′ and e′′ be the non-tree edges 
associated with Cmin and Cmax , respectively. Then, (a) e′′ is an external edge (b) Enc(Cmin) ⊆ Enc(Cmax).

We use the following lemma to prove Lemma 19.

Lemma 20. Let T be an arbitrary spanning tree of G. Let C be a fundamental cycle of T formed by a non-tree edge (x, y) in G. Let C1
be an induced cycle containing (x, y) in Enc(C) and C2 be another induced cycle containing (x, y) in G. Then

(a) V (C) ∩ V (C2) = {x, y}.
(b) For vertices u ∈ V (C) \ {x, y} and v ∈ V (C2) \ {x, y}, any path joining u and v in G goes through x or y.

Proof. If C = C1, then we are done, because every two induced cycles share at most two vertices. We now consider the case 
that C 
= C1 and thus there is an edge (x′, y′) in C1 that is not in C . Assume that V (C) ∩ V (C2) has a vertex that is different 
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Fig. 2. (a) In the graph shown, the following are the six internally vertex disjoint paths on the vertices {x, y, x′, z}: (x, y), (x′, a, x), (x′, y′, b, y), (z, a′, x′), 
(z, . . . , x) using thick edges, (z, . . . , z′, . . . , y) using thick edges. (b) A K4-subdivision on vertices {x, y, u′, v ′}.

from x and y. In the path consisting of at least two edges from x to y in C2, let z and z′ be the first and last vertices 
from C , respectively. From Lemma 10(b), we know that any two induced cycles in a polygonal 2-tree share at most two 
vertices. Thus V (C1) ∩ V (C2) = {x, y} and z, z′ /∈ V (C1). Since (x′, y′) is not in C , clearly (x′, y′) 
= (x, y). Further, without loss 
of generality, assume that x′ 
= x. From Lemma 10(b), x′ /∈ V (C2) and thus x′ 
= z. The graph C ∪ C2 is shown in Fig. 2a, where 
the edges in C and C2 other than (x, y) are shown by solid edges and bold edges, respectively. There is a K4-subdivision 
in C ∪ C2 on the vertices {x, y, z, x′}, because of the following six paths that are internally vertex disjoint: the edge (x, y); 
the path joining x′ and x in C1 without going through y; the path joining x′ and y in C1 without going through x; the 
path between z and x in C2 without going through y; the path between z and y (via z′) in C2 without going through x; 
the path between z and x′ in C without going through y′ . This contradicts that G does not contain a K4-subdivision. Thus 
V (C) ∩ V (C2) = {x, y}.

We now prove the second part of the lemma. Let P be a path that joins vertices u and v , such that x, y /∈ V (P ). In 
the sequence of vertices in P from u to v , let u′ be the last vertex in C and v ′ be the first subsequent vertex in C2. Let 
P ′ ⊆ P be the path joining the vertices u′ and v ′ . From the first part of this lemma, x and y are the only vertices common 
in C and C2. Thereby u′ is different from v ′ . It follows that the edges in P ′ are disjoint from the edges in C ∪ C2. Now, we 
consider the graph H = C ∪ C2 ∪ P ′ . The subgraph H of G , shown in Fig. 2b, is a K4-subdivision on the vertices x, y, u′, v ′ , 
because for every two vertices in {x, y, u′, v ′}, there is an internally vertex disjoint path. We have a contradiction, as G does 
not contain a K4-subdivision. Hence the lemma. �
Proof of Lemma 19. Assume that e′′ is an internal edge in G . Then e′′ is contained in at least two induced cycles C1 and C2
in G . Without loss of generality assume that C1 is in Enc(Cmax) and let P = C2 − e′′ be a path. From Lemma 20(a), V (C2) ∩
V (Cmax) = {x, y}. Thus the path between x and y in T and the path P are internally vertex disjoint. As a consequence, there 
is an edge (u, v) in P but not in T ; otherwise the tree T has a cycle. By Lemma 20(b), the fundamental cycle formed by 
the non-tree edge (u, v) is of larger length than Cmax and also has e. Because Cmax is a maximum length fundamental cycle 
containing e, this is a contradiction. Therefore, e′′ is an external edge in G .

We now prove the second part of the lemma. Let P1 be the maximal path in Cmin ∩ Cmax, such that e is in P1. Let a and 
b be the end vertices of P1. Let P2 be the path between a and b in Cmin that is internally vertex disjoint from P1. Let P3 be 
the path between a and b in Cmax that is internally vertex disjoint from P1. Let C ′ and C ′′ be the induced cycles containing 
e in Enc(Cmax) and Enc(Cmin), respectively. If P2 is an edge, then Enc(Cmin) ⊆ Enc(Cmax) and we are done. If P1 is an edge, 
then e is being shared by two induced cycles C ′ and C ′′ . This contradicts that e is an external edge. Consider the case when 
P1 as well as P2 consist of at least two edges. As |Cmax| ≥ |Cmin|, P3 consist of at least two edges. Since G − {a, b} has at 
least three components and (a, b) /∈ E(G), by Lemma 10, G is not a polygonal 2-tree. Hence the lemma. �
4.3. Structural properties of MASTs

A set A of edges in G is referred to as a safe set for G , if A is an iterative set of edges for G and a minimum average 
stretch spanning tree of G is in G − A.

Theorem 21. Let A be a safe set of edges for G such that bound(A, G) 
= ∅. Let e be an edge in bound(A, G) for which cost(e) is 
minimum. Then A ∪ {e} is a safe set for G.

Proof. For a safe set A, let T ∗ be a minimum average stretch spanning tree of G; that is, T ∗ ⊂ G − A as bound(A, G) 
= ∅. If 
e /∈ E(T ∗), then we are done. Assume that e ∈ E(T ∗). Clearly, A ∪ {e} is an iterative set for G . To show that A ∪ {e} is a safe 
set for G , we use the technique of cut-and-paste to obtain a spanning tree T ′ (by deleting the edge e from T ∗ and adding 
an appropriately chosen edge e′) and show that AvgStr(T ′) ≤ AvgStr(T ∗).

Let Ge be the 2-connected component in G − A containing e and G1, . . . , Gk be the 2-connected components in G − A. 
For clarity, Ge ∈ {G1, . . . , Gk}. From Lemma 16(c), Ge is a polygonal 2-tree. For 1 ≤ i ≤ k, by Lemma 6(a), Ti = T ∗ ∩ Gi is 
a spanning tree of Gi . For the spanning tree T ∗ , let Cmin be the smallest fundamental cycle containing e in Ge and let 
Cmax be a largest fundamental cycle containing e in Ge . Let e′, e′′ ∈ E(Ge) be the non-tree edges associated with Cmin
and Cmax, respectively. From Lemma 19, e′′ is an external edge in Ge and Enc(Cmin) ⊆ Enc(Cmax). Let e′ = (xmin, ymin), 
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Fig. 3. Dashed and solid edges shown in thick are the edges of Ge . Dashed edges are the non-tree edges of T ∗ and solid edges are the edges of T ∗ .

e′′ = (xmax, ymax). For a non-tree edge (u, v) in T ∗ , we use Puv to denote the path between u and v in T ∗ and Cuv

to denote the fundamental cycle of T ∗ formed by (u, v). Let X = {(u, v) ∈ E(G) \ E(T ∗) | e ∈ E(Puv), e′ /∈ Enc(Cuv )}, Y =
{(u, v) ∈ E(G) \ E(T ∗) | e ∈ E(Puv), e′ ∈ Enc(Cuv ), (u, v) 
= e′}, Z = {(u, v) ∈ E(G) \ E(T ∗) | e /∈ E(Puv)}. The set of non-tree 
edges in T ∗ is X ∪· Y ∪· {e′} ∪· Z . Let T ′ = T ∗ + e′ − e. The set of non-tree edges in T ′ is X ∪· Y ∪· Z ∪· {e}. To prove the theorem, 
we prove the following claims.

Claim 1. X ⊆ A.

Claim 2. Support(e) ⊆ X.

Claim 3. Support(e′′) ⊆ Y .

Claim 4. X ⊆ Support(e).

Claim 5. For every (u, v) ∈ Z , the path between u and v in T ∗ is in T ′ .

Assuming that the above five claims are true, we complete the proof of the theorem. We know that cost(e) ≤ cost(e′′). 
As e and e′′ are in Ge , from the definition of Support, we further know that Support(e) ∩ Support(e′′) = ∅. Therefore, from 
Claims 2, 3 and 4, it follows that |X | ≤ |Y |. Since e′, e ∈ E(Cmin), e ∈ E(T ∗) and e′ /∈ E(T ∗), the stretch of e′ in T ∗ is 
equal to the stretch of e in T ′ . From Claim 5, stretch does not change for the edges in Z . For all the edges in X , stretch 
increases by |Cmin| − 2. Further, for all the edges in Y , stretch decreases by |Cmin| − 2. If |X | < |Y |, as shown in Fig. 3b, 
then AvgStr(T ′) < AvgStr(T ∗); it contradicts that T ∗ is a minimum average stretch spanning tree. Thereby |X | = |Y |, shown 
in Fig. 3a. This implies that AvgStr(T ′) = AvgStr(T ∗). Since T ∗ is a minimum average stretch spanning tree, T ′ is also a 
minimum average stretch spanning tree. Clearly, T ′ is in G − (A ∪ {e}). Hence A ∪ {e} is a safe set for G .

We now prove the five claims.

Proof of Claim 1. On the contrary, assume that (u, v) ∈ X and (u, v) /∈ A. To arrive at a contradiction, we show that e is an 
internal edge. Since (u, v) ∈ X , there is a fundamental cycle Cuv of T ∗ formed by the non-tree edge (u, v) containing e. As 
(u, v) /∈ A, clearly (u, v) is in G − A. Further, Puv is in G − A, because T ∗ ⊂ G − A. So we know that Cuv is in G − A. If 
Cuv is not in Ge , then Ge ∪ Cuv becomes a 2-connected subgraph in G − A, because Ge is in G − A, Cuv is in G − A, and 
e is both in Ge and Cuv . But, we know that Ge is a maximal 2-connected subgraph (2-connected component), thereby Cuv

is in Ge . Clearly, Cuv and Cmin are not edge disjoint cycles. If Enc(Cmin) ⊆ Enc(Cuv ), then either (u, v) ∈ Y or (u, v) = e′ , 
which contradicts the fact that (u, v) ∈ X . Also, Enc(Cuv ) is not contained in Enc(Cmin), because Cmin is a minimum length 
fundamental cycle containing e. Therefore, both Cmin and Cuv are not contained in each other. Thus, e is an internal edge 
in G − A. This is a contradiction, as we know that e is external. �
Proof of Claim 2. Let (u, v) ∈ Support(e). In order to prove that (u, v) ∈ X , we show the following: (a) (u, v) /∈ E(T ∗), 
(b) Puv has e and (c) e′ is not in Enc(Cuv ).

By the definition of Support(e), (u, v) ∈ A. As T ∗ ⊂ G − A, it follows that (u, v) /∈ E(T ∗). By Lemma 17, there is a shortest 
path P joining u and v in G − A and P has e. Let G ′

1, . . . , G
′
r be the 2-connected components in G − A containing at least 

two vertices from P . Due to Lemma 16(b), for each 1 ≤ i ≤ r, P ∩ G ′
i is an edge, say (xi, yi). Thus P ∩ Ge is e. Further, 

P contains at most one vertex from e′ , because e′ ∈ E(Ge). The set of edges in P that are cut-edges in G − A are present 
in T ∗ . Due to Lemma 6(a), replacing every edge (xi, yi) in P by the path between xi and yi in T ∗ , Puv is obtained. Since 
P ∩ Ge is e and e is in T ∗ , it implies that Puv has e. Thus Puv has e, and e′ is not in Enc(Cuv ). �
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Fig. 4. Cases in Claim 4: Dashed edges and solid edges shown in thick are the edges of Ge . Solid edges shown in thick are the edges of Ge ∩ T ∗ . The path 
Ge ∩ Puv is denoted by P ′ .

Proof of Claim 3. Let (u, v) ∈ Support(e′′). In order to prove that (u, v) ∈ Y , we show the following: (a) (u, v) /∈ E(T ∗), 
(b) Puv has e and (c) e′ is in Enc(Cuv ).

Because (u, v) ∈ A and T ∗ ⊂ G − A, we have (u, v) /∈ E(T ∗). As e, e′′ ∈ E(Ge), due to Lemma 17, there is a shortest path 
P joining u and v in G − A and P has e′′ . Let G ′

1, . . . , G
′
r be the 2-connected components in G − A such that for each 

1 ≤ i ≤ r, P ∩ G ′
i is an edge, say (xi, yi), due to Lemma 16(b). By Lemma 6(a), we replace every edge (xi, yi) in P by the 

path between xi and yi in T ∗ and obtain the tree path Puv . Note that P ∩ Ge is e′′ , e′′ = (xmax, ymax), and e′′ in P got 
replaced with the path between xmax and ymax in T ∗ . Also, we know that the path between xmax and ymax in T ∗ has e. 
Further by Lemma 19(b), e′ is in Enc(Cmax). These observations imply that Puv has e and Enc(Cuv ) contains e′ . �
Proof of Claim 4. Let (u, v) ∈ X . By Claim 1, clearly (u, v) ∈ A. Lemma 6(b) implies that Puv ∩ Ge is a path. Let P ′ = Puv ∩ Ge
be a path and let x and y be the end vertices of P ′ . If P ′ is an edge, shown in Fig. 4c, then the claim holds. On the contrary 
assume that P ′ has at least two edges. By Lemma 16(a), (x, y) ∈ E(G). Further, (x, y) /∈ E(T ∗) as it would then form a cycle 
in the tree. If xmin, ymin ∈ V (P ′), shown in Fig. 4a and Fig. 4b, then (u, v) must be in Y . As we know that (u, v) ∈ X , the 
path P ′ is strictly contained in the path joining the vertices xmin and ymin in T ∗ . Then the fundamental cycle of T formed 
by (x, y) is of lesser length than the length of Cmin, shown in Fig. 4d; a contradiction because Cmin is a minimum length 
fundamental cycle in Ge containing e. Therefore, Puv ∩ Ge is e. Thus (u, v) ∈ Support(e). �
Proof of Claim 5. Let (u, v) ∈ Z . By the definition of Z , clearly e /∈ E(Puv). It implies that e′ /∈ Enc(Cuv ) as the path between 
the end vertices of e′ in T ∗ has e. Therefore Puv has at most one end vertex from e and e′ . Since the symmetric difference 
of E(T ∗) and E(T ′) is {e, e′}, the path Puv in T ∗ remains the same in T ′ . Hence the theorem. �

We now show the termination condition for applying Theorem 21.

Lemma 22. Let A be a safe set of edges for G such that bound(A, G) = ∅. Then G − A is a minimum average stretch spanning tree 
of G.

Proof. Since A is a safe set for G , a minimum average stretch spanning tree is contained in G − A. Since bound(A, G) is ∅, 
G − A is acyclic. Therefore, G − A is a minimum average stretch spanning tree of G . �
5. Computation of an MAST in polygonal 2-trees

A quick overview of our approach to solve Mast is presented in Algorithm 1 below. The detailed implementation is 
presented in Algorithm 2.

In order to obtain a minimum average stretch spanning tree efficiently, we need to efficiently find an edge in bound(A, G)

with minimum cost in every iteration, where A is a safe set for G . In this section, we present necessary data-structures, 
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Algorithm 1: An algorithm to find an MAST of a polygonal 2-tree G .

1 A ← ∅;
2 for each edge e ∈ E(G) do c[e] ← 0;
3 while G − A has a cycle do
4 Choose an edge e from G − A, such that e belongs to exactly one induced cycle in G − A and c[e] is minimum ;
5 Let C be the induced cycle containing e in G − A ;
6 for each ̂e ∈ E(C) \ {e} do c[ê] ← c[ê] + c[e] + 1;
7 A ← A ∪ {e} ;

8 Return G − A;

Algorithm 2: An algorithm to find an MAST of a polygonal 2-tree G .

1 Perform the steps described in Initialization ;
2 while Q 
= ∅ do
3 e ← Q .extract-min() ;
4 A ← A ∪ {e} ;
5 C ← Cycles[e] \ pCycles[e] ;
6 for each edge ̂e ∈ E(C) \ {e} do
7 c[ê] ← c[ê] + c[e] + 1 ;
8 pCycles[ê] ← pCycles[ê] ∪ C ;
9 unpCount[ê] ← unpCount[ê] − 1 ;

10 if unpCount[ê] = 1 then Q .insert(ê, c[ê]) ;
11 if unpCount[ê] = 0 then Q .delete(ê) ;

12 Return G − A;

so that a minimum average stretch spanning tree in polygonal 2-trees on n vertices can be computed in O (n log n) time. 
A pseudo-code for achieving this is given in Algorithm 2. For each edge e ∈ bound(A, G), we show how to compute cost(e)
efficiently in Lemma 24.

Notation. Let Q be a min-heap that supports the following operations: Q .insert(x) inserts an arbitrary element x
into Q , Q .extract-min() extracts the minimum element from Q , Q .decrease-key(x, k) decreases the key value 
of x to k in Q , Q .delete(x) deletes an arbitrary element x from Q . Q .delete(x) can be implemented by calling 
Q .decrease-key(x, −∞) followed by Q .extract-min() [3]. For a set A of safe edges for G , an induced cycle in G
is said to be processed if it is not in G − A; otherwise it is said to be unprocessed. For an edge e ∈ E(G), we use the 
sets Cycles[e] and pCycles[e] to store the set of induced cycles and processed induced cycles, respectively containing e; 
unpCount[e] is used to store the number of unprocessed induced cycles containing e. For an edge e ∈ E(G), we use c[e] to 
store some intermediate values while computing cost(e); whenever e becomes an edge in bound(A, G), we make sure that 
c[e] is cost(e).

Initialization. Given a polygonal 2-tree G , we first compute the set of induced cycles in G . For each induced cycle C in G and 
for each edge e ∈ E(C), we insert the cycle C in the set Cycles[e]. For each e ∈ E(G), we perform unpCount[e] ← |Cycles[e]|, 
pCycles[e] ← ∅, c[e] ← 0. We further initialize the set A of safe edges with ∅. Later, we construct a min-heap Q with the 
edges e in bound(A, G) i.e., external edges that are not bridges in G , based on c[e].

Now we shall look at Algorithm 2.
Algorithm 2 maintains the following loop invariants:

L1. The min heap Q only consists of, the set of edges in bound(A, G).
L2. For an edge e ∈ E(G), pCycles[e] is the set of processed induced cycles containing e and unpCount[e] is equal to the 

number of unprocessed induced cycles containing e.
L3. For every edge e ∈ bound(A, G), Cycles[e] \ pCycles[e] is the unique external induced cycle in G − A containing e.
L4. A is a safe set for G (cf. Theorem 21).
L5. For every edge e ∈ bound(A, G), c[e] = cost(e) (cf. Lemma 24).

Proofs of Loop Invariants L1–L3

Proof. An edge gets inserted into Q only when it is in a unique induced cycle of G − A. Further, all the bridges in G − A are 
getting deleted in line 11. Thus L1 holds. In lines 8 and 9, processed induced cycles and the count of unprocessed cycles are 
updated. Thus L2 holds. For each edge e ∈ bound(A, G), unpCount[e] is one. Therefore, Cycles[e] \ pCycles[e] gives the unique 
induced cycle in G − A containing e, thereby L3 holds. �
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The proof of loop invariant L5 is deferred to next subsection. We finish the running time analysis of Algorithm 2 below. 
The algorithm terminates when Q becomes ∅, that is, bound(A, G) = ∅. Then by Lemma 22, G − A is a minimum average 
stretch spanning tree of G .

Lemma 23. For a polygonal 2-tree G on n vertices, Algorithm 2 takes O (n logn) time.

Proof. The set of induced cycles in G can be obtained in linear time (cf. Theorem 14), thereby line 1 takes linear time. As 
the size of induced cycles in G is O (n) (Theorem 14), line 5 and lines 7–9 contribute O (n) towards the run time of the 
algorithm. Also every edge in G gets inserted into the heap Q and gets deleted from Q only once and |E(G)| ≤ 2n − 3. It 
takes O (log n) time for the operations insert(),delete() and extract-min() [3]. Thus Algorithm 2 takes O (n log n)

time. �
5.1. Cost updating procedure

During the execution of our algorithm, for each edge e in G − A, such that e is external and not a bridge, we need to 
compute cost(e) efficiently. This is done in Algorithm 2 in line 7. We prove the correctness of this step in Corollary 26 using 
Lemma 24.

Algorithm 2 runs for m − n + 1 iterations. For 0 ≤ j ≤ m − n + 1, let A j ⊂ E(G) denote the set of safe edges in G at 
the end of jth iteration. Let e be an edge extracted from the heap Q in jth iteration and C be the unique induced cycle 
containing e in G − A j−1. That is, C is a cycle in G − A j−1 and C is not a cycle in G − A j as e is added to A in iteration j. 
Then we say that C is processed in iteration j and e is the destructive edge for C . For each external edge in G , we know 
that Support(e) is ∅, which implies that cost(e) is 0.

Lemma 24. Let e ∈ bound(A j, G) such that e is an internal edge in G, where 0 ≤ j < m − n + 1. Let C be the unique external induced 
cycle in G − A j containing e and C1, . . . , Ck be the other induced cycles in G containing e. For 1 ≤ i ≤ k, let ei be the destructive edge 
of Ci . Then Support(e) = Support(e1) ∪· . . . ∪· Support(ek) ∪· {e1, . . . , ek}.

We use the following lemma to prove Lemma 24. For a path P and for vertices x, y ∈ V (P ), P (x, y) denotes a subpath 
in P with end vertices x and y. For an edge (x, y) in G , if (x, y) is external, then there is a unique shortest path between x
and y in G − (x, y).

Lemma 25. Let A be a safe set for G and P be a path with end vertices u and v in G − A. Let (a, b) be an edge in P such that 
(a, b) ∈ bound(A, G). Let G ′ = G − (A ∪ {(a, b)}) and P ′ be the path obtained from P by replacing (a, b) with the shortest path 
between a and b in G ′ . Then P is a shortest path in G − A if and only if P ′ is a shortest path in G ′ .

Proof. (⇒) Assume that P ′ is not a shortest path joining u and v in G ′ . Then there exist a path P ′′ joining u and v in G ′
such that |E(P ′′)| < |E(P ′)|. Consider the case when P ′′ has both a and b. Because there is a unique shortest path joining 
a and b in G ′ , P ′(a, b) is P ′′(a, b). Then, without loss of generality the path P ′′(u, a) consisting of lesser number of edges 
than P ′(u, a). As P (u, a) is P ′(u, a), replacing the path P (u, a) in P with P ′′(u, a) leads to a path shorter than P in G − A, 
which contradicts that P is a shortest path. Consider the other case when P ′′ has at most on vertex from {a, b}. In the 
path P from u to v , without loss of generality, assume that a appears before b. In the sequence of vertices in P from 
u to a, let a′ be the last vertex in P ′′ . Similarly in the sequence of vertices in P from b to v , let b′ be the first vertex 
in P ′′ . Let G ′′ be the graph obtained by performing union on P (u, v) ∪ {(u, v)} and the polygonal 2-tree containing (a, b) in 
G − A. Since the intersection of P (u, v) ∪{(u, v)} and G − A is (a, b), G ′′ is a polygonal 2-tree. Now we have three internally 
vertex disjoint paths between a′ and b′ in G ′′: P ′′(a′, b′), P (a′, b′), and the path other than P (a′, b′) in P (u, v) ∪ {(u, v)}. 
Since |{a, b} ∩ {a′, b′}| ≤ 1 and P is a shortest path in G − A, (a′, b′) /∈ E(G ′′). By Lemma 12, G ′′ − {a′, b′} has at least three 
components. Applying Lemma 10(c), G ′′ is not a polygonal 2-tree, which contradicts that G ′′ is a polygonal 2-tree.

(⇐) Assume that P is not a shortest path joining u and v in G − A. Then there exists a path P ′′ joining u and v in G − A
such that |E(P ′′)| < |E(P )|. Consider the case where a, b ∈ V (P ′′). P ′′ is a disjoint union of P ′′(u, a), P ′′(a, b) and P ′′(b, v). 
Similarly P is a disjoint union of P (u, a), P (a, b) and P (b, v). Since P (a, b) = P ′′(a, b) = e, without loss of generality the 
path P ′′(u, a) consists of lesser number of edges than P (u, a). Replacing the path P ′(u, a) in P ′ with P ′′(u, a) leads to a 
path shorter than P ′ in G ′ , which contradicts that P ′ is a shortest path. Consider the other case where at most one vertex 
from {a, b} is in P ′′ . Then P ′′ is in G ′ , and also we have |E(P ′′)| < |E(P )| < |E(P ′)|. Consequently, P ′′ is shorter than P ′
in G ′ . This contradicts that P ′ is a shortest path joining u and v in G ′ . �
Proof of Lemma 24. For 1 ≤ i ≤ k, let f (i) + 1 be the iteration number in which Ci is processed in Algorithm 2.

(⇐) Let (u, v) ∈ Support(ei) for some 1 ≤ i ≤ k. Then by Lemma 17, there is a shortest path P joining u and v in 
G − A f (i) and P has ei . From the premise, ei gets added to A in the iteration f (i) + 1. Thereby ei ∈ A f (i)+1, which implies 
that ei is not in G − A f (i)+1. Consider the path P ′ = (P − ei) ∪ (Ci − ei) in G − A f (i)+1. As ei is exterior in G − A f (i)+1, 
Ci − ei is a shortest path between the end vertices of ei in G − A f (i)+1. Also, Ci − ei has e. Thus P ′ has e. By forward 



68 N.S. Narayanaswamy, G. Ramakrishna / Theoretical Computer Science 575 (2015) 56–70
Fig. 5. For the polygonal 2-tree G shown, dashed edges are the edges in A, solid edges are the edges of G − A and solid edges shown in thick are the edges 
of Ge . Support(e1) = {( j, k)}, Support(e2) = {(l, f )}, Support(e3) = {(m, p)} and Support(e) = {( j, k), (l, f ), (m, p), e1, e2, e3}.

direction of Lemma 25, P ′ is a shortest path joining u and v in G − A f (i)+1. Note that e is in G − A j . By forward direction 
of Lemma 25, it follows that there is a shortest path P j joining u and v in G − A j and P j has e. Thus (u, v) ∈ Support(e). 
Observe that ei ∈ Enc(P j ∪ (u, v)). Further, the path between the end vertices of ei in P j is a shortest path containing e in 
G − A j . Therefore, we have ei ∈ Support(e).

(⇒) Let (u, v) ∈ Support(e). Then by Lemma 17, there is a shortest path P ′ joining u and v in G − A j and P ′ has e. Now 
Enc(P ′ ∪ (u, v)) contains ei for some 1 ≤ i ≤ k. Consider the case (u, v) 
= ei . Let xi and yi be the end vertices of ei . We 
replace the path between xi and yi in P ′ by the edge ei and let P be the resultant path consisting of ei . From the reverse 
direction of Lemma 25, P is a shortest path joining u and v in G − A f (i) , and P has ei . Thereby (u, v) ∈ Support(ei). As a 
result, (u, v) ∈ Support(ei) ∪ {ei} for some 1 ≤ i ≤ k. �

Lemma 24 is illustrated in Fig. 5.

Corollary 26. Let e, e1, . . . , ek be the edges as mentioned in Lemma 24. Then cost(e) = cost(e1) + . . . + cost(ek).

This concludes the presentation of our main result, namely Theorem 2.

6. On minimum cycle bases in polygonal 2-trees

This section is of our independent interest, which presents results on minimum cycle basis in polygonal 2-trees. In 
particular, we show that there is a unique minimum cycle basis in polygonal 2-trees, which can be computed in linear time. 
Also, we present an alternative characterization for polygonal 2-trees using cycle basis. This is shown in Theorem 31.

A graph is Eulerian if the degree of every vertex is even. Let G be an arbitrary unweighted graph and H1, . . . , Hk be 
subgraphs of G . Then the graph H1 ⊕ . . . ⊕ Hk consists only of the edges that appear odd number of times in H1, . . . , Hk . 
A minimal set B of Eulerian subgraphs of G is a cycle basis of G , if every cycle in G can be expressed as exclusive-or (⊕) 
sum of a subset of graphs in B. A minimum cycle basis (MCB) of G is a cycle basis that minimizes the sum of the lengths 
of the cycles in the cycle basis. It is well known that every Eulerian graph in any minimum cycle basis is a cycle. The 
cardinality of a cycle basis is m − n + 1 [5].

Planar graphs and Halin graphs are characterized based on their cycle bases. A cycle basis is said to be planar basis if 
every edge in the graph appears in at most two cycles in the cycle basis. A graph is planar if and only if it has a planar 
basis [18]. A 3-connected planar graph is Halin if and only if it has a planar basis and every cycle in the planar basis has an 
external edge [23]. Halin graphs that are not necklaces have a unique minimum cycle basis [22]. Also, outerplanar graphs 
have a unique minimum cycle basis [16].

Lemma 27. (See Proposition 1.9.1 in [5].) The induced cycles in an arbitrary graph G generate its entire cycle space.

Lemma 28. The number of induced cycles in a polygonal 2-tree G is m − n + 1.

Proof. We apply induction on the number of internal edges in G . Let Ein(G) denote the set of internal edges in G . If 
|Ein(G)| = 0, then G has one induced cycle and m − n + 1 is one. For the induction step, let |Ein(G)| > 0. We decompose G
into polygonal 2-trees G1, . . . , Gk such that G1 ∪ . . .∪ Gk = G and G1 ∩ . . .∩ Gk is an edge in G , where k ≥ 2. Let mi = |E(Gi)|
and ni = |V (Gi)|. For every 1 ≤ i ≤ k, |Ein(Gi)| < |Ein(G)| as one internal edge of G has become external in Gi . By induction 
hypothesis, for every 1 ≤ i ≤ k, the number of induced cycles in Gi is mi − ni + 1. Observe that the set of induced cycles in 
G is equal to the disjoint union of the set of induced cycles in G1, . . . , Gk . Further, we know that m = m1 + . . . + mk − k + 1
and n = n1 + . . . + nk − 2k + 2. Consequently, we can see that the number of induced cycles in G is m − n + 1. �



N.S. Narayanaswamy, G. Ramakrishna / Theoretical Computer Science 575 (2015) 56–70 69
Lemma 29. For an arbitrary 2-connected partial 2-tree G, if the set of induced cycles in G is a cycle basis, then G is a polygonal 2-tree.

Proof. Assume that G is not a polygonal 2-tree. Then by Lemma 10, there exist two induced cycles C1 and C2 in G such 
that |E(C1) ∩ E(C2)| ≥ 2. Let C3 = C1 ⊕ C2. Since C1 and C2 are induced cycles, clearly C1 ∩ C2 is a path and C3 is a cycle. 
Let P be the maximal common path in C1 and C2. Let P1 and P2 be the maximal private paths in C1 and C2, respectively.

Consider the case when C3 is an induced cycle. The set {C1, C2, C3} is not a part of a cycle basis. It contradicts that the 
set of induced cycles in G is a cycle basis.

Consider the other case when C3 is not an induced cycle. Let C ′
1, . . . , C ′

k be the set of induced cycles in Enc(C3). Since 
C1 and C2 are induced cycles and C3 is not an induced cycle, there exists a chord e in C3 such that, one end vertex of e
is in P1 and the other end vertex of e is in P2. Note that at least one induced cycle in Enc(C) has e, whereas C1 and C2
do not have e. It follows that {C1, C2} is different from {C ′

1, . . . , C
′
k}. We can express C3 as C1 ⊕ C2 as well as C ′

1 ⊕ . . . ⊕ C ′
k . 

Therefore, {C1, C2} ∪ {C ′
1, . . . , C

′
k} is not part of a cycle basis. It is a contradiction, because we know that the set of induced 

cycles in G is a cycle basis. Therefore, our assumption is incorrect and hence G is a polygonal 2-tree. �
Theorem 30. For a polygonal 2-tree G, the set of induced cycles is a unique minimum cycle basis.

Proof. Recall that the cardinality of a cycle basis is m − n + 1. Therefore, from Lemma 27 and Lemma 28, it follows that 
the set of induced cycles in G is a cycle basis. Assume that B is a minimum cycle basis of G such that B contains at 
least one non-induced cycle. Let C be a smallest non-induced cycle in B and C1, . . . , Ck be the set of induced cycles in 
Enc(C). Observe that C1 ⊕ . . . ⊕ Ck is C . Clearly, there exists 1 ≤ i ≤ k such that Ci /∈ B as B is a cycle basis. We replace 
C with Ci and obtain a cycle basis such that its size is strictly less than the size of B as |E(C)| > |E(Ci)|. We got a 
contradiction, because B is a minimum cycle basis. Therefore, the set of induced cycles in G is a unique minimum cycle 
basis of G . �

The following theorem follows from Lemma 29 and Theorem 30.

Theorem 31. A graph G is a polygonal 2-tree if and only if G is a 2-connected partial 2-tree and the set of induced cycles in G is a cycle 
basis.

As the set of induced cycles in polygonal 2-trees is a minimum cycle basis, Theorem 14 computes a minimum cycle basis 
in polygonal 2-trees in linear time.

Concluding remarks. For a polygonal 2-tree on n vertices, we have designed an O (n log n)-time algorithm for the problem,
Mast, of finding a minimum average stretch spanning tree. By using this algorithm, we have obtained a minimum funda-
mental cycle basis B of a polygonal 2-tree on n vertices in O (n log n) + size(B) time. We have also shown that polygonal 
2-trees have a unique minimum cycle basis and it can be computed in linear time. The problem of finding a minimum 
routing cost spanning tree is closely related to Mast. A minimum routing cost spanning tree is a spanning tree of a graph that 
minimizes the sum-total distance between every two vertices in the spanning tree. The complexity of finding a minimum 
routing cost spanning tree in polygonal 2-trees (also in planar graphs) is open, whereas it is NP-hard in weighted undirected 
graphs.
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