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We observe D0-D̄0 mixing in the decay D0 → Kþπ− using a data sample of integrated luminosity
976 fb−1 collected with the Belle detector at the KEKB eþe− asymmetric-energy collider. We measure the
mixing parameters x02 ¼ ð0.09� 0.22Þ × 10−3 and y0 ¼ ð4.6� 3.4Þ × 10−3 and the ratio of doubly
Cabibbo-suppressed to Cabibbo-favored decay rates RD ¼ ð3.53� 0.13Þ × 10−3, where the uncertainties
are statistical and systematic combined. Our measurement excludes the no-mixing hypothesis at the 5.1
standard deviation level.

DOI: 10.1103/PhysRevLett.112.111801 PACS numbers: 12.15.Ff, 13.25.Ft, 14.40.Lb

Aweakly decaying flavored neutral meson is a two-state
quantum system with an allowed transition between the two
states. This transition is referred to as neutral meson mixing
and originates from the difference between the flavor and
mass eigenstates of the meson-antimeson system with a
well-known rate depending on elements of the Cabibbo-
Kobayashi-Maskawa matrix [1,2]. Mixing phenomena are
well established for K0, B0, and B0

s mesons and their

mixing rates are consistent with predictions based on the
standard model (SM) [3]. D0 mixing has also recently been
observed in hadron collider experiments [4,5], confirming a
previous D0-D̄0 mixing signal [6] based mainly on com-
bined evidence from three different experiments [7–9].
The phenomenology of meson mixing is described by

two parameters, x ¼ Δm=Γ and y ¼ ΔΓ=2Γ, where Δm
andΔΓ are the mass and width differences between the two
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mass eigenstates and Γ is the average decay width of the
mass eigenstates. While the finite mixing parameters of the
K0, B0, and B0

s mesons are well measured, those for the D0

meson are not [6]. The mixing parameters x and y are
difficult to calculate [10,11], which complicates the inter-
pretation of experimental measurements against the SM.
Nevertheless, it is still of great interest to improve the
measurement of the D0 mixing parameters to search for
possible beyond-SM physics contributions [12]. It is also
very valuable to confirm D0 mixing in eþe− collisions and
provide further independent determinations of the D0

mixing parameters where the experimental conditions are
quite different from those in hadron collider experiments.
In this Letter, we report the first observation of D0-D̄0

mixing from an eþe− collision experiment by measuring
the time-dependent ratio of the D0 → Kþπ− to D0 →
K−πþ decay rates. The consideration of charge-conjugated
decays is implied throughout this Letter. We refer to D0 →
Kþπ− as wrong-sign (WS) and D0 → K−πþ as right-sign
(RS) decays. We tag the RS and WS decays through the
decay chain D�þ → D0ð→ K∓π�Þπþs by comparing
the charge of the π from the D0 decay and the charge of
the low-momentum πs from the D�þ decay. The RS decay
amplitude is the sum of the amplitudes for Cabibbo-favored
(CF) decay D0 → K−πþ and D0-D̄0 mixing followed by
the doubly Cabibbo-suppressed (DCS) decay D̄0 → K−πþ,
where the latter is very small compared to the former and is
therefore neglected. In contrast, the WS decay amplitude is
the sum of two comparable decay amplitudes for the DCS
decay D0 → Kþπ− and D0-D̄0 mixing followed by the CF
decay D̄0 → Kþπ−. Assuming charge-conjugation and
parity (CP) conservation and that the mixing parameters
are small (jxj ≪ 1 and jyj ≪ 1), the time-dependent RS and
WS decay rates are

ΓRSð~t=τÞ ≈ jACFj2e−~t
τ;

ΓWSð~t=τÞ ≈ jACFj2e−~t
τ

×

�
RD þ

ffiffiffiffiffiffi
RD

p
y0
~t
τ
þ x02 þ y02

4

�
~t
τ

�
2
�

(1)

to second order in the mixing parameters. In Eq. (1), ~t is the
true proper decay time,ACF is the CF decay amplitude, τ is
the D0 lifetime, RD is the ratio of DCS to CF decay rates,
x0 ¼ x cos δþ y sin δ, and y0 ¼ y cos δ − x sin δ, where δ is
the strong phase difference between the DCS and CF decay
amplitudes. The time-dependent ratio of WS to RS decay
rates is then

Rð~t=τÞ ¼ ΓWSð~t=τÞ
ΓRSð~t=τÞ

≈ RD þ
ffiffiffiffiffiffi
RD

p
y0
~t
τ
þ x02 þ y02

4

�
~t
τ

�
2

;

(2)

which is a quadratic function of ~t=τ.

In order to measure the mixing parameters using Eq. (2),
the measured proper decay time should be approximately
the true proper decay time. This condition is satisfied in
hadron collider experiments [4,5] where the tagged D’s
have a decay time much larger than the resolution on ~t. At a
B factory, however, the mean decay time of the tagged D’s,
shown in Fig. 2, is approximately the D0 lifetime, which is
comparable to the resolution on ~t; thus, the resolution effect
must be taken into account. Our approach here is to
measure the time-dependent ratio of WS to RS decays,
given by

Rðt=τÞ ¼
Rþ∞
−∞ ΓWSð~t=τÞRðt=τ − ~t=τÞdð~t=τÞRþ∞
−∞ ΓRSð~t=τÞRðt=τ − ~t=τÞdð~t=τÞ ; (3)

where t is the reconstructed proper decay time andRðt=τ −
~t=τÞ is the resolution function of the real decay time, ~t.
The data used in this analysis are recorded at the ΥðnSÞ

resonances (n ¼ 1, 2, 3, 4, 5) or near the ϒð4SÞ resonance
with the Belle detector at the eþe− asymmetric-energy
collider KEKB [13]. The data sample corresponds to an
integrated luminosity of 976 fb−1. The Belle detector is a
large-solid-angle magnetic spectrometer that consists of a
silicon vertex detector (SVD), a 50-layer central drift
chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter comprising CsI(Tl) crystals (ECL)
located inside a superconducting solenoid coil that provides
a 1.5 T magnetic field. An iron flux return located outside
the coil is instrumented to detect K0

L mesons and identify
muons. A detailed description of the Belle detector can be
found in Ref. [14].
We require that charged tracks originate from the eþe−

interaction point (IP) with an impact parameter less than
4 cm in the beam direction (the z axis) and 2 cm in the
transverse plane and have a transverse momentum greater
than 0.1 GeV=c. All charged tracks are required to have at
least two associated hits each in the z and azimuthal strips
of the SVD to assure good spatial resolution of the decay
vertices ofD0 mesons. Charged tracks are identified asK or
π candidates using the ratio of particle identification
likelihoods, PKπ ≡ LK=ðLK þ LπÞ, reconstructed from
the track-associated data in the CDC, TOF, and ACC.
We require PKπ > 0.4 for K, PKπ < 0.7 for π and PKπ <
0.9 for πs candidates. The efficiency and K=π misidenti-
fication rate of the K selection are 91% and 12% and those
of the π selection are 94% and 18%. We also apply a loose
electron veto criterion using the ECL information for all
charged tracks. Oppositely charged K and π candidates are
combined to form a D0 candidate by fitting them to a
common vertex; the resultingD0 candidate is fit to the IP to
give the D�þ vertex. A D�þ candidate is reconstructed by
combining a D0 candidate—a Kπ combination with invari-
ant mass within�20 MeV=c2 (i.e., ∼� 3σ) of the nominal
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D0 mass [3]—with a πs. The πs is further constrained to
pass through the D�þ vertex. The sum of the reduced χ2 of
the D�þ vertex fit and πs fit to the D�þ vertex is required to
be less than 16.
There is a significant contribution to theWS sample from

RS decays where both K and π candidates are misidentified
as π and K, respectively. We remove these with tighter
particle identification requirements, PKπ > 0.99 for K and
PKπ < 0.01 for π, if MðKπÞswap, the invariant mass of the
Kπ combination when swapping the nominal mass of K
and π track candidates, is within �25 MeV=c2 of the
nominal D0 mass. To remove combinatorial background
due to random unassociated charged track combinations
that meet all the other requirements, we require the D�þ
meson momentum calculated in the center-of-mass system
to be greater than 2.5, 2.6, and 3.0 GeV=c for the data taken
below the Υð4SÞ, at the Υð4SÞ, and above the Υð4SÞ
resonance, respectively. This momentum requirement also
removes D�þ → D0πþs decays from B meson decays,
which do not give the proper decay time of the D0 meson
due to the finite B-meson lifetime.
The selection criteria described above are chosen by

maximizing RWSN RS
S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RWSN RS

S þNWS
B

q
, where RWS is

the nominal ratio of WS to RS decay rates [3], N RS
S is the

number of events in the RS signal region of the D�þ-D0

mass difference, ΔM ≡MðD�þ → D0ð→ KπÞπþs Þ−
MðD0 → KπÞ, andNWS

B is that in the WS sideband regions
of ΔM. We define the signal region as ΔM ∈
½0.144; 0.147� GeV=c2 and the background sidebands as
ΔM ∈ ½0.141; 0.142� or ½0.149; 0.151� GeV=c2. When
counting N RS

S , we subtract background candidates in the
signal region using candidates in the RS sideband regions.
The measured D0 proper decay time is calculated as

t ¼ mD0L⃗ · p⃗=jp⃗j2 where L⃗ is the vector joining the decay
and production vertices of the D0, p⃗ is the D0 momentum,
andmD0 and τ are the nominalD0 mass and lifetime [3]. We
require the uncertainty on t to satisfy σt=τ < 1.0, and
t=τ ∈ ½−5; 10�. These selections are determined from 5000
simplified simulated experiments by maximizing our sen-
sitivity to the mixing parameters and minimizing the
systematic biases in them.
Using these selections, we find no significant back-

grounds in WS candidates that peak in the signal region
from a large-statistics sample of fully simulated eþe− →
hadrons events in our GEANT3-based [15] Monte Carlo
(MC) simulation. Figure 1 shows the time-integrated
distributions of ΔM from RS and WS candidate events
after applying all the selections described above.
The time-integrated RS signal shown in Fig. 1 is para-

metrized as a sum of Gaussian and Johnson SU [16]
distributions with a common mean. The time-dependent
RS signal in each bin of the proper decay time is fit with a
Johnson SU only. The shapes of the WS signal are fixed
using the corresponding RS signal shapes, and fit with only

the signal normalization allowed to vary. The backgrounds
in RS and WS decay events are fit independently and are
parametrized with the form ðΔM −mπþÞαe−βðΔM−mπþÞ,
where α and β are free fit parameters, and mπþ is the
nominal mass of πþ [3]. The fits give 2 980 710� 1885 RS
and 11 478� 177 WS decays, giving an inclusive ratio of
WS to RS decay rates of ð3.851� 0.059Þ × 10−3. The
uncertainty is statistical only.
We obtain the resolution function of Eq. (3) from the

proper decay time distribution of RS decays after sub-
tracting a small level of background events using the
sideband regions defined above. This is shown in Fig. 2.
We parametrize the proper decay time distribution of RS
decays with the convolution of an exponential and a
resolution function that is constructed as the sum of four
Gaussians, Rðt=τÞ ¼ P

4
i¼1 fiGiðt=τ; μi; σiÞ, where Gi is a

Gaussian distribution with mean μi and width σi, and fi
is its weight. The mean μi is further parametrized with
μi ¼ μ1 þ aσi, where μ1 is the mean of the core Gaussian
G1 (i ¼ 2, 3, 4). The parameters a and μ1 describe a
possible asymmetry of the resolution function. All param-
eters of the resolution function float freely and the fit is
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FIG. 1 (color online). Time-integrated distributions for the mass
difference of RS (left) and WS (right) candidates. Points with
error bars are the data; full and dashed lines are, respectively, the
signal and background fits described in the text.
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FIG. 2 (color online). Distribution of the proper decay time
from background-subtracted RS decays in the signal region
(points with error bars) and in the sideband regions (shaded).
The curve shows the fit to the signal.
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shown in Fig. 2. TheD0 lifetime is also a free fit parameter,
for which we obtain ð408.5� 0.9Þ fs, where the uncer-
tainty is statistical only. This D0 lifetime is consistent with
the world-average value [3] and the other Belle measure-
ment [17], which gives further confidence in our para-
metrization of the resolution function.
To calculate the time-dependent WS to RS decay rate

ratio, we divide the samples shown in Fig. 1 into ten bins of
proper decay time. Our binning choice is made using 5000
simplified simulated experiments to maximize the sensi-
tivity to the mixing parameters. Figure 3 shows the time-
dependent ratios of WS to RS decay rates. The average
value of the proper decay time in each bin is determined
with the parametrization for the reconstructed RS proper
decay time distribution shown in Fig. 2.
Prior to our fit to the time-dependent ratios of WS to RS

decay rates, we estimate possible systematic effects. We
validate the analysis procedure with the fully simulated MC
events with several different input values of the mixing
parameters and find results consistent with the input
parameters. The dominant sources of systematic uncertain-
ties are from fitting the ΔM distributions and uncertainties
on the resolution function that do not cancel out in Eq. (3).
However, these are estimated to be less than a tenth of the
statistical uncertainty, which is estimated in simulated
simplified experiments. Other sources of uncertainty are
the binning of the proper decay time and the reconstruction
efficiencies of WS and RS decays. These effects should
cancel in the WS to RS ratio measurement. We estimate
these with simulated simplified experiments and, indeed,
find a negligible contribution of < Oð10−4Þ on the mixing
parameters and so ignore them. The systematic uncertain-
ties due to fitting the ΔM distributions are estimated in the
bins of the proper decay time and are added to the statistical
uncertainties of the bin in quadrature, albeit with negligible
effect.

Our fits to the time-dependent ratios of WS to RS decays
using Eq. (3) are shown in Fig. 3. We test two hypotheses,
with and without mixing, and the results are listed in
Table I. The mixing parameters measured in this analysis
agree with previous results from both hadron collider
experiments [5,18] using a similar method, as well as with
the results of alternate experimental methods from eþe−
collision experiments [7,19] and are summarized in
Table II.
As a check of our results in Table I, we repeat the

analysis in two independent subsamples. One corresponds
to an integrated luminosity of 400 fb−1 (the “old sample”)
that is used in our previous publication [19] with a different
method than used here. The other is the rest of our full data
sample, corresponding to an integrated luminosity of
576 fb−1 (the “new sample”). These two independent
subsamples are fed through this analysis separately. The
results from the old and new samples (with statistical
uncertainty only) are ðRD;y0;x02Þ¼ð3.65�0.22;−0.2�
5.4;0.36�0.32Þ×10−3 and ð3.45�0.17;7.6�4.4;−0.09�
0.30Þ×10−3, respectively, which are compatible with the
results from the full data sample. Furthermore, the results of
this analysis using the old sample are consistent with our
previous publication [19], which is superseded by the
results of this analysis.
The χ2 difference between the “no-mixing” and “mix-

ing” hypotheses, Δχ2 ¼ χ2nomixing − χ2mixing, is 29.3 for 2
degrees of freedom, corresponding to a probability of

TABLE II. MeasuredD0-D̄0 mixing parameters inD0 → Kþπ−
decays from this work and others, where we display the total
uncertainty. All measurements assume CP conservation.

Experiment RD (×10−3) y0 (×10−3) x02 (×10−3)

Belle [19] 3.64� 0.17 0.6þ4.0
−3.9 0.18þ0.21

−0.23
BABAR [7] 3.03� 0.19 9.7� 5.4 −0.22� 0.37
CDF [5] 3.51� 0.35 4.3� 4.3 0.08� 0.18
LHCb [18] 3.568� 0.066 4.8� 1.0 0.055� 0.049
Belle (this work) 3.53� 0.13 4.6� 3.4 0.09� 0.22

TABLE I. Results of the time-dependent fit to Rðt=τÞ, where
DOF stands for the degrees of freedom. The uncertainties are
statistical and systematic combined.

Test
hypothesis
(χ2=DOF) Parameters

Fit
results
(10−3) RD

Correlation
coefficient

y0 x02

Mixing RD 3.53� 0.13 1 −0.865 þ0.737
(4.2=7) y0 4.6� 3.4 1 −0.948

x02 0.09� 0.22 1

No mixing RD 3.864� 0.059
(33.5=9)

τt/
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/

0.004

0.005
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FIG. 3 (color online). The time-dependent ratios of WS to RS
decay rates. Points with error bars reflect the data and their total
uncertainties. The lines show the fit with (solid) and without
(dashed) the mixing hypothesis.
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4.3 × 10−7; this implies the no-mixing hypothesis is
excluded at the 5.1 standard deviation level. Thus, we
observe D0-D̄0 mixing for the first time in an eþe−
collision experiment. We also show this in Fig. 4 with
the 1σ, 3σ, and 5σ contours around the best fit point in the
(x02, y0) plane.
In summary, we report the first observation of D0-D̄0

mixing in eþe− collisions by measuring the time-dependent
ratios of the WS to RS decay rates, providing
x02 ¼ ð0.09� 0.22Þ × 10−3, y0 ¼ ð4.6� 3.4Þ × 10−3, and
RD ¼ ð3.53� 0.13Þ × 10−3. Our results agree well with
those from hadron collider experiments [5,18] performed in
very different experimental conditions.
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