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1. Introduction

Let R, R™ and R™*" denote the set of all real numbers, the n-dimensional Euclidean space and the
set of all m x n matrices over R, respectively. We denote p (A) as the spectral radius of A € R™*", namely
p(A) is the maximum of the absolute values of the eigenvalues of A. For x = (x1, X2, ..., X;) € R",
we say that x is nonnegative, i.e,, x > 0if and only if x; > O foralli = 1,2, ..., n. A matrix B is
said to be nonnegative, denoted as B > 0, if all its entries are nonnegative and A € R™*" is said to be
inverse-positive if A~ is nonnegative. It is known that [4], foraA € R™" A~! existsand A~! > 0if
and only ifAx > 0= x > 0.

A matrix A € R™" is called a Z-matrix if the off-diagonal entries of A are non-positive. Such a
matrix can be written as A = sI — B, where B > 0 and s > 0. A is called an M-matrix if s > p(B).If
s > p(B),thenAisanonsingular M-matrix. Itis well known that an Z-matrix A € R"*"is anonsingular
M-matrix if and only if A is inverse-positive. One can refer to [2] and [9] for various characterizations
of M-matrices.

Next, we review the notion of the sub-direct sum of matrices. The concept of the sub-direct sum
was proposed by Fallat and Johnson [6]. This is a generalization of the normal sum and the direct sum of
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matrices. This concept has applications in matrix completion problems and overlapping subdomains
in domain decomposition methods [7,8]. It also arises when one studies the structure of different
positivity classes of matrices, for example, positive definite matrices or P-matrices. Let us recall the
definition.

DE p
Definition 1.1. Let A = and B = ¢ ,where D € RM—lxm=k) g o Rm=k)xk
FG ST

F € Rkx(m=k) g ¢ Rkx(=K) g ¢ RO=K)xk T c R=k)x(n1—=k) 3nq G, p € R¥*K The k-subdirect sum
of A and B is denoted as A @y B and is defined as

D E O
AGkB=|FG+PQ |- (1)
0 S T

Note that A @y B is a square matrix of size m + n — k. When k = 0, the sub-direct sum reduces
to the usual direct sum of matrices. The case k = 1 (1-subdirect sum) is treated separately from the
cases k > 1 as their properties are qualitatively different.

The authors of [6] analyze properties of many of the positivity classes of matrices mentioned earlier
under the sub-direct sum operation. In this connection, it is known that the 1-subdirect sum of two
nonsingular M-matrices is again a nonsingular M-matrix while the k-subdirect sum of two nonsingular
M-matrices is not a nonsingular M-matrix for k # 1. On the other hand, any nonsingular M-matrix
can be written as a k-subdirect sum of two nonsingular M-matrices for any value of k. In [3], Bru et
al. provide certain sufficient conditions for the the sub-direct sum of nonsingular M-matrices to be
a nonsingular M-matrix. They also consider the sub-direct sum of inverses of matrices and obtain
conditions for it to be nonsingular.

Recently, Abad et al. in [1] consider the same question for the class of all inverse-positive matrices,
for which the set of all M-matrices is a subclass. They show that the 1-subdirect sum of inverse-positive
matrices is again an inverse positive matrix whereas the k-subdirect sum does not have that property
(see [1, Example 1]). Only certain special cases of inverse-positive matrices have inverse-positive k-
subdirect sums. Corresponding converses are also obtained in [1], but the general case was left as an
open problem. Specifically, the question of the inverse positivity of a k-subdirect sum of two inverse-
positive matrices was left open. Another related question is to write an inverse-positive matrix of the
particular form given by (1) as a k-subdirect sum of matrices for k > 1. Note that this latter assertion
holds for the case of nonsingular M-matrices. That is, any nonsingular M-matrix can be written as a
k-subdirect sum of M-matrices as mentioned earlier.

In this short note, we provide certain conditions under which the k-subdirect sum of inverse-
positive matrices is inverse-positive. This is done in Theorem 2.4. We also present sufficient conditions
for the converse to hold. In other words, if a matrix is inverse-positive, we prove that it can be written
as a k-subdirect sum of inverse-positive matrices, in the presence of certain assumptions. This is
presented in Theorem 2.11. We consider the case when k 7 1 as for the 1-subdirect sum, these results
are known [1]. We tackle the problem in its full generality by assuming that the individual summand
matrices have non-trivial blocks. We deduce the corresponding results presented in [1] as immediate
consequences of our results. We observe that the results presented here can also be extended to the
case of Moore-Penrose inverses.

2. Main results

Let

DE
F G
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be in R™™ where D € R¥** and nonsingular. The Schur complement of D in A, denoted by A/D, is
the matrix G — FD™'E. Note that in a similar way, we can define A/G = D — EG~'F, if G is nonsingular.
The following results about block matrices are used in the proofs of our main results.

Lemma 21. Let D € RMxm=K) qnq ¢ € R¥ with D nonsingular and D~ > 0. Also, let E €

D E
RM=0xk gnd F € R¥>M=K) ywhere —E > 0 and —F > 0. Let A = ( ) Then
F G

(i) detA # 0if and only if det (A/D) # 0.
(iiy A=' > Oifand only if (A/D)~! > 0.
Proof. (i) Wehave [5], detA =detD det (A/D). Thus, when D is nonsingular, A is nonsingular if and

only if A/D is nonsingular.
(ii) It can be verified by direct calculations that

41— D'+ D 'E(A/D)"'FD~! —D7'E(A/D)!
B —(A/D)"'FD~! (/D) '

From the expression for A=, it follows that A=! > 0if and only if (A/D)~! > 0. O
The next result is similar to the result above. We skip the proof.
Lemma 22. Let P € R¥* gnd T € RO=0OX0=K) with T nonsingular and T~! > 0. Also, let Q €

P
R*1=0) gnd s € RO XK ywhere —Q > 0 and —S > 0. Let B = < Q). Then
ST

(i) detB # 0ifand only ifdet (B/T) # O.
(i) B~' > 0ifand only if (B/T)~! > 0.
Next, we prove a determinant formula that we use in Theorem 2.4.
DEO

Lemma 2.3. LetC = | F Y Q | where D and T are nonsingular. Then det C = det D det T det (Y —

0ST
FD7'E — QT1S).

XQ DE\ . 0 _
Proof. Let C = | _ , Where X = ,Q = and S = (0 5).We have detC =
ST FY Q

det T det (C/T), where C/T = X — QT 'S

- .. (DE o\ __, D E ,
Now, X — QTS5 = - T (o s) — . Again, we have det (X —
FY Q FyYy—Qrls

QT~'S) = det Ddet (X — QT~'S)/D) = det Ddet (Y — QT~'S — FD'E). O

We state the first main result of this note below. This result presents a sufficient condition for the
inverse-positivity of k-subdirect sum of inverse-positive matrices.
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DE P
Theorem 2.4. Let A = ( ) and B = ( Q) be inverse-positive matrices of orders m and n
FG ST

respectively, where D € RM—Kxm=k) g ¢ Rim—K)xk g o Rkx(m=k) o ¢ Rkx(=k) g ¢ R(=K)xk
T € R=0x0=0 gng G, P € ROk withD~' > 0,T' > 0,—E > 0,—F > 0,—Q > 0, —S >
0, (A/D)~! > 0and (B/T)~! > 0.If in addition, (G4+P — FD~'E—QT~'S) ™! exists and is nonnegative,
then (A @, B)~! > 0.

Proof. Let C = Ay B. From Lemma 2.3, we have the formula: det C=detD det T det (G+P —FD™'E —
QT~'S). Hence, from the assumptions of the theorem, it follows that C is nonsingular.

Let C(x1, X2, x3) € RT ™ x Rk x R, where R, is the nonnegative orthant in R/, We show
that (xq, X2, x3) € Rﬁ_k X R’_j_ X Ri_k. Then D(x; + D™ 'Exy) = Dxy + Ex; > 0. This implies that
x1 + D 'Ex, > 0asD~! > 0. Similarly, T"'Sx, + x3 > 0 since T(T™1Sx; + x3) = Sxy +Tx3 > 0
andT~' > 0.

Again, consider Dxq + Ex, = uq > 0.Then, Dx; = —Ex, +u; and hencex; = —D ™ 'Exy + D lu;.
Therefore, Fx; = —FD ™ 'Exy + FD™'uy. In a similar way, we get Qx3 = —QT'Sx; + QT 'us3, where
uz > 0. Substituting for Fx; and Qx3 in Fx; + (G + P)x; 4+ Qx3, we get 0 < Fx; 4+ (G + P)xy + Qx3 =
(G+P—FD7'E—QT7'S)xy + FD~lu; 4+ QT lus.

Now, u; > 0 and D~ '>0 imply that D_lul > 0and so —FD_1u1 > 0as —F > 0. Using similar
arguments, we get —QT ~uz > 0. Thus, we get (G + P)x, > 0. Since (G + P)~' > 0, we get x, > 0.

Again, x, > 0, —E > 0and D! > 0imply that —D~'Ex, > 0. This in turn implies thatx; > 0 as
x1 + D1Ex; > 0. Using similar arguments, we get x3 > 0. Hence the theorem. [J

Next, we show that certain results of [1] can be obtained as corollaries of our result.

DO PO
Corollary 2.5. [1, Proposition 8] Let A = ( ) and B = < ) be inverse-positive matrices with
F G ST

D1'>0,G61'>0,P'>0,T! >0,—F > 0and —S > 0. If the matrix G + P is inverse-positive,
then C = A @y B is inverse-positive.

Proof. The proof follows from Theorem 2.4 by takingE = 0and Q = 0. O

DO P
Corollary 2.6. [1, Proposition 10] Let A = ( ) and B = ( Q) be inverse-positive matrices with
F G 0T

D'>0,G61>0P1>0T"'>0, —F>0and—Q > 0.In addition, if G + P is inverse-positive,
then A @y B is inverse-positive.

Proof. Taking E = 0 and S = 0 in Theorem 2.4, we get the result. [
The following examples illustrate Theorem 2.4.

Example 2.7. Consider

DiE (12587 | —0.5874 —0.1259
A= () =| —0.1259 | 1.2587 —0.5874
—0.5874 | —0.1259  1.2587

and
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Pig 8.9616 —6.8279 | —0.5121
B= (5‘ T) = | 05121 8.9616 |—6.8279
| —6.8279 —0.5121 8.9616

. . . (1.0001 0.5001 . {0.2500 0.2000
ThenA™" > 0and B~ > 0.Also (A/D)™" = ,(B/T)"" =
0.3334 1.0001 0.1667 0.2500

0.1959 0.1495

and (G+P — QT 's — ')~ = are nonnegative. Thus the conditions in
0.1226 0.1959

Theorem 2.4 are satisfied. Also, the inverse of 2-subdirect sum of A and B is

0.8465 0.1037 0.0894 0.0740
0.0894 0.1959 0.1495 0.1251
0.1037 0.1226 0.1959 0.1562
0.0740 0.1562 0.1251 0.2158

A®B ' =

WV
o

Now, consider [6, Example 4.2]. The matrices under consideration are nonsingular M-matrices. We
see that these matrices fail to satisfy one of the conditions in Theorem 2.4 and hence the 2-subdirect
sum is not a nonsingular M-matrix.

,,,,,,,,,,,,,,,,,

=]—-1!5 0 |andB = 0 5%—1 . Both A and B are

,,,,,,,,,,,,,,,,,

‘ 2 -1 —1 5 —9:—1
Example 2.8. Let A = ()

nonsingular M-matrices. Here, we see that D l=r1"1> 0,—E=-S>0and —F = —-Q > 0.
1 1 91 1 1 (919 1
Also, we have (A/D)™" = 51 > 0and (B/T)”" = 57 > 0.But,(G+P—FD™'E —
19 9 19

9 10

Qrls)t = ( ) # 0and hence (A@®;B) ™! # 0.ThusA®,Bis nota nonsingular M-matrix.
10 9

We recall the definition of a regular splitting of a matrix and a characterization of nonnegativity
of the inverse of a matrix using such splittings [2]. We use this result to demonstrate a converse of
Theorem 2.4.

Definition 2.9. Let A € R"*". The decomposition A = M — N is said to be a regular splitting of A if M
is nonsingular, M~! > 0and N > 0.

Theorem 2.10. [2, Theorem 5.6, Chapter 7] Let A = M — N be a regular splitting of A € R™ ", Then,
A™' > Oifand only if p(M™'N) < 1.

We now prove the second main result of this note. This presents conditions under which a given
inverse-positive matrix C can be written as a k-subdirect sum of two inverse-positive matrices A and
B, fork > 1.

Theorem 2.11. Let D € RM*™M E ¢ RM*k F ¢ Rbxm vy ¢ Rk g € RM*™2 5 e R2*K gnd
T € R"™*"2 with D, T and Y nonsingular.LetD~' > 0,Y"1 >0, T 1 >0, —-E>0,—F >0,—Q >0
and —S > 0. Further, assume that p(Y~'QT~1S) < 1 — p(Y"'FD™IE). Let
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DEO
c=|FYQ
0ST

be an inverse positive matrix (of size n = ny; + ny + k). Then there exist real numbers a, b such that
D E P

O<a,b<1andforG:aY,P:bY,G+P:Y,A:( )eR<“1+’<>X<"1+’<),B:< Q)e
F G ST

RK+n2)x(k+12) gre inverse-positive with C = A@®yB.

D E
Proof. For any nonzero real number r, take G = rY. Then the determinant of the matrix A = < )
FG

is a polynomial in r of degree at most k. Let Z4 be the set of all real zeros of this polynomial. Similarly,

ST

taking P = sY, for s # 0. Note that Z4 and Zg may be empty due to the fact that the polynomials above
may not have real zeros.

Choosea € (R\ Z4) N (0,1) suchthat1 —a € (R\ Zg) N (0,1),a > p(Y 'FD"'E) and
1 —a > p(Y~1QT~1S). This is possible since both Z4 and Zg are finite sets and p(Y"'FD™'E) < 1.
Setb = 1 — a. By setting G = aY and P = bY, we obtain the invertibility of A and B. Also, we have
G+ P =Y andhenceC =A@y B.

Consider the Schur complement of D in A, A/D = G — FD™'E. Then A/D = M; — Nj is a regular
splitting of A/D where M1 = G = aY and N; = FD—'E with M; nonsingular, Mfl > 0and Ny > 0.
Hence, by Theorem 2.10, (A/D) ™! > 0asp(M~IN) = p (%FD‘lE) < 1.Again,applying Lemma 2.1,

it follows that A~! > 0. In a similar way, we get B~ > 0. O

P
let Zg be the set of all real zeros of the polynomial obtained from the determinant of B = ( Q ) by

The following results in [1] can be obtained as consequences of Theorem 2.11. Note that these are
the converses of Corollary 2.5 and Corollary 2.6, respectively.

DO0OO

Corollary 2.12. [1, Proposition9]LetC = | F Y 0 | beaninverse-positive matrixwithD~! > 0, Y1 >

0ST
0,T"! >0, —F > 0and —S > 0. Then C = A @y, B for some inverse-positive matrices A and B.

Proof. Proof follows by taking E = 0 and Q = 0 in Theorem 2.11. O

DOO
Corollary 2.13. [1, Proposition 11] Let C = | F Y Q | be an inverse-positive matrix with D~ >

00T

0,Y 1>0,T7! >0, —F > 0and —Q > 0.Then C = A &y, B for some inverse-positive matrices A and
B.

Proof. Set E = 0and S = 0in Theorem 2.11. [J

We illustrate Theorem 2.11 as follows.
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—2 1§O 0:0 O
Example 2.14. Consider the matrixC = | FiY:Q | = i |
0iSIT 0. 0:7 =2:0 0
T 0O 0:0 0:-21
0 0i0 —1i7 -3

12943 7 3 21 7
294 86 14 6 42 14
6 2 26 6 2
We have, C~! = 31—6 > 0.Also,S =E<0,Q =F<0andT = D. Again,

21 7 7 3 21 7
21 7 7 3129 43

42 14 14 6 294 86

37 28
Dl =717"= (1 2) >0Y7"' =4 <7 3) > 0and p(Y"'FD7'E) = p(Y~1Qr7's) = 4.

Thus, p(Y"'FD7'E) < 1 — p(Y~'QT~'S). Hence, the conditions of Theorem 2.11 are satisfied.
Now, we have Z, = {0} and Zg = {0 43}. Choosea = b = % Clearly, a > p(Y"'FD™'E) and

' 50
~2 110 0
b > p(Y~'QT™'S). Now, take G = 1Y,P = JY,A = (F+G) =|_1 o —73 4 |andB =
L7
0o 01 4
2 4i-1 0 75 25 7 3 26 6 2
: 7 i 168 50 14 6 7321 7
(P+Q) =|2 ~110 O | ThenA'= >0,B7" = &
SiT oo 6 2 26 7 3 75 25
0 —1:7 -3 217 73 14 6 168 50

>0and C = A &, B.

Remark 2.15. The conditions provided in the above Theorem 2.11 are sufficient but not necessary, as
shown by the following example.

pieio\ (¢i2-2:2) o0 6\ 1000
Example 2.16. letC = | F!Y:Q | = : : =|0i1 0 |D2|0 1:0|=AD2B
0isiT 3:00:0 310 —1 001
U 0:0 0:1 ‘
Here C is an inverse-positive matrix of the form as in the right-hand side of Eq. (1). Also, C™! =

0020

106
10300 -1 1 -1 ; ;
3 ,A7" =15 0 18 0 | and B~ = [ are nonnegative. However, C does not satisfy any
1000
300
0001

of the conditions of Theorem 2.11.
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