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1. Introduction

Let R, Rn and Rm×n denote the set of all real numbers, the n-dimensional Euclidean space and the

set of allm×nmatricesoverR, respectively.Wedenoteρ(A)as the spectral radiusofA ∈ Rn×n, namely

ρ(A) is the maximum of the absolute values of the eigenvalues of A. For x = (x1, x2, . . . , xn) ∈ Rn,

we say that x is nonnegative, i.e., x � 0 if and only if xi � 0 for all i = 1, 2, . . . , n. A matrix B is

said to be nonnegative, denoted as B � 0, if all its entries are nonnegative and A ∈ Rn×n is said to be

inverse-positive if A−1 is nonnegative. It is known that [4], for a A ∈ Rn×n, A−1 exists and A−1 � 0 if

and only if Ax � 0 ⇒ x � 0.

A matrix A ∈ Rn×n is called a Z-matrix if the off-diagonal entries of A are non-positive. Such a

matrix can be written as A = sI − B, where B � 0 and s > 0. A is called an M-matrix if s � ρ(B). If
s > ρ(B), thenA is anonsingularM-matrix. It iswell knownthat anZ-matrixA ∈ Rn×n is anonsingular

M-matrix if and only if A is inverse-positive. One can refer to [2] and [9] for various characterizations

of M-matrices.

Next, we review the notion of the sub-direct sum of matrices. The concept of the sub-direct sum

was proposed by Fallat and Johnson [6]. This is a generalization of the normal sumand the direct sumof
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matrices. This concept has applications in matrix completion problems and overlapping subdomains

in domain decomposition methods [7,8]. It also arises when one studies the structure of different

positivity classes of matrices, for example, positive definite matrices or P-matrices. Let us recall the

definition.

Definition 1.1. Let A =
⎛
⎝ D E

F G

⎞
⎠ and B =

⎛
⎝ P Q

S T

⎞
⎠, where D ∈ R(m−k)×(m−k), E ∈ R(m−k)×k ,

F ∈ Rk×(m−k), Q ∈ Rk×(n−k), S ∈ R(n−k)×k , T ∈ R(n−k)×(n−k) and G, P ∈ Rk×k . The k-subdirect sum

of A and B is denoted as A ⊕k B and is defined as

A ⊕k B =
⎛
⎜⎜⎝

D E 0

F G + P Q

0 S T

⎞
⎟⎟⎠ . (1)

Note that A ⊕k B is a square matrix of size m + n − k. When k = 0, the sub-direct sum reduces

to the usual direct sum of matrices. The case k = 1 (1-subdirect sum) is treated separately from the

cases k > 1 as their properties are qualitatively different.

The authors of [6] analyze properties ofmany of the positivity classes ofmatricesmentioned earlier

under the sub-direct sum operation. In this connection, it is known that the 1-subdirect sum of two

nonsingularM-matrices is again anonsingularM-matrixwhile the k-subdirect sumof twononsingular

M-matrices is not a nonsingular M-matrix for k �= 1. On the other hand, any nonsingular M-matrix

can be written as a k-subdirect sum of two nonsingular M-matrices for any value of k. In [3], Bru et

al. provide certain sufficient conditions for the the sub-direct sum of nonsingular M-matrices to be

a nonsingular M-matrix. They also consider the sub-direct sum of inverses of matrices and obtain

conditions for it to be nonsingular.

Recently, Abad et al. in [1] consider the same question for the class of all inverse-positive matrices,

forwhich the set of allM-matrices is a subclass. They show that the 1-subdirect sumof inverse-positive

matrices is again an inverse positive matrix whereas the k-subdirect sum does not have that property

(see [1, Example 1]). Only certain special cases of inverse-positive matrices have inverse-positive k-

subdirect sums. Corresponding converses are also obtained in [1], but the general case was left as an

open problem. Specifically, the question of the inverse positivity of a k-subdirect sum of two inverse-

positive matrices was left open. Another related question is to write an inverse-positive matrix of the

particular form given by (1) as a k-subdirect sum of matrices for k > 1. Note that this latter assertion

holds for the case of nonsingular M-matrices. That is, any nonsingular M-matrix can be written as a

k-subdirect sum of M-matrices as mentioned earlier.

In this short note, we provide certain conditions under which the k-subdirect sum of inverse-

positivematrices is inverse-positive. This is done in Theorem2.4.We also present sufficient conditions

for the converse to hold. In other words, if a matrix is inverse-positive, we prove that it can be written

as a k-subdirect sum of inverse-positive matrices, in the presence of certain assumptions. This is

presented in Theorem 2.11.We consider the case when k �= 1 as for the 1-subdirect sum, these results

are known [1]. We tackle the problem in its full generality by assuming that the individual summand

matrices have non-trivial blocks. We deduce the corresponding results presented in [1] as immediate

consequences of our results. We observe that the results presented here can also be extended to the

case of Moore–Penrose inverses.

2. Main results

Let

A =
⎛
⎝ D E

F G

⎞
⎠
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be in Rm×m where D ∈ Rk×k and nonsingular. The Schur complement of D in A, denoted by A/D, is
thematrix G− FD−1E. Note that in a similar way, we can define A/G = D− EG−1F , if G is nonsingular.

The following results about block matrices are used in the proofs of our main results.

Lemma 2.1. Let D ∈ R(m−k)×(m−k) and G ∈ Rk×k with D nonsingular and D−1 � 0. Also, let E ∈
R(m−k)×k and F ∈ Rk×(m−k) where −E � 0 and −F � 0. Let A =

⎛
⎝ D E

F G

⎞
⎠. Then

(i) detA �= 0 if and only if det (A/D) �= 0.

(ii) A−1 � 0 if and only if (A/D)−1 � 0.

Proof. (i) Wehave [5], detA =detD det (A/D). Thus, whenD is nonsingular, A is nonsingular if and

only if A/D is nonsingular.

(ii) It can be verified by direct calculations that

A−1 =
⎛
⎝ D−1 + D−1E(A/D)−1FD−1 −D−1E(A/D)−1

−(A/D)−1FD−1 (A/D)−1

⎞
⎠ .

From the expression for A−1, it follows that A−1 � 0 if and only if (A/D)−1 � 0. �

The next result is similar to the result above. We skip the proof.

Lemma 2.2. Let P ∈ Rk×k and T ∈ R(n−k)×(n−k) with T nonsingular and T−1 � 0. Also, let Q ∈
Rk×(n−k) and S ∈ R(n−k)×k where −Q � 0 and −S � 0. Let B =

⎛
⎝ P Q

S T

⎞
⎠. Then

(i) detB �= 0 if and only if det (B/T) �= 0.

(ii) B−1 � 0 if and only if (B/T)−1 � 0.

Next, we prove a determinant formula that we use in Theorem 2.4.

Lemma 2.3. Let C =

⎛
⎜⎜⎜⎝

D E 0

F Y Q

0 S T

⎞
⎟⎟⎟⎠ where D and T are nonsingular. Then det C = det D det T det (Y −

FD−1E − QT−1S).

Proof. Let C =
⎛
⎝ X Q̃

S̃ T

⎞
⎠, where X =

⎛
⎝ D E

F Y

⎞
⎠, Q̃ =

⎛
⎝ 0

Q

⎞
⎠ and S̃ =

(
0 S

)
. We have det C =

det T det (C/T), where C/T = X − Q̃T−1S̃

Now, X − Q̃T−1S̃ =
⎛
⎝ D E

F Y

⎞
⎠ −

⎛
⎝ 0

Q

⎞
⎠ T−1

(
0 S

)
=

⎛
⎝ D E

F Y − QT−1S

⎞
⎠. Again, we have det (X −

Q̃T−1S̃) = det D det
(
(X − Q̃T−1S̃)/D

) = det D det (Y − QT−1S − FD−1E). �

We state the first main result of this note below. This result presents a sufficient condition for the

inverse-positivity of k-subdirect sum of inverse-positive matrices.
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Theorem 2.4. Let A =
⎛
⎝ D E

F G

⎞
⎠ and B =

⎛
⎝ P Q

S T

⎞
⎠ be inverse-positive matrices of orders m and n

respectively, where D ∈ R(m−k)×(m−k), E ∈ R(m−k)×k, F ∈ Rk×(m−k), Q ∈ Rk×(n−k), S ∈ R(n−k)×k,

T ∈ R(n−k)×(n−k) and G, P ∈ Rk×k with D−1 � 0, T−1 � 0, −E � 0, −F � 0, −Q � 0, −S �
0, (A/D)−1 � 0 and (B/T)−1 � 0. If, in addition, (G+P−FD−1E−QT−1S)−1 exists and is nonnegative,

then (A ⊕k B)−1 � 0.

Proof. Let C = A⊕k B. From Lemma 2.3, we have the formula: detC=detD detT det (G+P− FD−1E−
QT−1S). Hence, from the assumptions of the theorem, it follows that C is nonsingular.

Let C(x1, x2, x3) ∈ Rm−k+ × Rk+ × Rn−k+ , where Rj
+ is the nonnegative orthant in Rj . We show

that (x1, x2, x3) ∈ Rm−k+ × Rk+ × Rn−k+ . Then D(x1 + D−1Ex2) = Dx1 + Ex2 � 0. This implies that

x1 + D−1Ex2 � 0 as D−1 � 0. Similarly, T−1Sx2 + x3 � 0 since T(T−1Sx2 + x3) = Sx2 + Tx3 � 0

and T−1 � 0.

Again, consider Dx1 + Ex2 = u1 � 0. Then, Dx1 = −Ex2 + u1 and hence x1 = −D−1Ex2 +D−1u1.

Therefore, Fx1 = −FD−1Ex2 + FD−1u1. In a similar way, we get Qx3 = −QT−1Sx2 + QT−1u3, where

u3 � 0. Substituting for Fx1 and Qx3 in Fx1 + (G + P)x2 + Qx3, we get 0 � Fx1 + (G + P)x2 + Qx3 =
(G + P − FD−1E − QT−1S)x2 + FD−1u1 + QT−1u3.

Now, u1 � 0 and D−1 � 0 imply that D−1u1 � 0 and so −FD−1u1 � 0 as −F � 0. Using similar

arguments, we get −QT−1u3 � 0. Thus, we get (G + P)x2 � 0. Since (G + P)−1 � 0, we get x2 � 0.

Again, x2 � 0, −E � 0 and D−1 � 0 imply that −D−1Ex2 � 0. This in turn implies that x1 � 0 as

x1 + D−1Ex2 � 0. Using similar arguments, we get x3 � 0. Hence the theorem. �

Next, we show that certain results of [1] can be obtained as corollaries of our result.

Corollary 2.5. [1, Proposition 8] Let A =
⎛
⎝ D 0

F G

⎞
⎠ and B =

⎛
⎝ P 0

S T

⎞
⎠ be inverse-positive matrices with

D−1 � 0, G−1 � 0, P−1 � 0, T−1 � 0, −F � 0 and −S � 0. If the matrix G + P is inverse-positive,

then C = A ⊕k B is inverse-positive.

Proof. The proof follows from Theorem 2.4 by taking E = 0 and Q = 0. �

Corollary 2.6. [1, Proposition 10] Let A =
⎛
⎝ D 0

F G

⎞
⎠ and B =

⎛
⎝ P Q

0 T

⎞
⎠ be inverse-positive matrices with

D−1 � 0, G−1 � 0, P−1 � 0, T−1 � 0, −F � 0 and −Q � 0. In addition, if G + P is inverse-positive,

then A ⊕k B is inverse-positive.

Proof. Taking E = 0 and S = 0 in Theorem 2.4, we get the result. �

The following examples illustrate Theorem 2.4.

Example 2.7. Consider

A =
(
D E

F G

)
=

⎛
⎜⎝ 1.2587 −0.5874 −0.1259

−0.1259 1.2587 −0.5874

−0.5874 −0.1259 1.2587

⎞
⎟⎠

and



1674 S. Jose, K.C. Sivakumar / Linear Algebra and its Applications 439 (2013) 1670–1677

B =
(
P Q

S T

)
=

⎛
⎜⎝ 8.9616 −6.8279 −0.5121

−0.5121 8.9616 −6.8279

−6.8279 −0.5121 8.9616

⎞
⎟⎠ .

Then A−1 � 0 and B−1 � 0. Also (A/D)−1 =
⎛
⎝ 1.0001 0.5001

0.3334 1.0001

⎞
⎠, (B/T)−1 =

⎛
⎝ 0.2500 0.2000

0.1667 0.2500

⎞
⎠

and (G + P − QT−1S − FD−1E)−1 =
⎛
⎝ 0.1959 0.1495

0.1226 0.1959

⎞
⎠ are nonnegative. Thus the conditions in

Theorem 2.4 are satisfied. Also, the inverse of 2-subdirect sum of A and B is

(A ⊕2 B)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8465 0.1037 0.0894 0.0740

0.0894 0.1959 0.1495 0.1251

0.1037 0.1226 0.1959 0.1562

0.0740 0.1562 0.1251 0.2158

⎞
⎟⎟⎟⎟⎟⎟⎠

� 0.

Now, consider [6, Example 4.2]. Thematrices under consideration are nonsingularM-matrices. We

see that these matrices fail to satisfy one of the conditions in Theorem 2.4 and hence the 2-subdirect

sum is not a nonsingular M-matrix.

Example 2.8. Let A =
(
D E

F G

)
=

⎛
⎜⎝ 2 −1 −1

−1 5 0

−1 −9 5

⎞
⎟⎠ and B =

⎛
⎜⎝ 5 −9 −1

0 5 −1

−1 −1 2

⎞
⎟⎠. Both A and B are

nonsingular M-matrices. Here, we see that D−1 = T−1 � 0, −E = −S � 0 and −F = −Q � 0.

Also, we have (A/D)−1 = 1
31

⎛
⎝ 9 1

19 9

⎞
⎠ � 0 and (B/T)−1 = 1

31

⎛
⎝ 9 19

1 9

⎞
⎠ � 0. But, (G+ P − FD−1E −

QT−1S)−1 = −1
19

⎛
⎝ 9 10

10 9

⎞
⎠ � 0andhence (A⊕2B)

−1 � 0. ThusA⊕2B is not anonsingularM-matrix.

We recall the definition of a regular splitting of a matrix and a characterization of nonnegativity

of the inverse of a matrix using such splittings [2]. We use this result to demonstrate a converse of

Theorem 2.4.

Definition 2.9. Let A ∈ Rn×n. The decomposition A = M − N is said to be a regular splitting of A ifM

is nonsingular, M−1 � 0 and N � 0.

Theorem 2.10. [2, Theorem 5.6, Chapter 7] Let A = M − N be a regular splitting of A ∈ Rn×n. Then,

A−1 � 0 if and only if ρ(M−1N) < 1.

We now prove the second main result of this note. This presents conditions under which a given

inverse-positive matrix C can be written as a k-subdirect sum of two inverse-positive matrices A and

B, for k > 1.

Theorem 2.11. Let D ∈ Rn1×n1 , E ∈ Rn1×k, F ∈ Rk×n1 , Y ∈ Rk×k,Q ∈ Rk×n2, S ∈ Rn2×k and

T ∈ Rn2×n2 with D, T and Y nonsingular. Let D−1 � 0, Y−1 � 0, T−1 � 0, −E � 0, −F � 0, −Q � 0

and −S � 0. Further, assume that ρ(Y−1QT−1S) < 1 − ρ(Y−1FD−1E). Let
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C =

⎛
⎜⎜⎜⎝

D E 0

F Y Q

0 S T

⎞
⎟⎟⎟⎠

be an inverse positive matrix (of size n = n1 + n2 + k). Then there exist real numbers a, b such that

0 < a, b < 1 and for G = aY, P = bY, G + P = Y, A =
⎛
⎝ D E

F G

⎞
⎠ ∈ R(n1+k)×(n1+k), B =

⎛
⎝ P Q

S T

⎞
⎠ ∈

R(k+n2)×(k+n2) are inverse-positive with C = A⊕kB .

Proof. For any nonzero real number r, take G = rY . Then the determinant of the matrix A =
⎛
⎝ D E

F G

⎞
⎠

is a polynomial in r of degree at most k. Let ZA be the set of all real zeros of this polynomial. Similarly,

let ZB be the set of all real zeros of the polynomial obtained from the determinant of B =
⎛
⎝ P Q

S T

⎞
⎠ by

taking P = sY , for s �= 0. Note that ZA and ZB may be empty due to the fact that the polynomials above

may not have real zeros.

Choose a ∈ (R \ ZA) ∩ (0, 1) such that 1 − a ∈ (R \ ZB) ∩ (0, 1), a > ρ(Y−1FD−1E) and

1 − a > ρ(Y−1QT−1S). This is possible since both ZA and ZB are finite sets and ρ(Y−1FD−1E) < 1.

Set b = 1 − a. By setting G = aY and P = bY , we obtain the invertibility of A and B. Also, we have

G + P = Y and hence C = A ⊕k B.

Consider the Schur complement of D in A, A/D = G − FD−1E. Then A/D = M1 − N1 is a regular

splitting of A/D where M1 = G = aY and N1 = FD−1E with M1 nonsingular, M
−1
1 � 0 and N1 � 0.

Hence, byTheorem2.10, (A/D)−1 � 0asρ(M−1N) = ρ
(
Y−1

a
FD−1E

)
< 1.Again, applyingLemma2.1,

it follows that A−1 � 0. In a similar way, we get B−1 � 0. �

The following results in [1] can be obtained as consequences of Theorem 2.11. Note that these are

the converses of Corollary 2.5 and Corollary 2.6, respectively.

Corollary 2.12. [1, Proposition9] Let C =

⎛
⎜⎜⎜⎝

D 0 0

F Y 0

0 S T

⎞
⎟⎟⎟⎠bean inverse-positivematrixwithD−1 � 0, Y−1 �

0, T−1 � 0, −F � 0 and −S � 0. Then C = A ⊕k B for some inverse-positive matrices A and B.

Proof. Proof follows by taking E = 0 and Q = 0 in Theorem 2.11. �

Corollary 2.13. [1, Proposition 11] Let C =

⎛
⎜⎜⎜⎝

D 0 0

F Y Q

0 0 T

⎞
⎟⎟⎟⎠ be an inverse-positive matrix with D−1 �

0, Y−1 � 0, T−1 � 0, −F � 0 and −Q � 0. Then C = A⊕k B for some inverse-positive matrices A and

B.

Proof. Set E = 0 and S = 0 in Theorem 2.11. �

We illustrate Theorem 2.11 as follows.
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Example 2.14. Consider the matrix C =
⎛
⎜⎝D E 0

F Y Q

0 S T

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0

7 −3 0 −1 0 0

−1 0 −3 8 −1 0

0 0 7 −2 0 0

0 0 0 0 −2 1

0 0 0 −1 7 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We have, C−1 = 1
36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

129 43 7 3 21 7

294 86 14 6 42 14

6 2 2 6 6 2

21 7 7 3 21 7

21 7 7 3 129 43

42 14 14 6 294 86

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0. Also, S = E � 0,Q = F � 0 and T = D. Again,

D−1 = T−1 =
⎛
⎝ 3 7

1 2

⎞
⎠ � 0, Y−1 = 1

50

⎛
⎝ 2 8

7 3

⎞
⎠ � 0 and ρ(Y−1FD−1E) = ρ(Y−1QT−1S) = 7

50
.

Thus, ρ(Y−1FD−1E) < 1 − ρ(Y−1QT−1S). Hence, the conditions of Theorem 2.11 are satisfied.

Now, we have ZA = {0} and ZB = {0, 43
50

}. Choose a = b = 1
2
. Clearly, a > ρ(Y−1FD−1E) and

b > ρ(Y−1QT−1S). Now, take G = 1
2
Y, P = 1

2
Y , A =

(
D E

F G

)
=

⎛
⎜⎜⎜⎜⎜⎝

−2 1 0 0

7 −3 0 −1

−1 0 −3
2

4

0 0 7
2

−1

⎞
⎟⎟⎟⎟⎟⎠ and B =

(
P Q

S T

)
=

⎛
⎜⎜⎜⎜⎜⎝

−3
2

4 −1 0

7
2

−1 0 0

0 0 −2 1

0 −1 7 −3

⎞
⎟⎟⎟⎟⎟⎠. Then A−1= 1

18

⎛
⎜⎜⎜⎜⎜⎜⎝

75 25 7 3

168 50 14 6

6 2 2 6

21 7 7 3

⎞
⎟⎟⎟⎟⎟⎟⎠

�0, B−1 = 1
18

⎛
⎜⎜⎜⎜⎜⎜⎝

2 6 6 2

7 3 21 7

7 3 75 25

14 6 168 50

⎞
⎟⎟⎟⎟⎟⎟⎠

� 0 and C = A ⊕2 B.

Remark 2.15. The conditions provided in the above Theorem 2.11 are sufficient but not necessary, as

shown by the following example.

Example 2.16. Let C =
⎛
⎜⎝D E 0

F Y Q

0 S T

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 6 0

0 2 0 0

3 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝ 0 0 6

0 1 0

3 0 −1

⎞
⎟⎠ ⊕2

⎛
⎜⎝ 1 0 0

0 1 0

0 0 1

⎞
⎟⎠ = A ⊕2 B.

Here C is an inverse-positive matrix of the form as in the right-hand side of Eq. (1). Also, C−1 =

1
6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 2 0

0 3 0 0

1 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, A−1 = 1

18

⎛
⎜⎜⎜⎝

1 0 6

0 18 0

3 0 0

⎞
⎟⎟⎟⎠ and B−1 = I are nonnegative. However, C does not satisfy any

of the conditions of Theorem 2.11.
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