On inverse-positivity of sub-direct sums of matrices
 CrossMark

Shani Jose, K.C. Sivakumar*
Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

ARTICLEINFO

Article history:

Received 4 February 2013
Accepted 2 May 2013
Available online 2 June 2013
Submitted by R.A. Brualdi
AMS classification:
15A09
15A48

Keywords:

Sub-direct sum
Inverse-positivity
M-matrices

Abstract

In this note, the authors consider the problem of inverse-positivity of k-subdirect sum of matrices. The main results provide a solution to an open problem posed recently.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{R}, \mathbb{R}^{n}$ and $\mathbb{R}^{m \times n}$ denote the set of all real numbers, the n-dimensional Euclidean space and the set of all $m \times n$ matrices over \mathbb{R}, respectively. We denote $\rho(A)$ as the spectral radius of $A \in \mathbb{R}^{n \times n}$, namely $\rho(A)$ is the maximum of the absolute values of the eigenvalues of A. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we say that x is nonnegative, i.e., $x \geqslant 0$ if and only if $x_{i} \geqslant 0$ for all $i=1,2, \ldots, n$. A matrix B is said to be nonnegative, denoted as $B \geqslant 0$, if all its entries are nonnegative and $A \in \mathbb{R}^{n \times n}$ is said to be inverse-positive if A^{-1} is nonnegative. It is known that [4], for a $A \in \mathbb{R}^{n \times n}, A^{-1}$ exists and $A^{-1} \geqslant 0$ if and only if $A x \geqslant 0 \Rightarrow x \geqslant 0$.

A matrix $A \in \mathbb{R}^{n \times n}$ is called a Z-matrix if the off-diagonal entries of A are non-positive. Such a matrix can be written as $A=s I-B$, where $B \geqslant 0$ and $s>0$. A is called an M-matrix if $s \geqslant \rho(B)$. If $s>\rho(B)$, then A is a nonsingular M-matrix. It is well known that an Z-matrix $A \in \mathbb{R}^{n \times n}$ is a nonsingular M-matrix if and only if A is inverse-positive. One can refer to [2] and [9] for various characterizations of M-matrices.

Next, we review the notion of the sub-direct sum of matrices. The concept of the sub-direct sum was proposed by Fallat and Johnson [6]. This is a generalization of the normal sum and the direct sum of

[^0]0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.05.001
matrices. This concept has applications in matrix completion problems and overlapping subdomains in domain decomposition methods [7,8]. It also arises when one studies the structure of different positivity classes of matrices, for example, positive definite matrices or P-matrices. Let us recall the definition.

Definition 1.1. Let $A=\left(\begin{array}{cc}D & E \\ F & G\end{array}\right)$ and $B=\left(\begin{array}{cc}P & Q \\ S & T\end{array}\right)$, where $D \in \mathbb{R}^{(m-k) \times(m-k)}, E \in \mathbb{R}^{(m-k) \times k}$, $F \in \mathbb{R}^{k \times(m-k)}, Q \in \mathbb{R}^{k \times(n-k)}, S \in \mathbb{R}^{(n-k) \times k}, T \in \mathbb{R}^{(n-k) \times(n-k)}$ and $G, P \in \mathbb{R}^{k \times k}$. The k-subdirect sum of A and B is denoted as $A \oplus_{k} B$ and is defined as

$$
A \oplus_{k} B=\left(\begin{array}{lcc}
D & E & 0 \tag{1}\\
F & G+P & Q \\
0 & S & T
\end{array}\right) .
$$

Note that $A \oplus_{k} B$ is a square matrix of size $m+n-k$. When $k=0$, the sub-direct sum reduces to the usual direct sum of matrices. The case $k=1$ (1 -subdirect sum) is treated separately from the cases $k>1$ as their properties are qualitatively different.

The authors of [6] analyze properties of many of the positivity classes of matrices mentioned earlier under the sub-direct sum operation. In this connection, it is known that the 1 -subdirect sum of two nonsingular M-matrices is again a nonsingular M-matrix while the k-subdirect sum of two nonsingular M-matrices is not a nonsingular M-matrix for $k \neq 1$. On the other hand, any nonsingular M-matrix can be written as a k-subdirect sum of two nonsingular M-matrices for any value of k. In [3], Bru et al. provide certain sufficient conditions for the the sub-direct sum of nonsingular M-matrices to be a nonsingular M-matrix. They also consider the sub-direct sum of inverses of matrices and obtain conditions for it to be nonsingular.

Recently, Abad et al. in [1] consider the same question for the class of all inverse-positive matrices, for which the set of all M-matrices is a subclass. They show that the 1 -subdirect sum of inverse-positive matrices is again an inverse positive matrix whereas the k-subdirect sum does not have that property (see [1, Example 1]). Only certain special cases of inverse-positive matrices have inverse-positive k subdirect sums. Corresponding converses are also obtained in [1], but the general case was left as an open problem. Specifically, the question of the inverse positivity of a k-subdirect sum of two inversepositive matrices was left open. Another related question is to write an inverse-positive matrix of the particular form given by (1) as a k-subdirect sum of matrices for $k>1$. Note that this latter assertion holds for the case of nonsingular M-matrices. That is, any nonsingular M-matrix can be written as a k-subdirect sum of M-matrices as mentioned earlier.

In this short note, we provide certain conditions under which the k-subdirect sum of inversepositive matrices is inverse-positive. This is done in Theorem 2.4. We also present sufficient conditions for the converse to hold. In other words, if a matrix is inverse-positive, we prove that it can be written as a k-subdirect sum of inverse-positive matrices, in the presence of certain assumptions. This is presented in Theorem 2.11. We consider the case when $k \neq 1$ as for the 1 -subdirect sum, these results are known [1]. We tackle the problem in its full generality by assuming that the individual summand matrices have non-trivial blocks. We deduce the corresponding results presented in [1] as immediate consequences of our results. We observe that the results presented here can also be extended to the case of Moore-Penrose inverses.

2. Main results

Let

$$
A=\left(\begin{array}{ll}
D & E \\
F & G
\end{array}\right)
$$

be in $\mathbb{R}^{m \times m}$ where $D \in \mathbb{R}^{k \times k}$ and nonsingular. The Schur complement of D in A, denoted by A / D, is the matrix $G-F D^{-1} E$. Note that in a similar way, we can define $A / G=D-E G^{-1} F$, if G is nonsingular. The following results about block matrices are used in the proofs of our main results.

Lemma 2.1. Let $D \in \mathbb{R}^{(m-k) \times(m-k)}$ and $G \in \mathbb{R}^{k \times k}$ with D nonsingular and $D^{-1} \geqslant 0$. Also, let $E \in$ $\mathbb{R}^{(m-k) \times k}$ and $F \in \mathbb{R}^{k \times(m-k)}$ where $-E \geqslant 0$ and $-F \geqslant 0$. Let $A=\left(\begin{array}{ll}D & E \\ F & G\end{array}\right)$. Then
(i) $\operatorname{det} A \neq 0$ if and only if $\operatorname{det}(A / D) \neq 0$.
(ii) $A^{-1} \geqslant 0$ if and only if $(A / D)^{-1} \geqslant 0$.

Proof. (i) We have [5], det $A=\operatorname{det} D \operatorname{det}(A / D)$. Thus, when D is nonsingular, A is nonsingular if and only if A / D is nonsingular.
(ii) It can be verified by direct calculations that

$$
A^{-1}=\left(\begin{array}{cc}
D^{-1}+D^{-1} E(A / D)^{-1} F D^{-1} & -D^{-1} E(A / D)^{-1} \\
-(A / D)^{-1} F D^{-1} & (A / D)^{-1}
\end{array}\right)
$$

From the expression for A^{-1}, it follows that $A^{-1} \geqslant 0$ if and only if $(A / D)^{-1} \geqslant 0$.
The next result is similar to the result above. We skip the proof.
Lemma 2.2. Let $P \in \mathbb{R}^{k \times k}$ and $T \in \mathbb{R}^{(n-k) \times(n-k)}$ with T nonsingular and $T^{-1} \geqslant 0$. Also, let $Q \in$ $\mathbb{R}^{k \times(n-k)}$ and $S \in \mathbb{R}^{(n-k) \times k}$ where $-Q \geqslant 0$ and $-S \geqslant 0$. Let $B=\left(\begin{array}{cc}P & Q \\ S & T\end{array}\right)$. Then
(i) $\operatorname{det} B \neq 0$ if and only if $\operatorname{det}(B / T) \neq 0$.
(ii) $B^{-1} \geqslant 0$ if and only if $(B / T)^{-1} \geqslant 0$.

Next, we prove a determinant formula that we use in Theorem 2.4.
Lemma 2.3. Let $C=\left(\begin{array}{ccc}D & E & 0 \\ F & Y & Q \\ 0 & S & T\end{array}\right)$ where D and T are nonsingular. Then $\operatorname{det} C=\operatorname{det} D \operatorname{det} T \operatorname{det}(Y-$ $\left.F D^{-1} E-Q T^{-1} S\right)$.

Proof. Let $C=\left(\begin{array}{cc}X & \tilde{Q} \\ \tilde{S} & T\end{array}\right)$, where $X=\left(\begin{array}{cc}D & E \\ F & Y\end{array}\right), \tilde{Q}=\binom{0}{Q}$ and $\tilde{S}=\left(\begin{array}{ll}0 & S\end{array}\right)$. We have $\operatorname{det} C=$ $\operatorname{det} T \operatorname{det}(C / T)$, where $C / T=X-\tilde{Q} T^{-1} \tilde{S}$

Now, $X-\tilde{Q} T^{-1} \tilde{S}=\left(\begin{array}{ll}D & E \\ F & Y\end{array}\right)-\binom{0}{Q} T^{-1}\left(\begin{array}{ll}0 & S\end{array}\right)=\left(\begin{array}{cc}D & E \\ F & Y-Q T^{-1} S\end{array}\right)$. Again, we have det $(X-$ $\left.\tilde{Q} T^{-1} \tilde{S}\right)=\operatorname{det} D \operatorname{det}\left(\left(X-\tilde{Q} T^{-1} \tilde{S}\right) / D\right)=\operatorname{det} D \operatorname{det}\left(Y-Q T^{-1} S-F D^{-1} E\right)$.

We state the first main result of this note below. This result presents a sufficient condition for the inverse-positivity of k-subdirect sum of inverse-positive matrices.

Theorem 2.4. Let $A=\left(\begin{array}{cc}D & E \\ F & G\end{array}\right)$ and $B=\left(\begin{array}{cc}P & Q \\ S & T\end{array}\right)$ be inverse-positive matrices of orders m and n respectively, where $D \in \mathbb{R}^{(m-k) \times(m-k)}, E \in \mathbb{R}^{(m-k) \times k}, F \in \mathbb{R}^{k \times(m-k)}, Q \in \mathbb{R}^{k \times(n-k)}, S \in \mathbb{R}^{(n-k) \times k}$, $T \in \mathbb{R}^{(n-k) \times(n-k)}$ and $G, P \in \mathbb{R}^{k \times k}$ with $D^{-1} \geqslant 0, T^{-1} \geqslant 0,-E \geqslant 0,-F \geqslant 0,-Q \geqslant 0,-S \geqslant$ $0,(A / D)^{-1} \geqslant 0$ and $(B / T)^{-1} \geqslant 0$. If, in addition, $\left(G+P-F D^{-1} E-Q T^{-1} S\right)^{-1}$ exists and is nonnegative, then $\left(A \oplus_{k} B\right)^{-1} \geqslant 0$.

Proof. Let $C=A \oplus_{k} B$. From Lemma 2.3, we have the formula: $\operatorname{det} C=\operatorname{det} D \operatorname{det} T \operatorname{det}\left(G+P-F D^{-1} E-\right.$ $Q T^{-1} S$). Hence, from the assumptions of the theorem, it follows that C is nonsingular.

Let $C\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{+}^{m-k} \times \mathbb{R}_{+}^{k} \times \mathbb{R}_{+}^{n-k}$, where \mathbb{R}_{+}^{j} is the nonnegative orthant in \mathbb{R}^{j}. We show that $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{+}^{m-k} \times \mathbb{R}_{+}^{k} \times \mathbb{R}_{+}^{n-k}$. Then $D\left(x_{1}+D^{-1} E x_{2}\right)=D x_{1}+E x_{2} \geqslant 0$. This implies that $x_{1}+D^{-1} E x_{2} \geqslant 0$ as $D^{-1} \geqslant 0$. Similarly, $T^{-1} S x_{2}+x_{3} \geqslant 0$ since $T\left(T^{-1} S x_{2}+x_{3}\right)=S x_{2}+T x_{3} \geqslant 0$ and $T^{-1} \geqslant 0$.

Again, consider $D x_{1}+E x_{2}=u_{1} \geqslant 0$. Then, $D x_{1}=-E x_{2}+u_{1}$ and hence $x_{1}=-D^{-1} E x_{2}+D^{-1} u_{1}$. Therefore, $F x_{1}=-F D^{-1} E x_{2}+F D^{-1} u_{1}$. In a similar way, we get $Q x_{3}=-Q T^{-1} S x_{2}+Q T^{-1} u_{3}$, where $u_{3} \geqslant 0$. Substituting for $F x_{1}$ and $Q x_{3}$ in $F x_{1}+(G+P) x_{2}+Q x_{3}$, we get $0 \leqslant F x_{1}+(G+P) x_{2}+Q x_{3}=$ $\left(G+P-F D^{-1} E-Q T^{-1} S\right) x_{2}+F D^{-1} u_{1}+Q T^{-1} u_{3}$.

Now, $u_{1} \geqslant 0$ and $D^{-1} \geqslant 0$ imply that $D^{-1} u_{1} \geqslant 0$ and so $-F D^{-1} u_{1} \geqslant 0$ as $-F \geqslant 0$. Using similar arguments, we get $-Q T^{-1} u_{3} \geqslant 0$. Thus, we get $(G+P) x_{2} \geqslant 0$. Since $(G+P)^{-1} \geqslant 0$, we get $x_{2} \geqslant 0$.

Again, $x_{2} \geqslant 0,-E \geqslant 0$ and $D^{-1} \geqslant 0$ imply that $-D^{-1} E x_{2} \geqslant 0$. This in turn implies that $x_{1} \geqslant 0$ as $x_{1}+D^{-1} E x_{2} \geqslant 0$. Using similar arguments, we get $x_{3} \geqslant 0$. Hence the theorem.

Next, we show that certain results of [1] can be obtained as corollaries of our result.
Corollary 2.5. [1, Proposition 8] Let $A=\left(\begin{array}{ll}D & 0 \\ F & G\end{array}\right)$ and $B=\left(\begin{array}{ll}P & 0 \\ S & T\end{array}\right)$ be inverse-positive matrices with $D^{-1} \geqslant 0, G^{-1} \geqslant 0, P^{-1} \geqslant 0, T^{-1} \geqslant 0,-F \geqslant 0$ and $-S \geqslant 0$. If the matrix $G+P$ is inverse-positive, then $C=A \oplus_{k} B$ is inverse-positive.

Proof. The proof follows from Theorem 2.4 by taking $E=0$ and $Q=0$.
Corollary 2.6. [1, Proposition 10] Let $A=\left(\begin{array}{ll}D & 0 \\ F & G\end{array}\right)$ and $B=\left(\begin{array}{ll}P & Q \\ 0 & T\end{array}\right)$ be inverse-positive matrices with $D^{-1} \geqslant 0, G^{-1} \geqslant 0, P^{-1} \geqslant 0, T^{-1} \geqslant 0,-F \geqslant 0$ and $-Q \geqslant 0$. In addition, if $G+P$ is inverse-positive, then $A \oplus_{k} B$ is inverse-positive.

Proof. Taking $E=0$ and $S=0$ in Theorem 2.4, we get the result.
The following examples illustrate Theorem 2.4.
Example 2.7. Consider

$$
A=\left(\begin{array}{c:c}
D & E \\
\hdashline F & G
\end{array}\right)=\left(\begin{array}{c:cc}
1.2587 & -0.5874 & -0.1259 \\
\hdashline-0.1259 & 1.2587 & -0.5874 \\
-0.5874 & -0.1259 & 1.2587
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{c:c}
P & Q \\
\hdashline S & T
\end{array}\right)=\left(\begin{array}{cc:c}
8.9616 & -6.8279 & -0.5121 \\
\hdashline 0.5121 & 8.9616 & -6.8279 \\
\hdashline-6.8279 & -0.5121 & 8.9616
\end{array}\right) .
$$

Then $A^{-1} \geqslant 0$ and $B^{-1} \geqslant 0$. Also $(A / D)^{-1}=\left(\begin{array}{ll}1.0001 & 0.5001 \\ 0.3334 & 1.0001\end{array}\right),(B / T)^{-1}=\left(\begin{array}{ll}0.2500 & 0.2000 \\ 0.1667 & 0.2500\end{array}\right)$ and $\left(G+P-Q T^{-1} S-F D^{-1} E\right)^{-1}=\left(\begin{array}{ll}0.1959 & 0.1495 \\ 0.1226 & 0.1959\end{array}\right)$ are nonnegative. Thus the conditions in Theorem 2.4 are satisfied. Also, the inverse of 2-subdirect sum of A and B is

$$
\left(A \oplus_{2} B\right)^{-1}=\left(\begin{array}{llll}
0.8465 & 0.1037 & 0.0894 & 0.0740 \\
0.0894 & 0.1959 & 0.1495 & 0.1251 \\
0.1037 & 0.1226 & 0.1959 & 0.1562 \\
0.0740 & 0.1562 & 0.1251 & 0.2158
\end{array}\right) \geqslant 0
$$

Now, consider [6, Example 4.2]. The matrices under consideration are nonsingular M-matrices. We see that these matrices fail to satisfy one of the conditions in Theorem 2.4 and hence the 2 -subdirect sum is not a nonsingular M-matrix.

Example 2.8. Let $A=\left(\begin{array}{c:c}D & E \\ \hdashline F & G\end{array}\right)=\left(\begin{array}{c:cc}2 & -1 & -1 \\ \hdashline-1 & 5 & 0 \\ -1 & -9 & 5\end{array}\right)$ and $B=\left(\begin{array}{cc:c}5 & -9 & -1 \\ 0 & 5 & -1 \\ \hdashline-1 & -1 & 2\end{array}\right)$. Both A and B are nonsingular M-matrices. Here, we see that $D^{-1}=T^{-1} \geqslant 0,-E=-S \geqslant 0$ and $-F=-Q \geqslant 0$. Also, we have $(A / D)^{-1}=\frac{1}{31}\left(\begin{array}{cc}9 & 1 \\ 19 & 9\end{array}\right) \geqslant 0$ and $(B / T)^{-1}=\frac{1}{31}\left(\begin{array}{ll}9 & 19 \\ 1 & 9\end{array}\right) \geqslant 0$. But, $\left(G+P-F D^{-1} E-\right.$ $\left.Q T^{-1} S\right)^{-1}=\frac{-1}{19}\left(\begin{array}{cc}9 & 10 \\ 10 & 9\end{array}\right) \nsucceq 0$ and hence $\left(A \oplus_{2} B\right)^{-1} \nsupseteq 0$. Thus $A \oplus_{2} B$ is not a nonsingular M-matrix.

We recall the definition of a regular splitting of a matrix and a characterization of nonnegativity of the inverse of a matrix using such splittings [2]. We use this result to demonstrate a converse of Theorem 2.4.

Definition 2.9. Let $A \in \mathbb{R}^{n \times n}$. The decomposition $A=M-N$ is said to be a regular splitting of A if M is nonsingular, $M^{-1} \geqslant 0$ and $N \geqslant 0$.

Theorem 2.10. [2, Theorem 5.6, Chapter 7] Let $A=M-N$ be a regular splitting of $A \in \mathbb{R}^{n \times n}$. Then, $A^{-1} \geqslant 0$ if and only if $\rho\left(M^{-1} N\right)<1$.

We now prove the second main result of this note. This presents conditions under which a given inverse-positive matrix C can be written as a k-subdirect sum of two inverse-positive matrices A and B, for $k>1$.

Theorem 2.11. Let $D \in \mathbb{R}^{n_{1} \times n_{1}}, E \in \mathbb{R}^{n_{1} \times k}, F \in \mathbb{R}^{k \times n_{1}}, Y \in \mathbb{R}^{k \times k}, Q \in \mathbb{R}^{k \times n_{2}}, S \in \mathbb{R}^{n_{2} \times k}$ and $T \in \mathbb{R}^{n_{2} \times n_{2}}$ with D, T and Y nonsingular. Let $D^{-1} \geqslant 0, Y^{-1} \geqslant 0, T^{-1} \geqslant 0,-E \geqslant 0,-F \geqslant 0,-Q \geqslant 0$ and $-S \geqslant 0$. Further, assume that $\rho\left(Y^{-1} Q T^{-1} S\right)<1-\rho\left(Y^{-1} F D^{-1} E\right)$. Let

$$
C=\left(\begin{array}{lll}
D & E & 0 \\
F & Y & Q \\
0 & S & T
\end{array}\right)
$$

be an inverse positive matrix (of size $n=n_{1}+n_{2}+k$). Then there exist real numbers a, b such that $0<a, b<1$ and for $G=a Y, P=b Y, G+P=Y, A=\left(\begin{array}{cc}D & E \\ F & G\end{array}\right) \in \mathbb{R}^{\left(n_{1}+k\right) \times\left(n_{1}+k\right)}, B=\left(\begin{array}{cc}P & Q \\ S & T\end{array}\right) \in$ $\mathbb{R}^{\left(k+n_{2}\right) \times\left(k+n_{2}\right)}$ are inverse-positive with $C=A \oplus_{k} B$.

Proof. For any nonzero real number r, take $G=r Y$. Then the determinant of the matrix $A=\left(\begin{array}{ll}D & E \\ F & G\end{array}\right)$ is a polynomial in r of degree at most k. Let Z_{A} be the set of all real zeros of this polynomial. Similarly, let Z_{B} be the set of all real zeros of the polynomial obtained from the determinant of $B=\left(\begin{array}{ll}P & Q \\ S & T\end{array}\right)$ by taking $P=s Y$, for $s \neq 0$. Note that Z_{A} and Z_{B} may be empty due to the fact that the polynomials above may not have real zeros.

Choose $a \in\left(\mathbb{R} \backslash Z_{A}\right) \cap(0,1)$ such that $1-a \in\left(\mathbb{R} \backslash Z_{B}\right) \cap(0,1), a>\rho\left(Y^{-1} F D^{-1} E\right)$ and $1-a>\rho\left(Y^{-1} Q T^{-1} S\right)$. This is possible since both Z_{A} and Z_{B} are finite sets and $\rho\left(Y^{-1} F D^{-1} E\right)<1$. Set $b=1-a$. By setting $G=a Y$ and $P=b Y$, we obtain the invertibility of A and B. Also, we have $G+P=Y$ and hence $C=A \oplus_{k} B$.

Consider the Schur complement of D in $A, A / D=G-F D^{-1} E$. Then $A / D=M_{1}-N_{1}$ is a regular splitting of A / D where $M_{1}=G=a Y$ and $N_{1}=F D^{-1} E$ with M_{1} nonsingular, $M_{1}^{-1} \geqslant 0$ and $N_{1} \geqslant 0$. Hence, by Theorem 2.10, $(A / D)^{-1} \geqslant 0$ as $\rho\left(M^{-1} N\right)=\rho\left(\frac{Y^{-1}}{a} F D^{-1} E\right)<1$. Again, applying Lemma 2.1, it follows that $A^{-1} \geqslant 0$. In a similar way, we get $B^{-1} \geqslant 0$.

The following results in [1] can be obtained as consequences of Theorem 2.11. Note that these are the converses of Corollary 2.5 and Corollary 2.6 , respectively.

Corollary 2.12. [1, Proposition 9] Let $C=\left(\begin{array}{lll}D & 0 & 0 \\ F & Y & 0 \\ 0 & S & T\end{array}\right)$ be an inverse-positive matrix with $D^{-1} \geqslant 0, Y^{-1} \geqslant$ $0, T^{-1} \geqslant 0,-F \geqslant 0$ and $-S \geqslant 0$. Then $C=A \oplus_{k} B$ for some inverse-positive matrices A and B.

Proof. Proof follows by taking $E=0$ and $Q=0$ in Theorem 2.11.
Corollary 2.13. [1, Proposition 11] Let $C=\left(\begin{array}{ccc}D & 0 & 0 \\ F & Y & Q \\ 0 & 0 & T\end{array}\right)$ be an inverse-positive matrix with $D^{-1} \geqslant$ $0, Y^{-1} \geqslant 0, T^{-1} \geqslant 0,-F \geqslant 0$ and $-Q \geqslant 0$. Then $C=A \oplus_{k} B$ for some inverse-positive matrices A and B.

Proof. Set $E=0$ and $S=0$ in Theorem 2.11.
We illustrate Theorem 2.11 as follows.

Example 2.14. Consider the matrix $C=\left(\begin{array}{c:c:c}D & E & 0 \\ \hdashline F & Y & Q \\ \hdashline 0 & S & T\end{array}\right)=\left(\begin{array}{cc:cc:cc}-2 & 1 & 0 & 0 & 0 & 0 \\ 7 & -3 & 0 & -1 & 0 & 0 \\ \hdashline-1 & 0 & -3 & 8 & -1 & 0 \\ 0 & 0 & 7 & -2 & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -1 & 7 & -3\end{array}\right)$.
We have, $C^{-1}=\frac{1}{36}\left(\begin{array}{cccccc}129 & 43 & 7 & 3 & 21 & 7 \\ 294 & 86 & 14 & 6 & 42 & 14 \\ 6 & 2 & 2 & 6 & 6 & 2 \\ 21 & 7 & 7 & 3 & 21 & 7 \\ 21 & 7 & 7 & 3 & 129 & 43 \\ 42 & 14 & 14 & 6 & 294 & 86\end{array}\right) \geqslant 0$. Also, $S=E \leqslant 0, Q=F \leqslant 0$ and $T=D$. Again,
$D^{-1}=T^{-1}=\left(\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right) \geqslant 0, Y^{-1}=\frac{1}{50}\left(\begin{array}{ll}2 & 8 \\ 7 & 3\end{array}\right) \geqslant 0$ and $\rho\left(Y^{-1} F D^{-1} E\right)=\rho\left(Y^{-1} Q T^{-1} S\right)=\frac{7}{50}$. Thus, $\rho\left(Y^{-1} F D^{-1} E\right)<1-\rho\left(Y^{-1} Q T^{-1} S\right)$. Hence, the conditions of Theorem 2.11 are satisfied.

Now, we have $Z_{A}=\{0\}$ and $Z_{B}=\left\{0, \frac{43}{50}\right\}$. Choose $a=b=\frac{1}{2}$. Clearly, $a>\rho\left(Y^{-1} F D^{-1} E\right)$ and $b>\rho\left(Y^{-1} Q T^{-1} S\right)$. Now, take $G=\frac{1}{2} Y, P=\frac{1}{2} Y, A=\left(\begin{array}{c:c}D & E \\ \hdashline F & G\end{array}\right)=\left(\begin{array}{cc:cc}-2 & 1 & 0 & 0 \\ 7 & -3 & 0 & -1 \\ \hdashline-1 & 0 & \frac{-3}{2} & 4 \\ 0 & 0 & \frac{7}{2} & -1\end{array}\right)$ and $B=$ $\left(\begin{array}{c:c}P & Q \\ \hdashline S & T\end{array}\right)=\left(\begin{array}{cc:cc}\frac{-3}{2} & 4 & -1 & 0 \\ \frac{7}{2} & -1 & 0 & 0 \\ \hdashline 0 & 0 & -2 & 1 \\ 0 & -1 & 7 & -3\end{array}\right)$. Then $A^{-1}=\frac{1}{18}\left(\begin{array}{cccc}75 & 25 & 7 & 3 \\ 168 & 50 & 14 & 6 \\ 6 & 2 & 2 & 6 \\ 21 & 7 & 7 & 3\end{array}\right) \geqslant 0, B^{-1}=\frac{1}{18}\left(\begin{array}{cccc}2 & 6 & 6 & 2 \\ 7 & 3 & 21 & 7 \\ 7 & 3 & 75 & 25 \\ 14 & 6 & 168 & 50\end{array}\right)$ $\geqslant 0$ and $C=A \oplus_{2} B$.

Remark 2.15. The conditions provided in the above Theorem 2.11 are sufficient but not necessary, as shown by the following example.

Example 2.16. Let $C=\left(\begin{array}{c:c:c}D & E & 0 \\ \hdashline F & Y & Q \\ \hdashline 0 & S & T\end{array}\right)=\left(\begin{array}{c:c:c}0 & 0 & 6 \\ \hdashline 0 & 2 & 0 \\ 3 & 0 & 0 \\ \hdashline 0 & 0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{c:cc}0 & 0 & 6 \\ \hdashline 0 & 1 & 0 \\ 3 & 0 & -1\end{array}\right) \oplus_{2}\left(\begin{array}{cc:c}1 & 0 & 0 \\ 0 & 1 & 0 \\ \hdashline 0 & 0 & 1\end{array}\right)=A \oplus_{2} B$.
Here C is an inverse-positive matrix of the form as in the right-hand side of Eq. (1). Also, $C^{-1}=$ $\frac{1}{6}\left(\begin{array}{llll}0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), A^{-1}=\frac{1}{18}\left(\begin{array}{ccc}1 & 0 & 6 \\ 0 & 18 & 0 \\ 3 & 0 & 0\end{array}\right)$ and $B^{-1}=I$ are nonnegative. However, C does not satisfy any of the conditions of Theorem 2.11.

Acknowledgement

The authors thank the referee for suggestions that have led to an improved presentation of the results.

References

[1] M.F. Abad, M.T. Gassó, J.R. Torregrosa, Some results about inverse-positive matrices, Appl. Math. Comput. 218 (2011) 130-139.
[2] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
[3] R. Bru, F. Pedroche, D.B. Szyld, Subdirect sums of nonsingualr M-matrices and of their inverses, Electron. J. Linear Algebra 13 (2005) 162-174.
[4] L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York, 1966.
[5] D. Carlson, What are Schur complements, anyway?, Linear Algebra Appl. 74 (1986) 257-275.
[6] S.M. Fallat, C.R. Johnson, Sub-direct sums and positive classes of matrices, Linear Algebra Appl. 288 (1999) 149-173.
[7] C.R. Johnson, Matrix completion problems: a survey, Proc. Sympos. Appl. Math. 40 (1990) 171-198.
[8] A. Toselli, O. Widlund, Domain decomposition methods: algorithms and theory, in: Series in Computational Mathematics, vol. 34, Springer, New York, 2005.
[9] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.

[^0]: * Corresponding author. Tel.: +914422574622.

 E-mail addresses: shanijose@gmail.com (S. Jose), kcskumar@iitm.ac.in (K.C. Sivakumar).

