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a b s t r a c t

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2-
colored) cycles. The acyclic chromatic index of a graph G, denoted by a′(G), is the least
integer k such that G admits an acyclic edge-coloring using k colors. Let ∆ = ∆(G) de-
note the maximum degree of a vertex in a graph G. A complete bipartite graph with n
vertices on each side is denoted by Kn,n. Basavaraju, Chandran and Kummini proved that
a′(Kn,n) ≥ n + 2 = ∆ + 2 when n is odd. Basavaraju and Chandran showed that
a′(Kp,p) ≤ p + 2 which implies a′(Kp,p) = p + 2 = ∆ + 2 when p is an odd prime,
and the main tool in their proof is perfect 1-factorization of Kp,p. In this paper we study
the case of K2p−1,2p−1 which also possess perfect 1-factorization, where p is odd prime. We
show that K2p−1,2p−1 admits an acyclic edge-coloring using 2p + 1 colors and so we get
a′(K2p−1,2p−1) = 2p + 1 = ∆ + 2 when p is an odd prime.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no
two adjacent edges have same color. So it is a map θ : E → C with θ(e) ≠ θ(f ) for any adjacent edges e, f ∈ E, where C is
the set of colors. The chromatic index, denoted byχ ′(G), is theminimumnumber of colors needed to properly color the edges
of G. A proper edge-coloring of G is acyclic if there is no two colored cycle in G. The minimum number of colors required
in an acyclic edge-coloring of G is the acyclic edge chromatic number (also called acyclic chromatic index) and is denoted by
a′(G). The notion of acyclic coloring was first introduced by Grünbaum [7] in 1973, and the concept of acyclic edge-coloring
was first studied by Fiamc̆ík [6]. Let ∆ = ∆(G) be the maximum degree of a vertex in G. It is obvious that any proper edge-
coloring requires at least ∆ colors. Vizing [16] proved that there always exists a proper edge-coloring with ∆ + 1 colors.
Since any acyclic edge coloring is proper, we must have a′(G) ≥ χ ′(G) ≥ ∆. On the other hand, in 1978, Fiamc̆ík [6] (also
Alon, Sudakov and Zaks [1]) posed the following conjecture:

for any graph G, a′(G) ≤ ∆ + 2. (1)

In [1], it was proved that there exists a constant c such that a′(G) ≤ ∆ + 2 for any graph with girth is at least c∆ log∆.
It was also proved in [1] that a′(G) ≤ ∆ + 2 for almost all ∆-regular graphs. Later Něsetřil andWormald [15] improved this
bound and showed that a′(G) ≤ ∆ + 1 for a random regular graph G. In another direction, there have been many results
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giving upper bounds on a′(G) for arbitrary graphs or a class of graphs. Recently, Ndreca et al. obtained a′(G) ≤ 9.62∆ [14]
which is currently the best upperbound for an arbitrary graph G. See [17, Section 3.3] for a nice account of recent results.

The above conjecture (1) was shown to be true for some special classes of graphs. Burnstein [5] showed that a′(G) ≤ 5
when ∆ = 3. Hence the conjecture is true when ∆ ≤ 3. Muthu, Narayanan and Subramanian proved that the conjecture
holds true for grid-like graphs [11] and outerplanner graphs [12]. It has been observed that determining a′(G) is a hard
problem from both theoretical and algorithmic points of view [17, p. 2119]. In fact, we do not yet know the values of a′(G)
for some simple and highly structured graphs like complete graphs and complete bipartite graphs in general. Fortunately,
we can get the exact value of a′(G) for some cases of complete bipartite graphs, thanks to the perfect 1-factorization.

Let Kn,n be the complete bipartite graph with n vertices on each side. The complete bipartite graph Kn,n is said to have a
perfect 1-factorization if the edges of Kn,n can be decomposed into n disjoint perfect matchings such that the union of any
two perfect matchings gives a Hamiltonian cycle. It is known that when n + 2 ∈ {p, 2p − 1, p2}, where p is an odd prime,
or n + 2 < 50 and odd, then Kn+2,n+2 has a perfect 1-factorization (see [4]). One can easily see that if Kn+2,n+2 has a perfect
1-factorization then a′(Kn,n) ≤ a′(Kn+1,n+1) ≤ n + 2. And also we have

a′(Kn,n) ≥ n + 2 = ∆ + 2 when n is odd

due to Basavaraju, Chandran and Kummini [3]. Hence a′(Kn,n) = n + 2 = ∆ + 2 when n + 2 ∈ {p, 2p − 1, p2}. The main
idea here is to give different colors to the edges in different 1-factors in Kn+2,n+2, and removal of two vertices on each side
and their associated edges gives the required edge-coloring of Kn,n. Similarly, by a result of Guldan [8, Corollary 1], we can
also get a′(Kn+1,n+1) = n + 2 = ∆ + 1 when n + 2 ∈ {p, 2p − 1, p2}. But a different approach is needed to deal with
Kn+2,n+2 when n + 2 ∈ {p, 2p − 1, p2}. In 2009, Basavaraju and Chandran [2] proved that a′(Kp,p) = p + 2 = ∆ + 2 for
any odd prime p. The main tool in their approach is again perfect 1-factorization of Kp,p. In the remaining two cases, namely,
n + 2 ∈ {2p − 1, p2} the value of a′(Kn+2,n+2) is not yet known. In this paper we study the case of K2p−1,2p−1 which also
possesses a perfect 1-factorization, where p is odd prime. We show that K2p−1,2p−1 admits an acyclic edge-coloring using
2p + 1 colors.

2. Our result

We state our main result as follows.

Theorem 1. a′(K2p−1,2p−1) = 2p + 1 = ∆ + 2, where p is an odd prime.

We follow the proof technique of [2] to present the proof of Theorem 1. Accordingly we first consider a perfect
1-factorization of K2p−1,2p−1. Next we consider another perfectmatchingwhich satisfies certain conditions. Thenwe present
an edge-coloring of K2p−1,2p−1 using 2p + 1 colors and show that it is acyclic. In general, for odd n if Kn,n possesses a perfect
1-factorization, the difficulty is to identify a suitable perfect matching that can help to get an acyclic edge-coloring of Kn,n
using only n + 2 colors. The main contribution of this paper is to identify such a suitable perfect matching and provide an
acyclic edge-coloring of K2p−1,2p−1 using 2p + 1 colors, where p is an odd prime.

Proof of Theorem 1. We label the vertices of K2p−1,2p−1 on each side with elements of the set I = {1, 2, . . . , 2p − 1} =

Z2p\{0}, and so a perfect matching (1-factor) can be represented by a permutation of the label set I . Let us now present a
perfect 1-factorization of K2p−1,2p−1 using permutations of the label set I . Let Mj be the perfect matching corresponding to
the permutation πj for j ∈ I which we define below. In the definitions of πj below, k ∈ I (=Z2p\{0}) and the operations are
understood to be done modulo 2p (that is in Z2p).

For i = 1, 2, . . . , p − 1, define

π2i(k) =


2i if k = 2i
i + p if k = i
i if k = i + p
2i − k otherwise.

For i = 0, 1, 2, . . . , p − 1 and i ≠
p−1
2 , define

π2i+1(k) =

2i + 1 if k = 2i + 1
k − (2i + 1) if k ≠ 2i + 1 and k is odd
k + (2i + 1) if k is even.

Also

πp(k) = 2p − k = −k.

A perfect 1-factorization of K2p−1,2p−1 is presented in [13, p. 31] applying Laufer’s technique [10] on the formulation of
perfect 1-factorization of the complete bipartite graph K2p given by Kobayashi [9]. The formulation presented above is a
simplemodification of the formulation given in [13, p. 31] to suit our representation. So the decomposition of the edges into
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{Mj : j ∈ I} forms a perfect 1-factorization of K2p−1,2p−1. That is Mj1 ∪ Mj2 forms a Hamiltonian cycle in K2p−1,2p−1 for any
j1, j2 ∈ I with j1 ≠ j2.

We now consider another perfect matching M satisfying the following condition: for j ∈ I there is exactly one edge
common to M andMj. The perfect matchingM that we consider is described below.

The multiplicative group Z∗

2p can be represented by the set {1, 3, 5, . . . , p − 2, p + 2, p + 4, . . . , 2p − 1}. Let x be a
generator of Z∗

2p and let y be its inverse in Z∗

2p. Note that |Z
∗

2p| = order(x) = order(y) = p−1. LetM be the perfect matching
corresponding to the permutation π given by

π(k) =

k + p if k is even
p if k = p
ky + p if k ∈ Z∗

2p.

Claim 1. We have |M ∩ Mj| = 1 for j ∈ I .

Proof. We need to show that for each j ∈ I , there is exactly one k ∈ I such that π(k) = πj(k). By a careful analysis of the
different cases we can check that it is indeed true and the value of k corresponding to each j ∈ I is as given below:

π(p) = p = πp(p)
π(i) = i + p = π2i(i) for i ∈ {2, 4, . . . , p − 1}

π(i + p) = i = π2i(i + p) for i ∈ {1, 3, . . . , p − 2}

π


(2i + 1)x
x − 1 + p


=

(2i + 1)
x − 1 + p

+ p = π2i+1


(2i + 1)x
x − 1 + p


for i ∈ {0, 1, . . . , p − 1}\


p − 1
2


. �

An edge-coloring of K2p−1,2p−1 using 2p + 1 colors:
LetM ′

= M\{(p, p)} and color the edges of K2p−1,2p−1 as follows to get a coloring θ using 2p + 1 colors:

– the edges inM∗

j = Mj\M ′ are colored with cj for j ∈ I;
– the edges inM∗

= M ′
\{(1, y + p)} are colored with c2p;

– the edge (1, y + p) is colored with c2p+1.

Claim 2. The edge-coloring θ is acyclic.

Proof. Obviously θ is a proper edge-coloring. Note that Mj1 ∪ Mj2 forms a Hamiltonian cycle for j1, j2 ∈ I with j1 ≠ j2 as
{Mj : j ∈ I} is a perfect 1-factorization of K2p−1,2p−1. One can easily see that the union M∗

j1
∪ M∗

j2
of the color classes cj1 and

cj2 is a ‘proper’ subset of Mj1 ∪ Mj2 . Therefore there cannot be a cycle involving the edges from the color classes cj1 and cj2
for j1, j2 ∈ I with j1 ≠ j2. Note also that there cannot be any bichromatic cycle involving the color c2p+1 since there is only
one edge colored with c2p+1. So the remaining part is to prove that for j ∈ I there is no cycle in the induced subgraph of the
union M∗

∪ M∗

j of the color classes c2p and cj. For this purpose we now analyze the cycles in the induced subgraph of

M ∪ Mj =


M∗

∪ M∗

p ∪ {(1, y + p)} if j = p
M∗

∪ M∗

j ∪ {(1, y + p), (p, p)} otherwise

for j ∈ I . Observe that |M ∪ Mj| = 4p − 3. In order to the prove the remaining part we show that:

– there is exactly one cycle Cj of length 4(p− 1) in the induced subgraph ofM ∪Mj, and the other edge which is not in the
cycle is the edge inM ∩ Mj;

– the edge (p, p) is in the cycle Cj of M ∪ Mj for j ∈ I with j ≠ p, and in the case where j = p the edge (1, y + p) is in the
cycle Cp ofM ∪ Mp.

First note that the unionM ∪Mj (of two perfect matchings) forms a collection of disjoint cycles, and the cycles ofM ∪Mj

can be seen from the permutation π−1
◦ πj for j ∈ I . The inverse permutation of π is given by

π−1(k) =

k + p if k ∈ Z∗

2p
p if k = p
kx + p if k is even.

We now present some useful identities and then present the cycle structure of the permutations π−1
◦ πj from which we

can see the cycles ofM ∪ Mj, by dividing j’s into four groups.
Since x is a generator of Z∗

2p we get that (p − 2) is the least positive integer such that

1 + x + · · · + xp−2
≡ 0 (mod 2p).

Since x is a generator of Z∗

2p, there exists some t ∈ {1, 2, . . . , p − 2} such that

xt ≡ 2 + p (mod 2p).
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So we get

2xp−1−t
≡ 1 + p (mod 2p).

Then we have

xt ≡ 2 (mod p) and 2xp−1−t
≡ 1 (mod p).

We will use the above identities in the discussion below whenever needed. To present the cycle structure of π−1
◦ πj, a

mapping π−1
◦ πj(vs) = vs+1 is described with a line

vs
πj
−→ us

π−1
−−→ vs+1.

This corresponds to one edge (vs, us) ∈ Mj and another edge (vs+1, us) ∈ M . The next line starts with vs+1 and it is given by

vs+1
πj
−→ us+1

π−1
−−→ vs+2.

So a cycle (v0 v1 v2 . . . , vℓ−1) of length ℓ in π−1
◦ πj corresponds to a cycle of length 2ℓ in the graph K2p−1,2p−1. Note that

the operations on the elements of I are done modulo 2p in the definition of πj’s and π .
Case 1: j = p.

In this caseM ∩ Mp = {(p, p)} and so we get π−1
◦ πj(p) = p, that is p is the only fixed element in π−1

◦ πp. Let us look
at the cycle containing 1 in π−1

◦ πp.

1
πp
−→ −1

π−1
−−→ −1 + p

−1 + p
πp
−→ 1 + p

π−1
−−→ (1 + p)x + p ≡ x (mod 2p)

x
πp
−→ −x

π−1
−−→ −x + p

−x + p
πp
−→ x + p

π−1
−−→ (x + p)x + p ≡ x2 (mod 2p)

...
...

...
...

...

xp−2 πp
−→ −xp−2 π−1

−−→ −xp−2
+ p

−xp−2
+ p

πp
−→ xp−2

+ p = y + p
π−1
−−→ xp−1

≡ 1 (mod 2p).

Observe that {xr : 0 ≤ r ≤ p − 2} = Z∗

2p as x is a generator of Z∗

2p, and so {xr , −xr + p : 0 ≤ r ≤ p − 2} = I\{p}.
Therefore the cycle is of length 2(p−1), and so the corresponding cycle Cp in the graph K2p−1,2p−1 is of length 4(p−1). Note
also that the edge (1, y + p) ∈ M is in the cycle Cp.
Case 2: j = 2i for i ∈ {2, 4, . . . , p − 1}.

In this case M ∩ M2i = {(i, i + p)} and so we get π−1
◦ π2i(i) = i, that is i is the only fixed element in π−1

◦ πj. Let us
look at the cycle containing p in π−1

◦ πj.

p
π2i
−→ 2i − p

π−1
−−→ 2i

2i
π2i
−→ 2i

π−1
−−→ 2ix + p ≡ ixt+1

+ p (mod 2p)

ixt+1
+ p

π2i
−→ 2i − ixt+1

− p
π−1
−−→ 2i − ixt+1

2i − ixt+1 π2i
−→ ixt+1 π−1

−−→ ixt+2
+ p

...
...

...
...

...

ixp−2
+ p

π2i
−→ 2i − ixp−2

+ p
π−1
−−→ 2i − ixp−2

2i − ixp−2 π2i
−→ ixp−2 π−1

−−→ ixp−1
+ p ≡ i + p (mod 2p)

i + p
π2i
−→ i

π−1
−−→ ix + p

ix + p
π2i
−→ 2i − ix − p

π−1
−−→ 2i − ix

2i − ix
π2i
−→ ix

π−1
−−→ ix2 + p

...
...

...
...

...

ixt−1
+ p

π2i
−→ 2i − ixt−1

+ p
π−1
−−→ 2i − ixt−1

2i − ixt−1 π2i
−→ ixt−1 π−1

−−→ ixt + p

ixt + p ≡ 2i + p (mod 2p)
π2i
−→ p

π−1
−−→ p.
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Observe that S1 = {ixr + p (mod 2p) : 0 ≤ r ≤ p − 2} = Z∗

2p as i is even. One can check that S2 = {2i − ixr (mod 2p) :

1 ≤ r ≤ p − 2 and r ≠ t} are distinct even numbers and also |S1 ∪ S2 ∪ {2i, p}| = 2(p − 1). Therefore the cycle is of length
2(p− 1), and so the corresponding cycle C2i in the graph K2p−1,2p−1 is of length 4(p− 1). Note also that the edge (p, p) ∈ M
is in the cycle C2i.
Case 3: j = 2i for i ∈ {1, 3, . . . , p − 3}.

In this caseM ∩M2i = {(i+ p, i)} and so we get π−1
◦πj(i+ p) = i+ p, that is i+ p is the only fixed element in π−1

◦πj.
Let us look at the cycle containing p in π−1

◦ πj.

p
π2i
−→ 2i − p

π−1
−−→ 2i

2i
π2i
−→ 2i

π−1
−−→ 2ix + p ≡ ixt+1 (mod 2p)

ixt+1 π2i
−→ 2i − ixt+1 π−1

−−→ 2i − ixt+1
+ p

2i − ixt+1
+ p

π2i
−→ ixt+1

+ p
π−1
−−→ ixt+2

...
...

...
...

...

ixp−2 π2i
−→ 2i − ixp−2 π−1

−−→ 2i − ixp−2
+ p

2i − ixp−2
+ p

π2i
−→ ixp−2

+ p
π−1
−−→ ixp−1

≡ i (mod 2p)

i
π2i
−→ i + p

π−1
−−→ (i + p)x + p ≡ ix (mod 2p)

ix
π2i
−→ 2i − ix

π−1
−−→ 2i − ix + p

2i − ix + p
π2i
−→ ix + p

π−1
−−→ ix2

...
...

...
...

...

ixt−1 π2i
−→ 2i − ixt−1 π−1

−−→ 2i − ixt−1
+ p

2i − ixt−1
+ p

π2i
−→ ixt−1

+ p
π−1
−−→ ixt

ixt ≡ 2i + p (mod 2p)
π2i
−→ p

π−1
−−→ p.

Observe that S1 = {ixr : 0 ≤ r ≤ p−2} = Z∗

2p as i is odd. One can check that S2 = {2i− ixr +p : 1 ≤ r ≤ p−2 and r ≠ t}
are distinct even numbers and also |S1 ∪ S2 ∪ {2i, p}| = 2(p − 1). Therefore the cycle is of length 2(p − 1), and so the
corresponding cycle C2i in the graph K2p−1,2p−1 is of length 4(p − 1). Note also that the edge (p, p) ∈ M is in the cycle C2i.

Case 4: j = 2i + 1 for i ∈ {0, 1, . . . , p − 1} with i ≠
p−1
2 .

In this case M ∩ M2i+1 = {(
jx

x−1+p ,
j

x−1+p + p)} and so we get π−1
◦ πj(

jx
x−1+p ) =

jx
x−1+p , that is

jx
x−1+p is the only fixed

element in π−1
◦ πj. Let us now look at the cycle containing p in π−1

◦ πj.

p
πj
−→ p − j

π−1
−−→ (p − j)x + p ≡ −jx (mod 2p)

−jx
πj
−→ −jx − j

π−1
−−→ (−jx − j)x + p = −j(x2 + x) + p

−j(x2 + x) + p
πj
−→ −j(x2 + x + 1) + p

π−1
−−→ −j(x3 + x2 + x)

−j(x3 + x2 + x)
πj
−→ −j(x3 + x2 + x + 1)

π−1
−−→ −j(x4 + x3 + x2 + x) + p

...
...

...
...

...

−j(xp−4
+ · · · + x)

πj
−→ −j(xp−4

+ · · · + 1)
π−1
−−→ −j(xp−3

+ · · · + x) + p

−j(xp−3
+ · · · + x) + p

πj
−→ −j(xp−3

+ · · · + 1) + p
π−1
−−→ −j(xp−2

+ · · · + x) ≡ j (mod 2p)

j
πj
−→ j

π−1
−−→ j + p

j + p
πj
−→ 2j + p

π−1
−−→ 2j

2j
πj
−→ 3j

π−1
−−→ 3j + p

3j + p
πj
−→ 4j + p

π−1
−−→ 4j

...
...

...
...

...

(p − 2)j + p
πj
−→ (p − 1)j + p

π−1
−−→ (p − 1)j

(p − 1)j
πj
−→ pj ≡ p (mod 2p)

π−1
−−→ p.
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Observe that the elements in S1 = {j + p, 2j, 3j + p, 4j, . . . , (p − 2)j + p} = {r(j + p) mod 2p : 1 ≤ r ≤ p − 1} are the
distinct even numbers in I . Also the other elements S2 = {−jx, −j(x2 + x) + p, −j(x3 + x2 + x), . . . ,−j(xp−3

+ · · · + x) +

p, −j(xp−2
+ · · · + x) = j, p} are distinct (all are odd numbers). The missing element in this list is jx

x−1+p which is the fixed
element in π−1

◦ πj. Therefore the cycle is of length 2(p − 1), and so the corresponding cycle C2i+1 in the graph K2p−1,2p−1
is of length 4(p − 1). Note also that the edge (p, p) ∈ M is in the cycle C2i+1. Hence the proof. �

Remark 1. For an odd prime p, if G is a graph obtained by removing just one edge from K2p−1,2p−1 then a′(G) = 2p = ∆+1.
This is also true even if one deletes any number of edges between 1 and 2p − 3 from K2p−1,2p−1. The proof is similar to the
proof of [2, Theorem 2].
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