Linear Algebra and its Applications 439 (2013) 1670-1677

On inverse-positivity of sub-direct sums of matrices () CrossMark Shani Jose, K.C. Sivakumar*

Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

ARTICLEINFO

Article history: Received 4 February 2013 Accepted 2 May 2013 Available online 2 June 2013

Submitted by R.A. Brualdi

AMS classification: 15A09 15A48

Keywords: Sub-direct sum Inverse-positivity *M*-matrices

1. Introduction

Let \mathbb{R} , \mathbb{R}^n and $\mathbb{R}^{m \times n}$ denote the set of all real numbers, the *n*-dimensional Euclidean space and the set of all $m \times n$ matrices over \mathbb{R} , respectively. We denote $\rho(A)$ as the spectral radius of $A \in \mathbb{R}^{n \times n}$, namely $\rho(A)$ is the maximum of the absolute values of the eigenvalues of A. For $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, we say that x is *nonnegative*, i.e., $x \ge 0$ if and only if $x_i \ge 0$ for all $i = 1, 2, \ldots, n$. A matrix B is said to be *nonnegative*, denoted as $B \ge 0$, if all its entries are nonnegative and $A \in \mathbb{R}^{n \times n}$ is said to be *inverse-positive* if A^{-1} is nonnegative. It is known that [4], for a $A \in \mathbb{R}^{n \times n}$, A^{-1} exists and $A^{-1} \ge 0$ if and only if $Ax \ge 0 \Rightarrow x \ge 0$.

A matrix $A \in \mathbb{R}^{n \times n}$ is called a Z-matrix if the off-diagonal entries of A are non-positive. Such a matrix can be written as A = sI - B, where $B \ge 0$ and s > 0. A is called an M-matrix if $s \ge \rho(B)$. If $s > \rho(B)$, then A is a nonsingular M-matrix. It is well known that an Z-matrix $A \in \mathbb{R}^{n \times n}$ is a nonsingular M-matrix if and only if A is inverse-positive. One can refer to [2] and [9] for various characterizations of M-matrices.

Next, we review the notion of the sub-direct sum of matrices. The concept of the sub-direct sum was proposed by Fallat and Johnson [6]. This is a generalization of the normal sum and the direct sum of

* Corresponding author. Tel.: +914422574622.

0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.05.001

ABSTRACT

In this note, the authors consider the problem of inverse-positivity of *k*-subdirect sum of matrices. The main results provide a solution to an open problem posed recently.

© 2013 Elsevier Inc. All rights reserved.

E-mail addresses: shanijose@gmail.com (S. Jose), kcskumar@iitm.ac.in (K.C. Sivakumar).

matrices. This concept has applications in matrix completion problems and overlapping subdomains in domain decomposition methods [7,8]. It also arises when one studies the structure of different positivity classes of matrices, for example, positive definite matrices or *P*-matrices. Let us recall the definition.

Definition 1.1. Let $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$ and $B = \begin{pmatrix} P & Q \\ S & T \end{pmatrix}$, where $D \in \mathbb{R}^{(m-k) \times (m-k)}$, $E \in \mathbb{R}^{(m-k) \times k}$, $F \in \mathbb{R}^{k \times (m-k)}$, $Q \in \mathbb{R}^{k \times (n-k)}$, $S \in \mathbb{R}^{(n-k) \times k}$, $T \in \mathbb{R}^{(n-k) \times (n-k)}$ and $G, P \in \mathbb{R}^{k \times k}$. The *k*-subdirect sum

of *A* and *B* is denoted as $A \oplus_k B$ and is defined as

$$A \oplus_k B = \begin{pmatrix} D & E & 0 \\ F & G + P & Q \\ 0 & S & T \end{pmatrix}.$$
 (1)

Note that $A \oplus_k B$ is a square matrix of size m + n - k. When k = 0, the sub-direct sum reduces to the usual direct sum of matrices. The case k = 1 (1-subdirect sum) is treated separately from the cases k > 1 as their properties are qualitatively different.

The authors of [6] analyze properties of many of the positivity classes of matrices mentioned earlier under the sub-direct sum operation. In this connection, it is known that the 1-subdirect sum of two nonsingular M-matrices is again a nonsingular M-matrix while the k-subdirect sum of two nonsingular *M*-matrices is not a nonsingular *M*-matrix for $k \neq 1$. On the other hand, any nonsingular *M*-matrix can be written as a k-subdirect sum of two nonsingular M-matrices for any value of k. In [3], Bru et al. provide certain sufficient conditions for the the sub-direct sum of nonsingular M-matrices to be a nonsingular M-matrix. They also consider the sub-direct sum of inverses of matrices and obtain conditions for it to be nonsingular.

Recently, Abad et al. in [1] consider the same question for the class of all inverse-positive matrices, for which the set of all *M*-matrices is a subclass. They show that the 1-subdirect sum of inverse-positive matrices is again an inverse positive matrix whereas the k-subdirect sum does not have that property (see [1, Example 1]). Only certain special cases of inverse-positive matrices have inverse-positive ksubdirect sums. Corresponding converses are also obtained in [1], but the general case was left as an open problem. Specifically, the question of the inverse positivity of a k-subdirect sum of two inversepositive matrices was left open. Another related question is to write an inverse-positive matrix of the particular form given by (1) as a k-subdirect sum of matrices for k > 1. Note that this latter assertion holds for the case of nonsingular M-matrices. That is, any nonsingular M-matrix can be written as a k-subdirect sum of M-matrices as mentioned earlier.

In this short note, we provide certain conditions under which the k-subdirect sum of inversepositive matrices is inverse-positive. This is done in Theorem 2.4. We also present sufficient conditions for the converse to hold. In other words, if a matrix is inverse-positive, we prove that it can be written as a k-subdirect sum of inverse-positive matrices, in the presence of certain assumptions. This is presented in Theorem 2.11. We consider the case when $k \neq 1$ as for the 1-subdirect sum, these results are known [1]. We tackle the problem in its full generality by assuming that the individual summand matrices have non-trivial blocks. We deduce the corresponding results presented in [1] as immediate consequences of our results. We observe that the results presented here can also be extended to the case of Moore-Penrose inverses.

2. Main results

Let

$$A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$$

be in $\mathbb{R}^{m \times m}$ where $D \in \mathbb{R}^{k \times k}$ and nonsingular. The Schur complement of D in A, denoted by A/D, is the matrix $G - FD^{-1}E$. Note that in a similar way, we can define $A/G = D - EG^{-1}F$, if G is nonsingular. The following results about block matrices are used in the proofs of our main results.

Lemma 2.1. Let $D \in \mathbb{R}^{(m-k)\times(m-k)}$ and $G \in \mathbb{R}^{k\times k}$ with D nonsingular and $D^{-1} \ge 0$. Also, let $E \in \mathbb{R}^{(m-k)\times k}$ and $F \in \mathbb{R}^{k\times(m-k)}$ where $-E \ge 0$ and $-F \ge 0$. Let $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$. Then

- (i) $det A \neq 0$ if and only if $det (A/D) \neq 0$.
- (ii) $A^{-1} \ge 0$ if and only if $(A/D)^{-1} \ge 0$.
- **Proof.** (*i*) We have [5], det $A = \det D \det (A/D)$. Thus, when D is nonsingular, A is nonsingular if and only if A/D is nonsingular.
 - (ii) It can be verified by direct calculations that

$$A^{-1} = \begin{pmatrix} D^{-1} + D^{-1}E(A/D)^{-1}FD^{-1} & -D^{-1}E(A/D)^{-1} \\ -(A/D)^{-1}FD^{-1} & (A/D)^{-1} \end{pmatrix}.$$

From the expression for A^{-1} , it follows that $A^{-1} \ge 0$ if and only if $(A/D)^{-1} \ge 0$. \Box

The next result is similar to the result above. We skip the proof.

Lemma 2.2. Let $P \in \mathbb{R}^{k \times k}$ and $T \in \mathbb{R}^{(n-k) \times (n-k)}$ with T nonsingular and $T^{-1} \ge 0$. Also, let $Q \in \mathbb{R}^{k \times (n-k)}$ and $S \in \mathbb{R}^{(n-k) \times k}$ where $-Q \ge 0$ and $-S \ge 0$. Let $B = \begin{pmatrix} P & Q \\ S & T \end{pmatrix}$. Then

- (i) $\det B \neq 0$ if and only if $\det (B/T) \neq 0$.
- (ii) $B^{-1} \ge 0$ if and only if $(B/T)^{-1} \ge 0$.

Next, we prove a determinant formula that we use in Theorem 2.4.

Lemma 2.3. Let $C = \begin{pmatrix} D & E & 0 \\ F & Y & Q \\ 0 & S & T \end{pmatrix}$ where D and T are nonsingular. Then det $C = \det D \det T \det (Y - FD^{-1}E - QT^{-1}S)$.

Proof. Let $C = \begin{pmatrix} X & \tilde{Q} \\ \tilde{S} & T \end{pmatrix}$, where $X = \begin{pmatrix} D & E \\ F & Y \end{pmatrix}$, $\tilde{Q} = \begin{pmatrix} 0 \\ Q \end{pmatrix}$ and $\tilde{S} = \begin{pmatrix} 0 & S \end{pmatrix}$. We have det C = det T det (C/T), where $C/T = X - \tilde{Q}T^{-1}\tilde{S}$ Now, $X - \tilde{Q}T^{-1}\tilde{S} = \begin{pmatrix} D & E \\ F & Y \end{pmatrix} - \begin{pmatrix} 0 \\ Q \end{pmatrix}T^{-1}(0 S) = \begin{pmatrix} D & E \\ F & Y - QT^{-1}S \end{pmatrix}$. Again, we have det $(X - \tilde{Q}T^{-1}\tilde{S}) = \det D \det ((X - \tilde{Q}T^{-1}\tilde{S})/D) = \det D \det (Y - QT^{-1}S - FD^{-1}E)$. \Box

We state the first main result of this note below. This result presents a sufficient condition for the inverse-positivity of *k*-subdirect sum of inverse-positive matrices.

Theorem 2.4. Let $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$ and $B = \begin{pmatrix} P & Q \\ S & T \end{pmatrix}$ be inverse-positive matrices of orders m and n

respectively, where $D \in \mathbb{R}^{(m-k)\times(m-k)}$, $E \in \mathbb{R}^{(m-k)\times k}$, $F \in \mathbb{R}^{k\times(m-k)}$, $O \in \mathbb{R}^{k\times(n-k)}$, $S \in \mathbb{R}^{(n-k)\times k}$. $T \in \mathbb{R}^{(n-k)\times(n-k)} \text{ and } G, P \in \mathbb{R}^{k\times k} \text{ with } D^{-1} \ge 0, T^{-1} \ge 0, -E \ge 0, -F \ge 0, -Q \ge 0, -S \ge 0, (A/D)^{-1} \ge 0 \text{ and } (B/T)^{-1} \ge 0.$ If, in addition, $(G+P-FD^{-1}E-QT^{-1}S)^{-1}$ exists and is nonnegative, then $(A \oplus_k B)^{-1} \ge 0$.

Proof. Let $C = A \oplus_k B$. From Lemma 2.3, we have the formula: det C=det D det T det $(G + P - FD^{-1}E - FD^{-1}E)$ $QT^{-1}S$). Hence, from the assumptions of the theorem, it follows that C is nonsingular.

Let $C(x_1, x_2, x_3) \in \mathbb{R}^{m-k}_+ \times \mathbb{R}^k_+ \times \mathbb{R}^{n-k}_+$, where \mathbb{R}^j_+ is the nonnegative orthant in \mathbb{R}^j . We show that $(x_1, x_2, x_3) \in \mathbb{R}^{m-k}_+ \times \mathbb{R}^k_+ \times \mathbb{R}^{n-k}_+$. Then $D(x_1 + D^{-1}Ex_2) = Dx_1 + Ex_2 \ge 0$. This implies that $x_1 + D^{-1}Ex_2 \ge 0$ as $D^{-1} \ge 0$. Similarly, $T^{-1}Sx_2 + x_3 \ge 0$ since $T(T^{-1}Sx_2 + x_3) = Sx_2 + Tx_3 \ge 0$ and $T^{-1} \ge 0$.

Again, consider $Dx_1 + Ex_2 = u_1 \ge 0$. Then, $Dx_1 = -Ex_2 + u_1$ and hence $x_1 = -D^{-1}Ex_2 + D^{-1}u_1$. Therefore, $Fx_1 = -FD^{-1}Ex_2 + FD^{-1}u_1$. In a similar way, we get $Qx_3 = -QT^{-1}Sx_2 + QT^{-1}u_3$, where $u_3 \ge 0$. Substituting for Fx_1 and Qx_3 in $Fx_1 + (G+P)x_2 + Qx_3$, we get $0 \le Fx_1 + (G+P)x_2 + Qx_3 = 0$ $(G + P - FD^{-1}E - QT^{-1}S)x_2 + FD^{-1}u_1 + QT^{-1}u_3.$

Now, $u_1 \ge 0$ and $D^{-1} \ge 0$ imply that $D^{-1}u_1 \ge 0$ and so $-FD^{-1}u_1 \ge 0$ as $-F \ge 0$. Using similar arguments, we get $-QT^{-1}u_3 \ge 0$. Thus, we get $(G + P)x_2 \ge 0$. Since $(G + P)^{-1} \ge 0$, we get $x_2 \ge 0$. Again, $x_2 \ge 0$, $-E \ge 0$ and $D^{-1} \ge 0$ imply that $-D^{-1}Ex_2 \ge 0$. This in turn implies that $x_1 \ge 0$ as $x_1 + D^{-1}Ex_2 \ge 0$. Using similar arguments, we get $x_3 \ge 0$. Hence the theorem. \Box

Next, we show that certain results of [1] can be obtained as corollaries of our result.

Corollary 2.5. [1, Proposition 8] Let $A = \begin{pmatrix} D & 0 \\ F & G \end{pmatrix}$ and $B = \begin{pmatrix} P & 0 \\ S & T \end{pmatrix}$ be inverse-positive matrices with $D^{-1} \ge 0, G^{-1} \ge 0, P^{-1} \ge 0, T^{-1} \ge 0, -F \ge 0$ and $-S \ge 0$. If the matrix G + P is inverse-positive, then $C = A \oplus_k B$ is inverse-positive.

Proof. The proof follows from Theorem 2.4 by taking E = 0 and Q = 0.

Corollary 2.6. [1, Proposition 10] Let $A = \begin{pmatrix} D & 0 \\ F & G \end{pmatrix}$ and $B = \begin{pmatrix} P & Q \\ 0 & T \end{pmatrix}$ be inverse-positive matrices with $D^{-1} \ge 0, G^{-1} \ge 0, P^{-1} \ge 0, T^{-1} \ge 0, -F \ge 0$ and $-Q \ge 0$. In addition, if G + P is inverse-positive,

then $A \oplus_k B$ is inverse-positive.

Proof. Taking E = 0 and S = 0 in Theorem 2.4, we get the result. \Box

The following examples illustrate Theorem 2.4.

Example 2.7. Consider

$$A = \left(\frac{D \mid E}{F \mid G}\right) = \left(\begin{array}{ccc} 1.2587 & -0.5874 & -0.1259\\ -0.1259 & 1.2587 & -0.5874\\ -0.5874 & -0.1259 & 1.2587 \end{array}\right)$$

and

S. Jose, K.C. Sivakumar / Linear Algebra and its Applications 439 (2013) 1670–1677

$$B = \left(\frac{P \mid Q}{S \mid T}\right) = \left(\begin{array}{ccc} 8.9616 & -6.8279 \mid -0.5121 \\ -0.5121 & 8.9616 & -6.8279 \\ \hline -6.8279 & -0.5121 & 8.9616 \end{array}\right)$$

Then $A^{-1} \ge 0$ and $B^{-1} \ge 0$. Also $(A/D)^{-1} = \begin{pmatrix} 1.0001 & 0.5001 \\ 0.3334 & 1.0001 \end{pmatrix}$, $(B/T)^{-1} = \begin{pmatrix} 0.2500 & 0.2000 \\ 0.1667 & 0.2500 \end{pmatrix}$ and $(G + P - QT^{-1}S - FD^{-1}E)^{-1} = \begin{pmatrix} 0.1959 & 0.1495 \\ 0.1226 & 0.1959 \end{pmatrix}$ are nonnegative. Thus the conditions in

Theorem 2.4 are satisfied. Also, the inverse of 2-subdirect sum of A and B is

$$(A \oplus_2 B)^{-1} = \begin{pmatrix} 0.8465 & 0.1037 & 0.0894 & 0.0740 \\ 0.0894 & 0.1959 & 0.1495 & 0.1251 \\ 0.1037 & 0.1226 & 0.1959 & 0.1562 \\ 0.0740 & 0.1562 & 0.1251 & 0.2158 \end{pmatrix} \ge 0.$$

Now, consider [6, Example 4.2]. The matrices under consideration are nonsingular *M*-matrices. We see that these matrices fail to satisfy one of the conditions in Theorem 2.4 and hence the 2-subdirect sum is not a nonsingular *M*-matrix.

Example 2.8. Let
$$A = \begin{pmatrix} D & E \\ F & G \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 5 & 0 \\ -1 & -9 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 5 & -9 & -1 \\ 0 & 5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Both *A* and *B* are nonsingular *M*-matrices. Here, we see that $D^{-1} = T^{-1} \ge 0$, $-E = -S \ge 0$ and $-F = -Q \ge 0$.
Also, we have $(A/D)^{-1} = \frac{1}{31} \begin{pmatrix} 9 & 1 \\ 19 & 9 \end{pmatrix} \ge 0$ and $(B/T)^{-1} = \frac{1}{31} \begin{pmatrix} 9 & 19 \\ 1 & 9 \end{pmatrix} \ge 0$. But, $(G + P - FD^{-1}E - QT^{-1}S)^{-1} = \frac{-1}{19} \begin{pmatrix} 9 & 10 \\ 10 & 9 \end{pmatrix} \ge 0$ and hence $(A \oplus_2 B)^{-1} \ge 0$. Thus $A \oplus_2 B$ is not a nonsingular *M*-matrix.

We recall the definition of a regular splitting of a matrix and a characterization of nonnegativity of the inverse of a matrix using such splittings [2]. We use this result to demonstrate a converse of Theorem 2.4.

Definition 2.9. Let $A \in \mathbb{R}^{n \times n}$. The decomposition A = M - N is said to be a regular splitting of A if M is nonsingular, $M^{-1} \ge 0$ and $N \ge 0$.

Theorem 2.10. [2, Theorem 5.6, Chapter 7] Let A = M - N be a regular splitting of $A \in \mathbb{R}^{n \times n}$. Then, $A^{-1} \ge 0$ if and only if $\rho(M^{-1}N) < 1$.

We now prove the second main result of this note. This presents conditions under which a given inverse-positive matrix C can be written as a k-subdirect sum of two inverse-positive matrices A and B, for k > 1.

Theorem 2.11. Let $D \in \mathbb{R}^{n_1 \times n_1}$, $E \in \mathbb{R}^{n_1 \times k}$, $F \in \mathbb{R}^{k \times n_1}$, $Y \in \mathbb{R}^{k \times k}$, $Q \in \mathbb{R}^{k \times n_2}$, $S \in \mathbb{R}^{n_2 \times k}$ and $T \in \mathbb{R}^{n_2 \times n_2}$ with D, T and Y nonsingular. Let $D^{-1} \ge 0$, $Y^{-1} \ge 0$, $T^{-1} \ge 0$, $-E \ge 0$, $-F \ge 0$, $-Q \ge 0$ and $-S \ge 0$. Further, assume that $\rho(Y^{-1}QT^{-1}S) < 1 - \rho(Y^{-1}FD^{-1}E)$. Let

1674

$$C = \begin{pmatrix} D & E & 0 \\ F & Y & Q \\ 0 & S & T \end{pmatrix}$$

be an inverse positive matrix (of size $n = n_1 + n_2 + k$). Then there exist real numbers a, b such that 0 < a, b < 1 and for G = aY, P = bY, G + P = Y, $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix} \in \mathbb{R}^{(n_1+k)\times(n_1+k)}$, $B = \begin{pmatrix} P & Q \\ S & T \end{pmatrix} \in \mathbb{R}^{(k+n_2)\times(k+n_2)}$ are inverse-positive with $C = A \oplus_k B$.

Proof. For any nonzero real number *r*, take G = rY. Then the determinant of the matrix $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$ is a polynomial in *r* of degree at most *k*. Let Z_A be the set of all real zeros of this polynomial. Similarly, let Z_B be the set of all real zeros of the polynomial obtained from the determinant of $B = \begin{pmatrix} P & Q \\ S & T \end{pmatrix}$ by taking P = sY for $s \neq 0$. Note that Z_A and Z_B may be empty due to the fact that the polynomials above

taking P = sY, for $s \neq 0$. Note that Z_A and Z_B may be empty due to the fact that the polynomials above may not have real zeros.

Choose $a \in (\mathbb{R} \setminus Z_A) \cap (0, 1)$ such that $1 - a \in (\mathbb{R} \setminus Z_B) \cap (0, 1)$, $a > \rho(Y^{-1}FD^{-1}E)$ and $1 - a > \rho(Y^{-1}QT^{-1}S)$. This is possible since both Z_A and Z_B are finite sets and $\rho(Y^{-1}FD^{-1}E) < 1$. Set b = 1 - a. By setting G = aY and P = bY, we obtain the invertibility of A and B. Also, we have G + P = Y and hence $C = A \oplus_k B$.

Consider the Schur complement of D in A, $A/D = G - FD^{-1}E$. Then $A/D = M_1 - N_1$ is a regular splitting of A/D where $M_1 = G = aY$ and $N_1 = FD^{-1}E$ with M_1 nonsingular, $M_1^{-1} \ge 0$ and $N_1 \ge 0$. Hence, by Theorem 2.10, $(A/D)^{-1} \ge 0$ as $\rho(M^{-1}N) = \rho\left(\frac{Y^{-1}}{a}FD^{-1}E\right) < 1$. Again, applying Lemma 2.1, it follows that $A^{-1} \ge 0$. In a similar way, we get $B^{-1} \ge 0$. \Box

The following results in [1] can be obtained as consequences of Theorem 2.11. Note that these are the converses of Corollary 2.5 and Corollary 2.6, respectively.

Corollary 2.12. [1, Proposition 9] Let $C = \begin{pmatrix} D & 0 & 0 \\ F & Y & 0 \\ 0 & S & T \end{pmatrix}$ be an inverse-positive matrix with $D^{-1} \ge 0$, $Y^{-1} \ge 0$

 $0, T^{-1} \ge 0, -F \ge 0$ and $-S \ge 0$. Then $C = A \oplus_k B$ for some inverse-positive matrices A and B.

Proof. Proof follows by taking E = 0 and Q = 0 in Theorem 2.11. \Box

Corollary 2.13. [1, Proposition 11] Let $C = \begin{pmatrix} D & 0 & 0 \\ F & Y & Q \\ 0 & 0 & T \end{pmatrix}$ be an inverse-positive matrix with $D^{-1} \ge$

 $0, Y^{-1} \ge 0, T^{-1} \ge 0, -F \ge 0$ and $-Q \ge 0$. Then $C = A \oplus_k B$ for some inverse-positive matrices A and B.

Proof. Set E = 0 and S = 0 in Theorem 2.11. \Box

We illustrate Theorem 2.11 as follows.

Remark 2.15. The conditions provided in the above Theorem 2.11 are sufficient but not necessary, as shown by the following example.

Example 2.16. Let
$$C = \begin{pmatrix} D & E & 0 \\ F & Y & Q \\ 0 & S & T \end{pmatrix} = \begin{pmatrix} 0 & 0 & 6 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 1 & 0 \\ 3 & 0 & -1 \end{pmatrix} \oplus_2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A \oplus_2 B.$$

Here *C* is an inverse-positive matrix of the form as in the right-hand side of Eq. (1). Also, $C^{-1} =$ $\frac{1}{6} \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A^{-1} = \frac{1}{18} \begin{pmatrix} 1 & 0 & 6 \\ 0 & 18 & 0 \\ 3 & 0 & 0 \end{pmatrix} \text{ and } B^{-1} = I \text{ are nonnegative. However, } C \text{ does not satisfy any } A^{-1} = I \text{ are nonnegative. However, } C \text{ does not satisfy any } A^{-1} = I \text{ are nonnegative. However, } C \text{ does not satisfy any } C \text{ does not$

of the conditions of Theorem 2.11.

1676

Acknowledgement

The authors thank the referee for suggestions that have led to an improved presentation of the results.

References

- [1] M.F. Abad, M.T. Gassó, J.R. Torregrosa, Some results about inverse-positive matrices, Appl. Math. Comput. 218 (2011) 130-139.
- [2] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
- [3] R. Bru, F. Pedroche, D.B. Szyld, Subdirect sums of nonsingualr M-matrices and of their inverses, Electron. J. Linear Algebra 13 (2005) 162-174.
- [4] L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York, 1966.
- [5] D. Carlson, What are Schur complements, anyway?, Linear Algebra Appl. 74 (1986) 257–275.
- [6] S.M. Fallat, C.R. Johnson, Sub-direct sums and positive classes of matrices, Linear Algebra Appl. 288 (1999) 149-173.
- [7] C.R. Johnson, Matrix completion problems: a survey, Proc. Sympos. Appl. Math. 40 (1990) 171–198.
- [8] A. Toselli, O. Widlund, Domain decomposition methods: algorithms and theory, in: Series in Computational Mathematics, vol. 34, Springer, New York, 2005.
- [9] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.