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Abstract

We study a one-parameter family (` = 1, 2, 3, . . .) of configurations
that are square-ice analogues of plane partitions. Using an algorithm due
to Bratley and McKay, we carry out exact enumerations in order to study
their asymptotic behaviour and establish, via Monte Carlo simulations as
well as explicit bounds, that the asymptotic behaviour is similar to that
of plane partitions. We finally carry out a series analysis and provide
independent estimates for the asymptotic behaviour.
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1 Introduction

A seller of oranges arranges his oranges in the following fashion. The top layer
has a row of ` (= 1, 2, 3, . . .) oranges, the second layer has oranges forming a
2 × (` + 1) rectangle and in the k-th layer, the oranges form a k × (k + ` − 1)
rectangle (see Figure 1). We call the parameter ` the width of a configuration.
Assuming that there are infinitely many layers, in how many ways can one remove
n oranges without upsetting any other oranges? Denote this by number by a`(n).
We study properties of the sequences a`(n) in the paper.

Figure 1: A stack with five layers of oranges and width ` = 3.

In an alternative definition of the same problem in terms of height functions
(as given in section 2), one observes that the local conditions on the height
function are the same as those for plane and pyramid partitions. Propp in a
post in the domino forum [1] in August 2014 asked whether one can find explicit
formulae for the generating functions as is known in the case of plane and pyramid
partitions [2, 3, 4]. The reformulation in terms of stacking oranges is due to R.
Kenyon and the variant involving the number of oranges is due to Young [1].

In this paper, we address this issue by explicitly generating numbers for width
a`(n) for ` = 1, 2, . . . , 6 by adapting an algorithm due to Bratley-McKay [5]. We
have been unable to find an explicit formula for the generating function. In the
absence of a formula for the generating function, we address the following two
questions in this paper.

1. For fixed n, what are the properties of a`(n)?

2. For fixed width `, what is the asymptotic behaviour of a`(n)?
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The organisation of the the paper is as follows. After the introductory section
where we state the problem at hand, in section 2, we give a formal definition of the
problem and study the properties of a`(n) for fixed n. We obtain an interesting
conjecture for ` ≥ dn/2e. In section 3, we first set upper and lower bounds
on a`(n) and numerically estimate the asymptotic behaviour using transition
matrix Monte Carlo simulations for ` ∈ [1, 6]. In section 4, we analyse the
series of numbers obtained from exact enumeration to independently estimate the
asymptotic behaviour as well as extrapolate the sequence of coefficients in order
to obtain the next ten coefficients for a1(n). We conclude with a few remarks
in section 5. Appendix A tabulates the results of our exact enumerations. In
appendix B, we introduce a sub-class of plane partitions that appears naturally
in this work and set bounds on the asymptotic behaviour of these restricted plane
partitions.

2 Definitions and exact results

Definition: Let v = (x, y) ∈ Z2 and for fixed ` = 1, 2, 3, . . ., following [1] define

h
(`)
0 (v) =


|x|+ |y| x < 0

|x+ y| 0 ≤ x < `

|y + `− 1|+ |x− `+ 1| x ≥ `

.

The height function h on Z2 is an integer-valued function that agrees with h
(`)
0

almost everywhere (i.e., at all but finitely many places), is greater than or equal to

h
(`)
0 everywhere, and satisfies the condition that if u and v are adjacent locations

in Z2, |h(u)− h(v)| = 1. The last condition is called the ice rule.
Definition: Define the volume of the height function as follows:

n :=
∑

(x,y)∈Z2

1

2

(
h(x, y)− h(`)0 (x, y)

)
. (1)

Definition: Let a`(n) denote the number of height functions with volume n for
an initial configuration of width `.

2.1 The reduced height function

Definition: Define the reduced height function (on Z2) as follows:

r(x, y) =
1

2

(
h(x, y)− h(`)0 (x, y)

)
, (2)

where r(x, y) is a non-negative integer. Call the set of points (x,−x) (for 0 ≤
x < `) where the topmost oranges lie, the central crease. The northern crease
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10 9 8 7 6 5 6 7 8 9 10
9 8 7 6 5 4 5 6 7 8 9
8 7 6 5 4 3 4 5 6 7 8
7 6 5 4 3 2 3 4 5 6 7
6 5 4 3 2 1 2 3 4 5 6
5 4 3 2 1 0 1 2 3 4 5
6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 3 4 5 6 7
8 7 6 5 4 3 4 5 6 7 8
9 8 7 6 5 4 5 6 7 8 9
10 9 8 7 6 5 6 7 8 9 10

11 10 9 8 7 6 5 6 7 8 9 10 11
10 9 8 7 6 5 4 5 6 7 8 9 10
9 8 7 6 5 4 3 4 5 6 7 8 9
8 7 6 5 4 3 2 3 4 5 6 7 8
7 6 5 4 3 2 1 2 3 4 5 6 7
6 5 4 3 2 1 0 1 2 3 4 5 6
7 6 5 4 3 2 1 0 1 2 3 4 5
8 7 6 5 4 3 2 1 2 3 4 5 6
9 8 7 6 5 4 3 2 3 4 5 6 7
10 9 8 7 6 5 4 3 4 5 6 7 8
11 10 9 8 7 6 5 4 5 6 7 8 9
12 11 10 9 8 7 6 5 6 7 8 9 10

10 9 8 7 6 5 6 7 8 9 10 11 12
9 8 7 6 5 4 5 6 7 8 9 10 11
8 7 6 5 4 3 4 5 6 7 8 9 10
7 6 5 4 3 2 3 4 5 6 7 8 9
6 5 4 3 2 1 2 3 4 5 6 7 8
5 4 3 2 1 0 1 2 3 4 5 6 7
6 5 4 3 2 1 0 1 2 3 4 5 6
7 6 5 4 3 2 1 0 1 2 3 4 5
8 7 6 5 4 3 2 1 2 3 4 5 6
9 8 7 6 5 4 3 2 3 4 5 6 7
10 9 8 7 6 5 4 3 4 5 6 7 8
11 10 9 8 7 6 5 4 5 6 7 8 9
12 11 10 9 8 7 6 5 6 7 8 9 10

Figure 2: Initial height functions h`0 for width ` = 1, 2, 3 inside a square. The red
numbers partition the plane into four parts which we label as the NE, NW, SW
and the SE parts. The creases are indicated in red.

is the set of points (0, y) with y > 0 and the western crease is the set of points
(x, 0) with x < 0. The eastern crease refers to the points (x + ` − 1, ` − 1) for
x > 0 and the southern crease to the set of points (` − 1, 1 − ` + y) for y < 0.
These points located on the creases are indicated in red numbers in the reference
configurations shown in Figure 2.

Proposition 2.1. The reduced height function is a weakly decreasing function as
one moves away from the creases. Further, for unit steps along the N/S/E/W
directions, it can change by at most one.

Proof. Since the creases split configurations into four parts, we shall pick one
part, say the NE part, and prove this property. In the NE part, going away from
the crease corresponds to increasing the x or y coordinate by one. Consider a pair
of neighbouring points, u = (x, y) and v = (x+ 1, y). Since h

(`)
0 (v)− h(`)0 (u) = 1,

one has

r(u)− r(v) = 1
2

(
h(u)− h(v)− h(`)0 (u) + h

(`)
0 (v)

)
= 1

2

(
h(u)− h(v) + 1

)
.

Since |h(v) − h(u)| = 1, we see that (r(v) − r(u)) is either 0 or −1. A similar
proof shows that this is true for all other cases as well.

Thus, given a configuration with volume n, it can be broken up into 2 plane
partitions and 2 skew plane partitions with volumes (n1, n2, n3, n4) where

∑4
j=1 nj =

n. These plane partitions are not the most general ones as the height condition is
stronger than the weakly decreasing condition imposed for plane partitions (see
Appendix B). We illustrate this split in Figure 3 for a random configuration with
` = 6 and volume= 120.

2.2 Exact enumeration

One would like to ask if there is a simple formula for a`(n) or for its generat-
ing function. The first few numbers for width ` ≤ 5 were computed by Ben
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1
1 1 1

1 1 2 1 1
1 1 2 2 2 1 1 1

1 1 2 2 3 2 2 1 1
1 1 2 2 3 2 2 1 1

1 1 2 2 3 2 2 1 1
1 1 2 2 2 2 2 1 1

1 1 1 2 2 2 1 1 1
1 1 2 2 2 1 1 1

1 1 2 1 1 1
1 2 1 1
1 1 1
1 1

=
1

1 1
1 1 2

+

1 1 2 2 3
1 1 2 2 3

1 1 2 2 3
1 1 2 2 2

1 1 1 2 2
1 1 2 2

1 1 2
1 2
1 1
1 1

+

1
1 1
2 1 1
2 2 1 1 1

2 2 1 1
2 2 1 1

2 2 1 1
2 2 1 1

2 1 1 1
2 1 1 1

+
1 1 1
1 1
1

Figure 3: A random configuration of reduced height function for ` = 6 and volume
120. It is split into two PP’s and two skew PP’s.

Young and posted in the domino forum [1]. We adapted an algorithm due to
Bratley and McKay to directly enumerate a`(n). Our initial numbers agree with
Young’s enumeration. Table 3 in Appendix A provides the the results of our
exact enumeration of a`(n) for widths ` = 1 to ` = 6.

2.2.1 The ` = 1 counting

There is a natural action of the dihedral group, D8, that is generated by a rotation
by π

2
and a reflection (x, y) → (−x, y) in the xy=plane. Below we indicate all

possible configurations with fixed volume n = 4 up to an overall action of D8.
Every point in Z2 is represented by a square whose entry is the reduced height
at the point. The red square is the origin with the horizontal line the x-axis and
the vertical line the y-axis.

1
1
1
1

1 1 1 1
1
1 1 1

1 1
1 1

1
1 1
1

The mulitplicities of the above configurations, (from left to right), under the
action of D8 are 4, 4, 8, 4, 4 respectively. Thus there are 24 configurations with
volume equal to 4. We are interesting in counting the number of configurations
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with fixed volume n. Let a1(n) denote the number of such configurations. The
first few numbers are

1, 4, 10, 24, 51, 109, 222, 452, 890, 1732, 3298, 6204, 11470, 20970, 37842, 67572, . . .

Let A`(q) = 1 +
∑∞

m=1 a`(n)qn denote the generating function of the series a`(n),
for fixed `. For ` = 1, one has

A1(q) := 1 +
∞∑
n=1

a1(n) qn = 1 + q + 4q2 + 10q3 + 24q4 + · · · , (3)

=
∞∏
m=1

(1− qm)−b1(m) , (4)

where the second line defines b1(m) for m = 1, 2, . . .. We have determined b1(m)
for m ≤ 60. The first few numbers are:

1, 3, 6, 8, 9, 3, 2, 5, 28, 63, 86, 39,−112,−303,−326, 109, 1020, 1725, 818, . . . (5)

If all b1(m) ≥ 0, then one can look for a combinatorial problem that determines
b1(m), thereby determining A1(q). However, we see that b1(m) is not always
positive – the negative terms have been shown in boldface above. This behaviour
is similar to what happens for solid partitions where the analog of b1(m) also
oscillates between positive and negative values. We suspect that there might
be no simple formula for the generating function. A similar situation holds for
widths ` > 1.

2.3 Studying a`(n) for fixed values of n

Given that there is no known analytical formula for the generating function, we
next study the situation when n, the number of removed oranges, is kept fixed
and study the properties as a function of `. Using exact data, we find that the
following formulae appear to hold for ` ≥ dn/2e. We set a`(0) ≡ 1 =

(
`
0

)
. Using

code which, for fixed `, generates the first few numbers in a`(n), enables us to

5



conjecture the following using fits to the data:

a`(2) =

(
`

2

)
+ 4 .

a`(3) =

(
`

3

)
+ 6` for ` ≥ 2

a`(4) =

(
`

4

)
+ 8

(
`

2

)
− `+ 23 for ` ≥ 2 ,

a`(5) =

(
`

5

)
+ 10

(
`

3

)
− 2

(
`

2

)
+ 36`− 14 for ` ≥ 3 ,

a`(6) =

(
`

6

)
+ 12

(
`

4

)
− 3

(
`

3

)
+ 53

(
`

2

)
− 25`+ 132 for ` ≥ 3 ,

a`(7) =

(
`

7

)
+ 14

(
`

5

)
− 4

(
`

4

)
+ 74

(
`

3

)
− 40

(
`

2

)
+ 220`− 182 for ` ≥ 4 ,

a`(8) =

(
`

8

)
+ 16

(
`

6

)
− 5

(
`

5

)
+ 99

(
`

4

)
− 59

(
`

3

)
+ 345

(
`

2

)
− 308`+ 858 for ` ≥ 4 ,

a`(9) =

(
`

9

)
+ 18

(
`

7

)
− 6

(
`

6

)
+ 128

(
`

5

)
− 82

(
`

4

)
+ 515

(
`

3

)
− 488

(
`

2

)
+ 1463`− 1764 for ` ≥ 5 .

For n = 2, 3, 4, the formulae have been proved [6]. The counting is fairly elaborate
and does not reflect the simplicity of the above formulae. It hints at the existence
of a statistic that refines a`(n) but we have been unable to find one. The näıve
guess that it counts the number of layers affected by a given configuration does
not work. For 5 ≤ n ≤ 9, the above formulae have been checked to be consistent
with exact numbers given in Table 2 for ` ≤ 20. Observing their pattern, we
conjecture that the following statement holds.

Conjecture 2.2. For fixed n and ` ≥ dn/2e, a`(n) is a polynomial of degree n
in ` such that

a`(n) =
∞∑
k=0

gk(n)

(
`

n− k

)
, (6)

where gk(x) is a polynomial of degree
⌊
k
2

⌋
in x.

The first nine values of n enables us to determine some of the polynomials to
be as follows:

a`(n) =
(
`
n

)
+ 2n

(
`

n−2

)
− (n− 3)

(
`

n−3

)
+ (2n2 − 5n+ 11)

(
`

n−4

)
− (2n2 − 11n+ 19)

(
`

n−5

)
+

1

6
(8n3 − 57n2 + 253n− 402)

(
`

n−6

)
+ · · · , (7)

with
(
`
x

)
= 0 for x < 0.
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3 Asymptotics of a`(n)

As we have seen, it appears that we cannot come up with a simple formula for
the generating function for a`(n). With this in mind, we study their behaviour
at large n, keeping the width ` fixed. We first establish that for ` � n1/3 and
n → ∞ that n−2/3 log a`(n) is bounded. The proof follows a method similar
to the one used to bound higher dimensional partitions [7]. We then use Monte
Carlo simulations to study the asymptotic behaviour more precisely.

3.1 Bounds on a`(n) for fixed `

Proposition 3.1. For n ≥ 2, the inequality, a`(n) > a`(n− 1), holds.

Proof. Pick a configuration, λ, with volume n and let x > 0 be the largest value
of y such that r(y + ` − 1, ` − 1) = 1. If by setting r(x + ` − 1, ` − 1) =
0, we obtain a valid configuration with volume (n − 1), we say that λ has a
removable 1-part located at (x, 0). If λ has a removable 1-part, then setting
r(x + ` − 1, ` − 1) = 0 corresponds to removing the 1-part. For example, for
` = 1, 1 1 1 1 has a removable 1-part at (2, 0) while 1 1 1 1 has no removable
1-part. For n > 1, adding a 1-part to every configuration with volume (n − 1)
generates all configurations with volume n with a removable 1-part. Thus, one
has

a`(n) = a`(n− 1) + a`(n|no removable 1-part) > a`(n− 1) for n ≥ 2 . (8)

Remarks: Given a configuration of volume (n − 1), it is always possible to
add a removable one-part to create a unique configuration of volume n that has
a removable one-part. For every n > 1, there exists at least one configuration
without a removable one-part. Consider a configuration with r(x+`−1, `−1) = 0
for all x > 0 and r(`− 1, `− 1) = 1. (This proof has been adapted from a proof
showing that p(n) > p(n− 1), where p(n) is the number of partitions of n, given
in [8, see chap. 3].)

Proposition 3.2. As n → ∞ and ` � n1/3, one has log a`(n) > cL n
2/3 where

cL = 32/3 log 2 ≈ 1.44.

Proof. Consider the following special configuration with m layers (of oranges)
completely removed. The (m + 1)-th layer consists of n0 = (m + 1)(m + `)
oranges that can all be removed independently of each other. By removing some
or all of the oranges in the (m + 1)-th layer, one creates 2n0 configurations with
volume in the range [n− n0, n] where

n =
m+1∑
k=1

k(k + `− 1) = 1
6
(1 +m)(2 +m)(2m+ 3`) .

7



Figure 4: The fifth layer of a stack with ` = 3.

We express m in terms of n by inverting the above expression to obtain

m = (3n)1/3 − (`+ 2)

2
+O(n−1/3) .

Similarly, we can see that n0 = (3n)2/3 + (3n)1/3 + O(1). Since these 2n0 config-
urations do not exhaust all possible configurations, one has

n∑
n′=n−n0

a`(n
′) > 2n0 .

Since a`(n
′ + 1) > a`(n

′) for n′ > 1 from Proposition 3.1, we obtain

n0 a`(n) >
n∑

n′=n−n0

a`(n
′) > 2n0 .

We thus get the following lower bound

log a`(n) > (log 2) n0 − log n0

> (log 2) n0 = (log 2)(3n)2/3 +O(n1/3) =: cL n
2/3 +O(n1/3) , (9)

with cL = 32/3 log 2 ≈ 1.4418.

Proposition 3.3. As n → ∞ and ` � n1/3, one has log a`(n) < cU n2/3 where
cU = 3ζ(3)1/3 ≈ 3.1898.

Proof. Let p2(n) denote the number of plane partitions of n and p̂
(`)
2 (n) denote the

number of skew plane partitions of shape λ/µ`, where µ` is the Ferrers diagram
for partition (`, ` − 1, ..., 1) and λ the Ferrers diagram of a partition containing

8



µ`. We obtain the following upper-bound for n� 1.

a`(n) <
∑
ni∈Z+∑
i ni=n

2∏
j=1

p2(nj)
4∏
j=3

p̂
(`)
2 (nj) ,

<
∑
ni∈Z+∑
i ni=n

2∏
j=1

p2(nj)
4∏
j=3

p2(nj + `2

2
(3n)1/3) ,

where in the second line, we have replaced the counting of skew plane partitions
to plane partitions by filling in µ` with the largest possible value which can be
estimated to be (3n)1/3. Since ` � n1/3, we assume that it is O(1). Since p2(n)
is a monotonically increasing function of n, it follows that among all partitions
of n into four parts, the largest term in the above product occurs when all ni are
equal. Thus one has `2n1/3 � nj for j = 3, 4. Using this, we obtain

a`(n) < p(n|4 parts) p2
(
n
4

)4
. (10)

where p(x|4 parts) = O(x3) is the number of partitions of x into four parts. Tak-
ing logarithms and discarding terms that grow as log n that arise from p(n|4 parts),
we obtain

log a`(n) < 4 log p2
(
n
4

)
∼ 3ζ(3)1/3 n2/3 = 3.1898 n2/3 , (11)

on using log p2(n) ∼ 3
2
(2ζ(3))1/3 n2/3, see [9].

Combining our lower and upper bounds, we obtain the following bounds:

32/3 log 2 < n−2/3 log a`(n) < 3ζ(3)1/3 . (12)

This suggests that n−2/3 log a`(n)→ constant as n→∞.

Conjecture 3.4. For ` � n1/3, n−2/3 log a`(n) ∼ an `-independent constant as
n→∞.

A heuristic proof of `-independence is as follows. Since ` � n1/3, arguments
similar to those that lead to the lower bound show that a generic random con-
figuration will be a rectangle of side (3n)1/3

[
(3n)1/3 + `] ∼ (3n)2/3 + ` O(n1/3).

This suggests that the `-dependence is suppressed by at least a power of n1/3.
We shall provide evidence for this using Monte Carlo simulations to estimate the
constant for ` = 1, . . . , 6.

9



3.2 Studying asymptotics using Monte Carlo simulations

Let λ denote a particular height function (or equivalently a stack of oranges) with
volume n. We indicate this by λ ` n. Let n+(λ) (n−(λ)) denote the number of
oranges that can be removed (resp. added) to obtain a valid height function with
volume (n+ 1) (resp. (n− 1)). Define N±(n) as follows:

N+(n) :=

∑
λ`n n+(λ)∑

λ`n 1
=

∑
λ`n n+(λ)

a`(n)
and

N−(n) :=

∑
λ`n n−(λ)∑

λ`n 1
=

∑
λ`n n−(λ)

a`(n)
, (13)

where the sums run over all height functions with volume n. For n > 1, one has
the identity

N+(n− 1) a`(n− 1) = N−(n) a`(n) . (14)

GivenN+(n) andN−(n), one can determine a`(n) by recursively using the formula
and using a`(0) = 1. That is,

a`(n) =
n−1∏
m=0

N+(m)

N−(m+ 1)
, (15)

or for n > n0 (where a`(n0) has been exactly enumerated)

a`(n) =
n−1∏
m=n0

N+(m)

N−(m+ 1)
a`(n0) , (16)

The transition matrix Monte Carlo simulation we use estimates averages for
N±(n) for n ∈ [1, 4100] for ` = 1, . . . , 6. We assume that log a`(n) takes the
following asymptotic form:

log a`(n) ∼ c0 n
2/3 + c1 log n+ c2 + c3 n

1/3 . (17)

Using this form, one can show that

log
a`(n)

a`(n− 1)
= log

N+(n− 1)

N−(n)
∼ 2

3
c0 n

−1/3 + c1 n
−1 +

1

3
c3 n

−2/3 . (18)

For our Monte Carlo fits, we use a variant of the above formula

log
a`(n)

a`(n− 1)
∼
(
2
3

+ 1
9n

)
c0 n

−1/3 + c1 n
−1 +

(
1
3

+ 1
9n

)
c3 n

−2/3 , (19)

where we have added some sub-leading terms (suppressed by 1/n) without chang-
ing the number of parameters. This formula is suited to our Monte Carlo simula-
tion as it relates the quantities computed in the simulation to the parameters that
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Figure 5: Plot of statistical error, δN+

N+
, against n. The merger of four data sets

is also clearly visible. All statistical errors show similar behaviour.

appear in the asymptotic form for a`(n). The parameter c2 has to be determined
separately as it drops out of the above formula.

The Monte Carlo simulation is a randomisation of the Bratley-McKay algor-
tihm. We adapted the Transition Matrix Monte Carlo method described in [12]
to study solid partitions restricted to be in a box and to estimate the asymptotics
of solid partitions in [11]. As in those papers, we use a fictitious temperature to
get a wider coverage for values of n ∈ [1, Nmax]. The averages for estimating
N±(n) are carried out at infinite temperature. We carried out several runs with
different values of Nmax = 1200, 2200, 4200, 10200. For each value of Nmax, we
carried out runs with distinct seeds for the random number generator in order
to get an estimate of the statistical error in N±(n). The numbers from all runs
were then combined into a single data set with statistical errors. For n ∈ [1, 30],
the values of N±(n) were compared with exact values (again computed using the
Bratley-McKay algorithm [6]) to see if the statistical errors that we obtained were
consistent with actual ones. The exact numbers also enabled us to establish that
longer runs lead to lower statistical errors. As a proof of concept, we also verified
that a similar randomisation of the Bratley-McKay code for ordinary partitions
worked. The runs with Nmax = 10200 were not used in any of our fits as their
errors were too large and were only used to verify that our fits do reproduce the
asymptotic behaviour correctly.

3.2.1 Summary of Monte Carlo results

We carried out three sets of fits using estimates for N±(n) for values of n in the
range [`3 + 10, 4100]. The data for n > 4100 has larger errors and hence is only
used to see if the trends of the fits are consistent.

Fit 1: This is the formula given in Eq. (19) which involves three parameters. The
first fit gives

11



` c0 c3 c1
1 2.34426 −0.0110902 −0.746477
2 2.34437 −0.0156179 −0.740064
3 2.34441 −0.0281878 −0.670066
4 2.34492 −0.0669717 −0.5053
5 2.34558 −0.119494 −0.248828
6 2.34538 −0.144212 0.0401944

Fit 2: The second fit is one where a fourth parameter is introduced by adding a
term ε n−4/3 to the right hand side of Eq. (19). The second fit gives

` c0 c3 c1 ε
1 2.34401 0.0028884 −0.78056 0.0630788
2 2.34417 0.00278436 −0.770915 0.064166
3 2.3379 0.0104204 −0.783435 0.277578
4 2.34397 −0.00361808 −0.712328 0.589102
5 2.34444 −0.0387065 −0.538716 0.935576
6 2.34329 −0.0140978 −0.575709 2.2077

Fit 3: A third form for the asymptotic behaviour, based on the (leading) singu-
larity of the generating function, is

a`(n) ∼ A µn
2/3

ng .

Comparing with the first asymptotic formula, we see that A = ec2 , µ = ec0 ,
g = c1 and c3 = 0. For the third fit we also added the term ε n−4/3 term,
giving

` c0 µ = ec0 g = c1 ε
1 2.34407 10.4236 −0.7741296 0.0520715
2 2.34412 10.4241 −0.777704 0.0773793
3 2.34397 10.4225 −0.754525 0.210345
4 2.34391 10.4219 −0.723663 0.620114
5 2.34389 10.4217 −0.673265 1.35694
6 2.34348 10.4174 −0.522174 2.02021

We see that forcing c3 = 0 makes the value of c0 almost independent of `
providing evidence to our conjecture that c0 is `-independent. We assign it
the `-independent value

c0 = 2.344± 0.001 or µ = 10.42± 0.01 . (20)

The errors here are crude estimates based on comparing how the numbers
change when compared to the second fit. Further the parameter g = c1 is
clearly `-dependent.
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Figure 6: g` vs ` along with a quadratic fit which gives g` = −0.717604 −
0.0644484`+ 0.0157537`2.

The main conclusion that we can draw from the Monte Carlo simulations is
that the asymptotic behaviour of a`(n) is consistent with the following form:

a`(n) ∼ A` µ
n2/3

ng` = ec
`
2 µn

2/3

ng` , (21)

where µ = 10.42 ± 0.01 is an `-independent constant and A` = ec
`
2 and g` are

`-dependent constants.
We still need to estimate A` or equivalently the constant α`3 as it does not

appear in the fits based on Eq. (19). We need explicit values for a`(n) – this is
something we indirectly determine using our estimates for N±(n) combined with
Eq. (16) with n0 chosen to be the largest possible value appearing in our explicit
enumeration given in Table 3. We fit to the formula

n−2/3 log a`(n) ∼ c0 + c1 n
−2/3 log n+ c2 n

−2/3 − 3ε n−1 , (22)

with the values of c0, g` and ε determined by Fit 3. We use small values of
n ∈ [max(10, `3), `3 + 100] as it is here that this term contributes significantly
and statistical errors are small.

` c2 A = ec2

1 −1.55101 0.212034
2 −1.2617 0.283173
3 −0.64815 0.523012
4 0.356079 1.42772
5 1.64144 5.16257
6 2.52126 12.4442

13



4 Series analysis of partition-type series

Much of the pre-existing work on methods to extract the asymptotic form of
coefficients numerically from a finite number of coefficients assumes the form

an ∼ const.µnng,

with corresponding generating function∑
anx

n ∼ const. (1− µx)−1+g .

Many problems in enumerative combinatorics and statistical mechanics have such
singularities. Methods for the analysis of coefficients in order to estimate the
growth constant µ, the exponent g and the amplitude, given by the constant pre-
multiplier have been well-developed over the past few decades, and are discussed
in [13].

In contrast, for the type of asymptotics associated with plane partitions and
related series, the literature is very scant indeed. Accordingly, we first take a
known problem, the asymptotics of plane partitions, and develop appropriate
methods of series analysis. We then apply these methods to the problem at
hand, the square-ice analogue of plane partitions.

4.1 Analysis of plane-partition series

The generating function of plane partitions, due to MacMahon [2], is well-known
and is given by

P (x) =
∑

pnx
n =

∏
k≥0

1

(1− xk)k
= 1 + x+ 3x2 + 6x3 + 13x4 + · · · .

The asymptotics are also well-studied, and are given by [9, 10]

n−2/3 log pn ∼ c0 + c1
log n

n2/3
+

c2
n2/3

+O(n−4/3), (23)

where c0 = 2.00945 · · · , c1 = −25
36

= −0.694444 · · · , and c2 = −1.4631 · · · .
It is straightforward to generate as many terms as required from the generating

function. We have chosen to generate 200 terms, and investigate the assumed
form

p̃n = n−2/3 log pn ∼ c0 + c1
log n

nα
+
c2
nα
,

with higher order terms neglected. That is to say, we assume ignorance of the
exponent α, and set out to estimate its value.

Forming first-differences, so that

sn = p̃n − p̃n−1 ∼ −c1α
log n

n1+α
+O

(
1

n1+α

)
,

14



then a plot of sn against logn
n(1+α) should be linear for the “correct” choice of α

and n sufficiently large. This is not a particularly sensitive test, but one might
expect to establish if α is closer to 1 or to zero. In Figure 8 we show such a plot
for three values of α. For α = 1, shown at left, the plot is slightly convex, while
the right-most plot, corresponding to α = 0.5 is significantly concave, while the
central plot, corresponding to α = 0.75 is essentially linear. The correct value of
α is of course 2/3 in this case.

An alternative way to estimate α is to plot log
(

sn
logn

)
against log n. This

should have gradient −(1 + α). This plot (not shown) is indeed visually linear.
If one calculates the local gradient, defined as the gradient of successive pairs of
points, one sees a steady variation with n. This local gradient is plotted against
n−2/3 in the left-most plot in figure 9. It is clear that this is extrapolating to a
value around −1.68 as n → ∞, which is quite close to the known exact value
−5/3.

Assuming we have found the value of α correctly to be 2/3, we are now in a
position to estimate the constants appearing in the asymptotic expression (23).
We fit successive triples of terms {p̃n−2, p̃n, p̃n+2} in order to estimate the con-
stants {c0(n), c1(n), c2(n)}. (Alternate terms are used to reduce an odd-even
effect that would otherwise cause oscillatory estimates). We show the estimates
of these constants, plotted against n−4/3, n−2/3 and n−1/3 respectively in figures
9 and 10 below. The estimates of c0 are clearly going to a value around 2.0095,
which is very close to the exact value. The estimates of c1 appear to be go-
ing to a limit around −0.695, in good agreement with the known exact value,
−0.69444 · · · . The estimate for c2 ≈ −1.436 which is comparable to the known
value of c2 = −1.4631 · · · ,.

We have repeated the above analysis with an additional term c3/n
1/3 in (23),

and the estimators of c3 are clearly going to a value close to 0, consistent with
the absence of such a term.

4.2 Analysis of square-ice series

We now repeat the above analysis for the sequence a1(n) which is known exactly
for n ≤ 60. We have recently developed a numerical technique that allows one
to approximately extend a given series by several coefficients, with a level of
precision that is good enough for this type of graphical analysis, see [14]. In this
way we have extended the series by 10 further terms, and these are quoted in
Table 1 alongside the estimates from the Monte Carlo simulations.

As in the preceding case, we first form the sequence

p̃n = n−2/3 log a1(n) ∼ c0 + c1
log n

nα
+
c2
nα
,

with higher order terms neglected, and we calculate the first-differences, sn = p̃n−
p̃n−1 and plot sn against logn

n(1+α) . We show the results in Figure 11, again for three

15



values of α. The situation is exactly the same as for plane partitions. For α = 1,
shown at left, the plot is slightly convex, while the right-most plot, corresponding
to α = 0.5 is significantly concave, while the central plot, corresponding to α =
0.75 is essentially linear. This suggests that the correct value of α is also 2/3 in
this case.

Estimating α by plotting log
(

sn
logn

)
against log n again gives a visually linear

plot. More interesting is the plot of the local gradient, and this is shown plotted
against 1/n2/3 in Figure 11. This appears to extrapolate to a value around −1.68
as n → ∞, just as for plane partitions, which again suggests that the correct
exact value should be −5/3.

Assuming we have found the value of α correctly to be 2/3, we are now in
a position to attempt to estimate the constants appearing in the asymptotic ex-
pression (23). As for the case with plane partitions, we fit successive triples of
terms {p̃n+2, p̃n, p̃n+2} in order to estimate the constants {c0(n), c1(n), c2(n)}.
We show the estimates of these constants, plotted against suitable powers of
n, {n−4/3, n−2/3, n−1/3}, in Figures 12 and 13 below. All display oscillatory be-
haviour which makes extrapolation difficult, if not impossible. If we assume – and
this is indeed a leap of faith, justifiable only because the results are consistent
with the Monte Carlo analysis – that this oscillatory trend persists with decreas-
ing amplitude, then we can estimate c0 ≈ 2.345, c1 ≈ −0.75 and c2 ≈ −1.7.

These results are entirely consistent with, though less accurate than, the
Monte Carlo estimates obtained from the third fit, which assumes c3 is zero
(that is, there is no term O(n−1/3) in Eq. (23)).

4.3 Behaviour of a`(n) for ` > 1.

From our Monte Carlo work we concluded in Eq. (21) that for `� n1/3

a`(n) ∼ A` µ
n2/3

ng`

where A` and g` are `-dependent, while µ is not. For this investigation we can
make the weaker assumption that the exponent 2/3 can be positive exponent θ,
as we will eliminate this dominant term. While our series analysis is not accurate
enough to give a good estimate of g` directly (as shown above), we instead focus
on g` − g1. One has

â`(n) ≡ a`(n)

a1(n)
∼ A`
A1

ng`−g1 , (24)

and so the exponent ĝ` = g` − g1 can be estimated from the ratios of successive
terms â`(n). That is to say,

r`(n) ≡ â`(n)

â`(n− 1)
∼ 1 +

ĝ`
n
. (25)
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n sf(n) mc1(n) % error mc1(n)
61 5.08349035674× 1013 50834979702073 0.00641281
62 7.460434311× 1013 74604412596394 0.0128265
63 1.092771318× 1014 109276600121877 0.0188305
64 1.597623083× 1014 159761033617959 0.0245731
65 2.3313927896× 1014 233136871953374 0.030269
66 3.39600366875× 1014 339595034177620 0.0362506
67 4.9379657155× 1014 493785801126495 0.0421327
68 7.1674931× 1014 716736440905024 0.0478466
69 1.0385930349× 1015 1038570180194263 0.053417
70 1.5023341234× 1015 1502380905370668 0.0590596

Table 1: Comparing the series estimates, sf1(n), with the Monte Carlo estimates,
mc1(n), for a1(n). The differences of the two estimates are consistently lower
than the error in column 3 by an order of magnitude.

So a plot of r`(n) against 1/n should be linear, with slope ĝ`, and with ordinate
1 as n → ∞. We show in Figure 14 the ratios r`(n) plotted against 1/n for
` = 6, 5, 4, 3, 2 reading from top to bottom. It can be seen that these ratio plots
are behaving as expected, but with a small amount of curvature due to the effect
of unknown higher-order terms in (25). We attempt to accommodate these by
calculating the local gradient

ĝ`(n) = n(r`(n)− 1) ∼ ĝ` + o(1).

In fact, it appears empirically that the term o(1) can be replaced by O(1/n), as
plots of ĝ`(n) against 1/n appear to be essentially linear. In this way we estimate

g` ≈ 0.0, 0.058, 0.17, 0.37, 0.64

for ` = 2, 3, 4, 5, 6 respectively. These differences lie somewhere between those
obtained from fit 2 and fit 3 in our Monte Carlo analysis. Note that for ` > 3,
we do not have exact numbers for n > `3, so the above analysis can be taken
seriously only for ` ≤ 3. As the series analysis is independent of any assumptions
except the form (21), we might expect series analysis to be more accurate for this
parameter.

17



10 15 20 25
n

1�3

1.48

1.50

1.52

1.54

1.56

n
1�3log

a1 HnL

a1 Hn-1L

10 15 20 25
n

1�3

1.48

1.50

1.52

1.54

1.56

n
1�3log

a2 HnL

a2 Hn-1L

10 15 20 25
n

1�3

1.48

1.50

1.52

1.54

1.56

n
1�3log

a31 HnL

a3 Hn-1L

10 15 20 25
n

1�3

1.48

1.50

1.52

1.54

1.56

n
1�3log

a4 HnL

a4 Hn-1L

10 15 20 25
n

1�3

1.48

1.50

1.52

1.54

1.56

n
1�3log

a5 HnL

a5 Hn-1L

5 10 15 20 25
n

1�3

1.550

1.555

1.560

1.565

1.570

1.575

1.580

n
1�3log

a6 HnL

a6 Hn-1L

Figure 7: Plots of log a`(n)
a`(n−1)

vs n1/3 for ` = 1, . . . , 6. The three fits are plotted
with fit1 in black, fit2 in green, fit3 in blue and red for the Monte Carlo data.
The fits should work only for n1/3 > ` and the fits differ when n1/3 < `.

18



0.005 0.010 0.015 0.020 0.025
0.000

0.002

0.004

0.006

0.008

0.010

n
-1-α log(n)

s
n

Figure 8: Left-most plot, α = 1, central plot, α = 0.75 and right-most plot,
α = 0.5. for plane partitions.

0.02 0.04 0.06 0.08 0.10 0.12
-1.90

-1.85

-1.80

-1.75

-1.70

-1.65

n
-2/3

g
ra
d
ie
n
t

0.000 0.005 0.010 0.015 0.020 0.025
2.000

2.002

2.004

2.006

2.008

2.010

2.012

n
-4/3

c
0
(n
)

Figure 9: (Left) Plot of local gradient against n−2/3 and (right) Plot of c0(n)
against n−4/3 for plane partitions.
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Figure 10: Plots of c1(n) and c2(n) against n−2/3 (resp. n−1/3) for plane partitions.
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α = 0.5. for the square-ice series.
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Figure 12: (Left)Plot of local gradient against n−2/3 and (right) plot of c0(n)
against n−4/3 for the square-ice series.
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Figure 13: Plot of c1(n) and c2(n) against n−2/3 (resp. n−1/3) for the square ice
series.
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Figure 14: Plot of ratios r`(n) against 1/n for ` = 6, 5, 4, 3, 2 reading from top
to bottom.

5 Concluding Remarks

In this paper, we have addressed several aspects of the square-ice analogue of
plane partitions. Our exact enumerations have non-trivially extended the num-
bers provided by Young. As expected, the asymptotic behaviour is similar to
that of plane partitions. We showed this by establishing the leading asymptotic
behaviour and then using Monte Carlo simulations to provide evidence for be-
haviour of the form given in Eq. (21). The lack of a generating function makes it
an ideal testing ground for the series extension methods that one of us (AG) has
developed. In this context, our Monte Carlo simulations provide an independent
check on the method.

The exact data as well as our Monte Carlo simulations clearly indicate that
for n > 1 and ` > `′, one has a`(n) > a`′(n). However, we have not proved this
statement and will leave it as an open conjecture. Conjecture 2.2 also remains
open and suggests the existence of a new statistic that might enable one to prove
the conjecture. Of course, it remains to be seen if one can find explicit formulae
for the generating functions for a`(n).
Acknowledgments: We thank Nicolas Destainville for useful conversations as
well as sharing his Monte Carlo code for solid partitions. We are grateful to Jim
Propp, Rick Kenyon, Ben Young and others members of the domino forum for
drawing our attention to this problem.
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A Numbers from exact enumeration

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1(n) 1 1 4 10 24 51 109 222 452 890 1732 3298 6204 11470 20970 37842

a2(n) 1 2 5 12 29 64 139 286 582 1148 2227 4234 7950 14692 26842 48438

a3(n) 1 3 7 19 44 98 213 448 918 1832 3584 6882 13012 24220 44480 80678

a4(n) 1 4 10 28 68 158 350 750 1559 3170 6292 12252 23445 44164 81995 150288

a5(n) 1 5 14 40 103 247 567 1252 2668 5539 11214 22247 43300 82871 156152 290202

a6(n) 1 6 19 56 152 378 898 2042 4476 9526 19740 39978 79342 154650 296489 560022

a7(n) 1 7 25 77 219 567 1392 3263 7354 16048 34055 70503 142842 283832 554196 1065070

a8(n) 1 8 32 104 309 834 2116 5114 11849 26520 57620 121950 252256 511180 1016878 1989150

a9(n) 1 9 40 138 428 1204 3159 7870 18747 43036 95729 207125 437402 903914 1831938 3647757

a10(n) 1 10 49 180 583 1708 4637 11906 29158 68652 156336 345780 745450 1570920 3243407 6573672

a11(n) 1 11 59 231 782 2384 6699 17726 44627 107763 251213 567936 1249864 2685688 5648561 11652141

a12(n) 1 12 70 292 1034 3278 9534 25998 67276 166602 397542 918580 2063435 4520696 9684744 20332156

a13(n) 1 13 82 364 1349 4445 13379 37596 99983 253894 620074 1464231 3357015 7498084 16360443 34952692

a14(n) 1 14 95 448 1738 5950 18528 53650 146605 381704 954023 2302014 5386122 12263456 27250699 59239788

a15(n) 1 15 109 545 2213 7869 25342 75605 212253 566525 1448904 3572062 8528301 19792143 44785054 99055075

a16(n) 1 16 124 656 2787 10290 34260 105290 303628 830660 2173572 5474290 13335035 31540550 72667194 163510356

a17(n) 1 17 140 782 3474 13314 45811 144998 429428 1203961 3222775 8290859 20603148 49659502 116480131 266609605

a18(n) 1 18 157 924 4289 17056 60627 197578 600837 1725998 4725599 12415980 31472081 77292052 184550272 429643458

a19(n) 1 19 175 1083 5248 21646 79457 266540 832108 2448742 6856258 18395107 47555212 118985326 289169418 684647303

a20(n) 1 20 194 1260 6368 27230 103182 356174 1141253 3439858 9847768 26976044 71115601 181255026 448307314 1079349306

Table 2: Numbers in red are those for which the (generic) formula for a`(n) is anticipated to fail. The numbers have been
checked for n ≤ 9 and ` ≤ 20.
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n a1(n) a2(n) a3(n) a4(n) a5(n) a6(n)

1 1 2 3 4 5 6

2 4 5 7 10 14 19
3 10 12 19 28 40 56
4 24 29 44 68 103 152
5 51 64 98 158 247 378
6 109 139 213 350 567 898
7 222 286 448 750 1252 2042
8 452 582 918 1559 2668 4476
9 890 1148 1832 3170 5539 9526
10 1732 2227 3584 6292 11214 19740
11 3298 4234 6882 12252 22247 39978
12 6204 7950 13012 23445 43300 79342
13 11470 14692 24220 44164 82871 154650
14 20970 26842 44480 81995 156152 296489
15 37842 48438 80678 150288 290202 560022
16 67572 86509 144697 272150 532430 1043404
17 119368 152902 256775 487388 965395 1919708
18 208943 267783 451305 863887 1731351 3491081
19 362389 464766 786008 1516592 3073660 6280514
20 623438 800095 1357414 2638648 5404984 11185375
21 1064061 1366512 2325540 4552488 9420512 19734004
22 1802976 2316840 3954366 7792566 16282463 34509347
23 3033711 3900502 6676369 13239698 27922063 59847208
24 5071418 6523432 11196599 22336630 47527430 102976946
25 8424788 10841282 18657454 37433466 80331385 175877782
26 13913192 17909533 30901434 62337628 134873275 298279841
27 22847028 29416966 50884452 103186612 225015223 502496682
28 37315678 48055443 83327163 169824540 373141724 841161007
29 60631940 78093926 135733071 277967860 615224276 1399559416
30 98030644 126276743 219978688 452594316 1008792896 2315201903
31 157743554 203211038 354780782 733229626 1645443771 3808746574
32 252671288 325518314 569519349 1182159039 2670372299 6232651705
33 402944731 519138982 910130189 1897140990 4312780664 10147431024
34 639871871 824414851 1448166991 3031012912 6933014899 16440685315
35 1011956958 1303853212 2294680459 4821835750 11095408859 26512248644
36 1594100512 2053981256 3621419828 7639072393 17680429741 42561099330
37 2501559132 3223352798 5693103210 12054120068 28056800955 68028465562
38 3911136893 5039865872 8916408778 18947689292 44344779210 108279807765
39 6093172867 7852029282 13914109052 29672809254 69817667843 171651101620
40 9459795828 12191192807 21636960372 46301523560 109512215347 271048865628
41 14637397882 18865058704 33532084406 71997231090 171153951432 426389614752
42 22575337525 29097916032 51795716561 111575067538 266555833407 668307945618
43 34708392976 44740293582 79751566012 172343093538 413726582860 1043776858764
44 53199143209 68581738911 122415827920 265361653081 640040090348 1624602354318
45 81298470388 104816149708 187338790559 407324082526 986987600985 2520227376672
46 123880767618 159732599729
47 188236334008 242738329372
48 285242287944 367870426468
49 431088527694 556024400588
50 649816920320 838232884647
51 977048352353
52 1465442861255
53 2192681711158
54 3273114322046
55 4874718706124
56 7243754365560
57 10740528588174
58 15891194045343
59 23462627747108
60 34570490892429

Table 3: Results from Exact Enumeration

24



B A class of restricted plane partitions

A plane partition is an array of non-negative integers hi,j that are weakly de-
creasing along both rows and columns i.e.,

hi+i,j ≤ hi,j and hi,j+1 ≤ hi,j for all i, j ≥ 1 .

The volume of a plane partition is defined to be the sum of all entries in the array
i.,e.

∑
i,j hi,j and let p2(n) denote the number of plane partitions with volume n.

Let pr(n) denote the subset of plane partitions where one imposes the stronger
condition

hi+i,j = hi,j − e and hi,j+1 = hi,j − e for all i, j ≥ 1 ,

where e = 0 or e = 1.
The first few numbers are

n 1 2 3 4 5 6 7 8 9 10
pr(n) 1 2 3 6 10 18 30 41 63 102
p2(n) 1 3 6 13 24 48 86 160 282 500

It is easy to see that
pr(n) < p2(n) for n > 1 . (26)

We also have for n� 1 that

log a1(n) < 4 log pr(n/4).

We thus have

log pr
(
n
4

)
>
c0
4
n2/3 or log pr(n) >

c0
41/3

n2/3. (27)

We thus obtain the asymptotic bound as n→∞:

1

41/3
n−2/3 log a1(n) < n−2/3 log pr(n) < n−2/3 log p2(n) , (28)

or equivalently
c0

41/3
< n−2/3 log pr(n) < 3

2
(2ζ(3))1/3 . (29)

Our estimate of c0 ≈ 2.344 thus enables us to set a lower bound for the asymptotic
behaviour of pr(n).
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