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Abstract: In this paper, a numerical study of turbulent flow over the S-shaped hydrofoil at 0◦ angle
of attack has been reported. Here, the flow takes place over concave and convex surfaces and is
accompanied by the favourable and adverse pressure gradients and flow separation. Modelling
such a flow poses a formidable challenge. In the present work four turbulence models, namely,
k–ε realizable, k–ω shear stress transport, ν ′2−f , and the Reynolds stress model (RSM) were exam-
ined. Simulations were performed on a structured grid using finite-volume method formulation.
Commercial software was used for grid generation and numerical simulation. A comparison of
the experimental data of Madhusudan et al. (Fluid Dyn. Res., 1994, 14(5), 241–258) and numer-
ical predictions were made, and the suitability of turbulence models was ascertained for both
the mean and turbulent quantities. It was seen that ν ′2−f works better for predicting the mean
quantities and the RSM for turbulent quantities.

Keywords: turbulent boundary layer, turbulence model, hydrofoil, pressure gradient effect,
curvature effect, numerical simulation

1 INTRODUCTION

The turbulent flows that advance over the surface with
curvature normal to the mean flow direction are com-
mon in many engineering applications. The effects
of streamline curvatures on turbulent flows in many
situations can be quite large [1].

In the past, the experimental studies of both inter-
nal flows within curved ducts and external flow around
curved surfaces have been carried out [2–5]. From
these careful experiments, it is evident that the tur-
bulent shear stress is damped on convex surfaces [2],
while the turbulent intensities inside the boundary
layer increase in the presence of concave surfaces [3,
4]. Baskaran et al. [5, 6] studied the effect of the cur-
vature and pressure gradient on the behaviour of
turbulent flows. They showed that the shear stress
is more sensitive to streamline curvature than the
turbulent kinetic energy.

∗Corresponding author: Department of Mechanical Engineering,
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In the past, some efforts were made in solving
the boundary-layer equations using different turbu-
lent models. Gibson et al. [7] calculated the turbulent
boundary layers on the curved surfaces by solving
the boundary-layer equation with measured longi-
tudinal pressure gradient, together with a Reynolds
stress turbulence model and wall functions. In reality,
the surface curvature effects are often accompanied
by the pressure gradient effects and these need to be
accounted for.

Richmond and Patel [8] carried out a numerical sim-
ulation of the flow inside a curved duct as well as
an external flow over convex and concave surfaces.
They used the k–ε model. Pressure distribution and
velocity profile predictions matched well but the skin-
friction coefficient and Reynolds stress data differed
considerably from that of the experimental data.

Luo and Lakshminarayana [9, 10] investigated the
effects of strong convex and concave curvatures on
the turbulent duct flow. They found that the Reynolds
stress model (RSM) could successfully capture the
damping of turbulence near the convex wall but
underpredicted enhancement of turbulence near the
concave wall. The difference in the relative success of
the model to capture convex and concave curvatures
may be attributed to the attenuation of existing eddies
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by the convex structure and reorganization of eddy
structures in the concave curvature.

Davidson [11] had predicted the flow around an
aerofoil using the RSM. He concluded that in com-
parison with the two-layer k–ε model, the RSM could
predict stall and flow features better. Rumsey and
Gatski [12] studied the capabilities of three different
turbulent models for predicting the effect of curva-
ture on flow. They concluded that none of the one- or
two-equation linear eddy viscosity models (EVM) and
the algebraic stress model they had employed could
fully capture the suppressed turbulence near the con-
vex wall or the enhanced turbulence near the concave
wall. The RSM could capture the suppression of turbu-
lence. Sleiti and Kapat [13] compared the performance
of two-equation eddy viscosity and RSM for simulating
flow and heat transfer in rotating rib-roughened inter-
nal cooling channels. They concluded that overall the
RSM performed better than the EVM. Jing-lei et al. [14]
used linear and non-linear EVM, a quadratic algebraic
stress model, and the RSM for predicting flows having
strong curvature effects.Yakinthos et al. [15] simulated
flow in a 90◦ rectangular duct by applying three low-
Reynolds-number turbulence models – two EVMs and
a RSM. In general, the RSM was seen to give results
consistent with the experimental values, but its predic-
tive capability was poor near the concave wall. From
the above studies, it is clear that the effects of curva-
ture on the velocity profiles and turbulence intensity
must be predicted accurately to capture the boundary
layer development over the curved surface.

In contrast to the conventional symmetric or single
cambered aerofoil, attention is given here to the flow
over a double-cambered S-shaped hydrofoil. This type
of aerofoil profile is used in runner blades of the fully
reversible pump-turbine that finds application in tidal
power plants and thermal power plants for providing
peaking power [16].

An S-blade profile has consecutive concave and
convex curvatures on both the upper and lower sur-
faces (Fig. 1). The boundary layers develop under
the simultaneous effect of the concave and convex
curvatures and favourable and adverse pressure gra-
dients. Further, the boundary layer over the upper
surface encounters the convex surface first and then
the concave surface, whereas the flow over the lower
surface experiences the reverse order of curvatures.

Fig. 1 Geometry of S-blade (S3525)

These blades are represented by a four-digit number
preceded by S [16]. The first and second digits repre-
sent the maximum camber and maximum thickness,
respectively, as percentage of chord, and the last two
digits together give the location of maximum camber
as percentage of chord from either end. In the present
work, the S3525 profile, which may be better suited as
a runner blade in a reversible pump-turbine [17], has
been used.

An accurate prediction of the flow past an S-blade
will depend on the choice of the turbulence model.
It is a known fact that there is no single turbulence
model that can be applied for all flow situations. So, it
becomes necessary to examine the predictive capabil-
ities of some of the possible turbulence models against
the experimental data available.

Strictly speaking, the only fundamentally secure
approach to simulate turbulent flow is to use direct
numerical simulation (DNS) that can resolve the entire
turbulent spectrum. Alternatively, large eddy simula-
tions (LES) may be employed, in which the smaller
eddies are filtered and are modelled using a subgrid
scale model, whereas the larger energy carrying eddies
are simulated. Naturally, DNS requires larger compu-
tational resources than the LES. However, for most
practical problems, not only the DNS but also the LES
poses a prohibitively large computational resource
because near a wall, large dynamically influential tur-
bulent scales are small, and so a very dense mesh is
required [18]. For most practical problems, therefore,
Reynolds-averaged Navier–Stokes (RANS) equations
are employed with appropriate closure models to
simulate the flow.

There are two broad classifications of RANS, namely,
EVM and RSM. Two of the most well-known and
popular RANS models are k–ε and k–ω, and their vari-
ants [19]. Durbin [20] successfully used the k–ε–ν ′2

model for the turbulent separated flows over a back-
ward facing step, in a plane diffuser and also around a
triangular cylinder. Good agreement with the exper-
imental result was found, in this case, of massive
separation and smooth separation. Iaccarino [21] car-
ried out the computation of turbulent flow in an
asymmetric two-dimensional diffuser and reported
that the result obtained using the ν ′2−f model was
consistent with the experimental data.

In this study, a numerical simulation of a two-
dimensional turbulent flow over an S-blade for four
different turbulence models has been carried out.
These models are k–ε realizable, ν ′2−f , k–ω shear stress
transport (SST), and the RSM. From the survey of liter-
ature on turbulence modelling available, it is clear that
the EVMs find application in a wide range of practical
problems and the RSM is particularly useful in pre-
dicting flows, where anisotropy could be significant.
This has also led to the inclusion of these models
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in commercial computational fluid dynamics (CFD)
software.

The main objective of the work is to compare the
predictive capabilities of these models for the simu-
lation of turbulent flow over surfaces having consec-
utive concave and convex curvatures. The numerical
methods and turbulence models with the appropri-
ate equations are presented in section 2. Simulation
procedure including grid generation is also covered in
section 2, results and discussions are given in section 3,
and conclusion in section 4.

2 GOVERNING EQUATIONS AND NUMERICAL
SCHEME

The governing equations for steady, incompressible
fluid are

∂ui

∂xi

= 0 (1)

ui

∂uj

∂xi

=
∂

∂xj

[

(ν + νt)
∂ui

∂xj

]

−
1

ρ

∂p

∂xj

(2)

Instantaneous Navier–Stokes equations can be time
averaged, in order to transform it into the RANS
equation in such a way that the small-scale turbulent
fluctuations do not have to be simulated directly. This
transformation introduces an additional Reynolds
stresses −ρu′

iu
′
j term in the governing equation that

needs to be modelled in order to achieve ‘closure’. This
is achieved through the different turbulence models.
The next section is an introduction about the different
turbulent models used in this work.

2.1 Turbulence modelling

Different turbulent models are available and, based
on the existing knowledge of ‘success’ and ‘failure’
of these models in solving the different flow situa-
tions, four models have been identified for the present
work, which involves the flow where streamline cur-
vature, pressure gradient effects can be significant
and where flow separation is expected. In the order
of increasing complexity, these are k–ε realizable,
k–ω SST, ν ′2−f , and the RSM. These models are briefly
described in the next subsection. The first three mod-
els are the EVM, whereas the last one is a second
moment closure model.

2.1.1 k–ε realizable model

The modelled transport equations for k and ε in the
k–ε realizable model are [22]

∂

∂xj

(kuj) =
∂

∂xj

[(

ν +
νt

σk

)
∂k

∂xj

]

+ P − ε (3)

and

∂

∂xj

(εuj) =
∂

∂xj

[(

ν +
νt

σε

)
∂ε

∂xj

]

+ C1Sε − C2

ε2

k + (νε)1/2
(4)

where

C1 = max

[

0.43,
η

η + 5

]

(5)

η = S
k

ε
(6)

S =
(

2SijSij

)1/2
(7)

In these equations, P represents the generation of
turbulence kinetic energy due to the mean velocity
gradients, σk and σε are the turbulent Prandtl num-
bers for k and ε, respectively. In the present work, the
model constants being used are C2 = 1.9, σk = 1, and
σε = 1.2.

In order to best account for surface roughness, semi-
empirical equations in the form of an ‘enhanced wall
treatment’ with ‘pressure gradient effect’ are used to
bridge the viscosity-affected region between the wall
and the fully turbulent region. The two-layer approach
is an integral part of the enhanced wall treatment and
is used to specify both ε and the turbulent viscos-
ity in the near-wall cell. In this approach, the whole
domain is subdivided into a viscosity-affected region
and a fully turbulent region. The demarcation of the
two regions is determined by a wall-distance-based
turbulent Reynolds number

Rey =
ρy

√
k

μ
(8)

where y is the normal distance from the wall at the cell
centres.

In the fully turbulent region (Rey > Re+
y ; Re+

y = 200),
standard k–ε model is employed.

In the viscosity-affected near-wall region, (Rey <

Re+
y )μt is computed from

μt,2layer = ρCμlμ
√

k (9)

where lμ is calculated from

lμ = yCl

(

1 − e−Rey /Aμ
)

(10)

The two-layer formulation for turbulent viscosity
described above is used as a part of the enhanced
wall treatment, in which the two-layer definition is
smoothly blended with the high-Reynolds number μt

definition from the outer region

μt,enh = λεμt + (1 − λε)μt,2layer (11)

where μt is the high-Reynolds number definition as
described for the standard k–ε model.
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A blending function λε is defined in such a way that
it is equal to unity far from the walls and is zero very
near to the walls. The blending function chosen is

λε =
1

2

[

1 + tanh

(
Rey − Re+

y

A

)]

(12)

The constant A determines the width of the blending
function. It is defined such that the value of λε will be
within 1 per cent of its far-field value, given a variation
of 
Rey .

The ε field is computed from

ε =
k3/2

lε
(13)

The length scale lε = yCl

(

1 − e−Rey /Aε
)

.
The constants in the length scale formula are

Cl = kC−3/4
μ , Aμ = 70, Aε = 2Cl

2.1.2 ν ′2−f model

The ν ′2−f turbulence model is an alternative to the
k–ε model and was introduced to model the near-wall
turbulence without the use of exponential damping or
wall functions [21]. The turbulence model described
earlier uses turbulence kinetic energy, k, as the veloc-
ity scale in the eddy viscosity region. However, it is
well known that the turbulence is anisotropic near the
wall, and so k is not a good representative of the veloc-
ity scale. Shear stress is driven by the normal stress, ν ′2,
in the near-wall layer. In the enhanced model formu-
lation described earlier, a damping function is used to
account for more rapid decay in wall-normal inten-
sity than that of the turbulent energy. This damping
is assumed to be purely viscous and in reality, vis-
cous damping occurs over a thinner region than is
implied in the damping function [18]. To overcome
these difficulties, the ν ′2−f model was developed by
Durbin [20]. It incorporates a simplified transport
equation for the normal stress perpendicular to the
streamlines (or, the wall) that serve as the turbulent-
velocity scale in the eddy viscosity, in preference to the
turbulence energy. The model requires the solution of
four differential equations

ui

∂k

∂xi

= P − ε +
∂

∂xj

[(

ν +
νt

σk

)
∂k

∂xj

]

(14)

ui

∂ε

∂xi

=
f1Cε1P − f2Cε2ε

T
+

∂

∂xj

[(

ν +
νt

σε

)
∂ε

∂xj

]

(15)

The eddy viscosity is obtained from

νt = CμfμkT (16)

where

f1 = 1 + 0.045

(
k

ν ′2

)1/2

(17)

f2 = 1 (18)

fμ =
ν ′2

k
(19)

T = max

[
k

ε
, 6

(ν

ε

)1/2
]

(20)

The equations model the turbulence velocity scale ν ′2

and its production, kf

ui

∂ν ′2

∂xi

= kf − 6ν ′2 ε

k
+

∂

∂xj

[
(

ν +
νt

σk

)
∂ν ′2

∂xj

]

(21)

f − L2 ∂2f

∂xj∂xj

= C1

(

2/3 − ν ′2/k
)

T
+ C2

P

k
+

5ν ′2/k

T
(22)

where L is the length scale and is defined as

L2 = C 2
l max

[

k3

ε2
, C 2

η

(
ν3

ε

)1/2
]

(23)

The constants used in the present simulations are as
follows Cε1 = 1.4, Cε2 = 1.9, Cμ = 0.22, Cl = 0.23, Cη = 70,
C1 = 1.4, C2 = 0.3, σk = 1, and σε = 1.3.

The eddy-viscosity damping is provided in this case
by the presence of ν ′2 (equation (19)). In other words,
the amount of damping is controlled by the ratio of ν ′2

and k instead of the turbulent Reynolds number Ret ,
like in the k–ε model.

2.1.3 k–ω SST (the shear-stress transport model)

k–ω model performs better than the k–ε model near
the wall. However, there is one problem with k–ω

model – its extreme sensitivity to the value of ω at irro-
tational boundaries of shear flows.This led Menter [23]
to formulate a hybrid model, which blends the advan-
tages of k–ω model near the wall (typically, y+ <

70) and k–ε model away from the wall. This model,
SST model, performs satisfactorily in the decelerating
boundary layer and is thus effective in predicting sepa-
ration. The transport equations for the k–ω SST model
are as given below [22]

∂

∂xj

(

kui

)

=
∂

∂xj

(
Ŵk

ρ

∂k

∂xj

)

+ P + Yk (24)

∂

∂xj

(ωui) =
∂

∂xj

(
Ŵω

ρ

∂ω

∂xj

)

+ Gω − Yk + Dω (25)

In these equations, P represents the generation of
turbulent kinetic energy due to mean velocity gra-
dients and Gω represents the generation of ω. Ŵk

and Ŵω represent the effective diffusivity of k and ω,
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respectively. Yk and Yω represent the dissipation of k
and ω, respectively, due to turbulence. Dω represents
the cross-diffusion term.

For all the EVM discussed above, the turbulent
stresses ū′2, ν̄ ′2, and −u′ν ′ are calculated based on the
Boussinesq assumption.

2.1.4 Reynolds stress model (RSM)

Most models used in engineering practice employ
the Boussinesq approximation, where the turbulent
stresses in the Reynolds-averaged momentum and
energy equations are assumed equal to the product
of the isotropic eddy viscosity coefficient and mean
velocity strain rate. However, when the Boussinesq
assumption is not valid, Reynolds stress calculations
will be in error regardless of how accurately the model
equations are solved. The RSM, which does not use
the Boussinesq assumption, is considered to be of a
higher level of closure that is available. These models
are superior to the algebraic, one- and two-equation
models since they eliminate the assumption that the
turbulent stresses and respond to changes in the mean
strain rate. They also account for anisotropy of turbu-
lence and extra effects (e.g. streamline curvature and
rotation). However, many unknown turbulent quan-
tities are required for the RSM and these are usually
obtained by assuming that the turbulence is locally
homogeneous and in equilibrium. These models are
currently too CPU-intensive for most engineering cal-
culations, and have yet to be applied to many complex
flows, particularly wall-bounded flows. In addition,
numerical stability problems may arise due to the
absence of turbulent viscosity, making the application
in complicated situations difficult at present. In the
RSM, the Boussinesq assumption is not used but a
partial differential equation (transport equation) for
the stress tensor is derived from the Navier–Stokes
equation. The exact transport equations for the trans-
port of the Reynolds stresses, ρu′

iu
′
j , may be written as

follows [22]

∂

∂xk

(

ρuku′
iu

′
j

)

︸ ︷︷ ︸

Convection Cij

=
∂

∂xk

[

ρu′
iu

′
ju

′
k + p

(

δkju
′
i + δiku′

j

)
]

︸ ︷︷ ︸

Turbulent diffusion DT,ij

+
∂

∂xk

(

μ
∂

∂xk

(

u′
iu

′
j

)
)

︸ ︷︷ ︸

Molecular diffusion DL,ij

− ρ

(

u′
iu

′
k

∂uj

∂xk

+ u′
ju

′
k

∂ui

∂xk

)

︸ ︷︷ ︸

Stress production Pij

+ p

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)

︸ ︷︷ ︸

Pressure strain φij

− 2μ

(
∂u′

i

∂xk

∂u′
j

∂xk

)

︸ ︷︷ ︸

Dissipation εij

(26)

Some terms are unknown in equation (26), such
as: the turbulent diffusion term, pressure–strain, and
dissipation tensor. From the Navier–Stokes equation,
transport equations can be derived for these unknown
quantities but this would add further unknowns to
the equation system. Instead these terms need to be
modelled to close the equation.

Modelling turbulent diffusive transport

DT,ij =
∂

∂xk

(
μt

σk

∂u′
i∂ν ′

j

∂xk

)

(27)

The turbulent viscosity, μt, is computed in a way
similar to that of k–ε model and σk = 0.82.

Modelling the pressure–strain term
The pressure–strain term contains: φij,1, the slow
pressure–strain term, also known as the return-to-
isotropy term; φij,2, the rapid pressure–strain; and φij,w ,
the wall-reflection term

φij = φij,1 + φij,2 + φij,w (28)

The slow pressure–strain term, φij,1, is modelled as

φij,1 = −C1ρ
ε

k

(

u′
iν

′
i −

2

3
δijk

)

(29)

C1 = 1.8

The rapid pressure–strain term, φij,2, is modelled as

φij,2 = −C2

[
(

Pij − Cij

)

−
2

3
δij (P − C)

]

(30)

C2 = 0.6

Pij and Cij are defined as in equation (26)

P =
1

2
Pkk , C =

1

2
Ckk

The wall-reflection term, φij,w , is responsible for the
redistribution of normal stresses near the wall. It tends
to damp the normal stress perpendicular to the wall,
while enhancing the stresses parallel to the wall. This
term is modelled as

φij,w = C ′
1

ε

k

(

u′
ku′

mnknmδij −
3

2
u′

iu
′
knjnk

−
3

2
u′

ju
′
knink

)
k3/2

Clεd
+ C ′

2

(

φkm,2nknmδij

−
3

2
φik,2njnk −

3

2
φjk,2nink

)
k3/2

Clεd
(31)

where C ′
1 = 0.6, C ′

2 = 0.5, nk is the xk component of the
unit normal to the wall, d is the normal distance to the
wall, and Cl = C 3/4

μ /κ , where Cμ = 0.09 and κ is the von
Karman constant (= 0.4187).
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The dissipation tensor, εij , is modelled as

εij =
2

3
δijρε (32)

The scalar dissipation rate ε is computed with a
model transport equation similar to that used in the
k–ε model.

2.2 Numerical scheme

A finite-volume code (Fluent®) solves the discretized
equations in a segregated manner, with the SIMPLEC
(semi-implicit method for pressure-linked equation-
consistent) algorithm. In the SIMPLEC algorithm, the
continuity equation (equation (1)) is converted into
a discrete Poisson equation for pressure. The differ-
ential equations are linearized and solved implicitly
in sequence: starting with the pressure equation (pre-
dictor stage), followed by the momentum equations
and pressure correction equation (corrector stage).
The equations for the scalars (turbulent quantities) are
solved after updating both the pressure and velocity
components. In Table 1, a summary of the numerical
parameters used for the computations are reported.

2.3 Statement of the problem

A two-dimensional computational domain is used in
the present case. The chord length of the hydrofoil
is 0.3 m. The inlet boundary condition is kept at a
distance 10 times the chord length upstream of the
leading edge of the hydrofoil. The height of the domain
above and below the profile is six times the chord
length. The outlet boundary condition is kept at a dis-
tance 20 times the chord length of the trailing edge
of the hydrofoil. Simulation of flow in the domain
was carried out subjected to the boundary conditions
described below, and both the mean and turbulent
quantities were predicted. The numerical predictions
were then compared with the experimental data avail-
able [24].

2.3.1 Boundary condition

Uniform flow velocity of 22.5 m/s was imposed at
the velocity inlet and atmospheric pressure was pre-
scribed at the pressure outlet condition of the domain.
No-slip boundary conditions were set on the hydrofoil
surface and wall. The values of turbulence intensity
and length scale were obtained from the relations
0.13 × Re(−1/8) and 0.07 × Dh, respectively, where Dh is
the hydraulic diameter and Re is the Reynolds num-
ber based on the chord length and velocity at the inlet,
and its value is 4.5 × 105. Air was used as the working
medium for simulation. All the simulations were done
at 0◦ angle of attack.

2.3.2 Grid sensitivity test

Grid generation requires careful consideration in the
selection of mesh size, spacing, and the number of
grids. In the present work, the grid dependency test
was carried out to arrive at the optimum grid counts.
Five different grids have been tested with 56 594,
136 363, 265 164, 402 124, and 586 304 nodes. The grid
was refined and tests continued until the grid inde-
pendent solution of drag (CD) and lift (CL) coefficients
were obtained as shown in Fig. 2. The optimum grids
of 402 124 nodes have been chosen based on CD and CL

as shown in Fig. 2. Strong clustering of the grid points
at the profile has been used, so that the y+ of the grid
points away from the foil surface was <1.

3 RESULTS AND DISCUSSION

3.1 Aerodynamic performance

In Table 2, a summary of CL, CD, and CL/CD values at 0◦

angle of attack for these different models are given.
Negative values of CL and CL/CD are the important
characteristics for the pump to operate in the reverse
direction. These values match with the experimental
results of Madhusudan [25], and both ν ′2−f and the
RSM yield results closest to the experimental data.

Table 1 Numerical parameters used for the simulations

Under-relaxation

Spatial discretization TQ
Pressure

U , V P TQ correction U , V P TKE TDR TV RS VVS ERF

k–ε realizable FOU Linear FOU SIMPLEC 0.7 0.3 0.8 0.8 1 — — —
k–ω SST SOU Linear SOU SIMPLEC 0.4 0.25 0.58 0.52 0.94 — — —

ν′2−f FOU Standard FOU SIMPLE 0.7 0.3 0.8 0.8 1 — 0.6 0.6
RSM FOU Standard FOU SIMPLEC 0.3 0.25 0.5 0.7 0.9 0.4 — —

U , V , mean velocity components; P, pressure; TQ, turbulent quantities; FOU, first-order upwind; SOU, second-order upwind; TKE, turbulent
kinetic energy; TDR, turbulent dissipation rate; TV, turbulent viscosity; RS, Reynolds stress; VVS, velocity variance scale; ERF, elliptic relaxation
function.
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Fig. 2 Determination of number of grids required to

arrive at grid independent solution

Table 2 Summary of aerodynamic character-

istics at 0˚ angle of attack

CL CD CL/CD

Experimental [25] −0.207 0.0181 −11.4
k−ε realizable −0.217 0.0241 −9.0
k−ω SST −0.151 0.0199 −7.6

ν′2−f −0.214 0.0221 −9.7
RSM −0.209 0.0229 −9.1

3.2 Prediction of mean quantities

Figure 3 shows the pressure distribution on the S-
shaped hydrofoil. Experimental data [24] are com-
pared with the four turbulence models. These results
indicate that on both the surfaces all models predict
equally well.

Figure 4(a) shows the variation of the skin-friction
co-efficient (Cf ) on the lower surface. Streamwise dis-
tance is normalized with the chord length. A compari-
son is made with the skin-friction coefficient obtained
from the different models and the experimental data
of Madhusudan et al. [24]. The experiment shows reat-
tachment at x/c = 0.20. The ν ′2−f model predicts at
0.16, the k–ω SST model predicts at x/c = 0.14, the k–ε

realizable model predicts at x/c = 0.11, and the RSM
predicts at x/c = 0.10. In the region between x/c =
0.2 and x/c = 0.5, Cf increases as pressure decreases,
whereas the concave curvature should have reduced
C .

f . This shows that the curvature effect is less sig-
nificant. This is borne by the fact that the maximum
value of (δ/R) is about 0.002. Between x/c = 0.5 and
x/c = 0.8, the adverse pressure gradient and convex
curvature effects work together to bring a reduction
of Cf . Beyond x/c = 0.8, though the pressure gradient
is again favourable, yet the value of Cf is decreasing,
indicating the curvature effect to be strong. It may
be mentioned that in this region the curvature effect,
signified by the ratio of (δ/R), is about 0.5, indicat-
ing a very strong curvature effect. All the turbulent
models capture the curvature and pressure gradient
effects properly.

Figure 4(b) shows the variation of Cf on the upper
surface. It is well known that for the flow over a flat
plate under the influence of favourable pressure gradi-
ent, Cf value should increase. However, in the present
case, the value of Cf decreases along the streamwise
direction as shown in Fig. 4(b). This indicates that
the effect of curvature is predominant compared with
the effect of pressure gradient in the region. Numeri-
cally, all the models predict the rise and fall in the Cf

value as shown in experimental results. However, none
of these models could predict the small separation
zone (between x/c = 0.4 and 0.5) that was seen in the
experiment.

Fig. 3 Variation of coefficient of pressure along (a) upper and (b) lower surfaces. Expt: experimental

data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress model
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Fig. 4 Variation of skin-friction coefficient along (a) lower and (b) upper surfaces. Expt: exper-

imental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model

Fig. 5 Velocity distributions across the boundary layer on the upper surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model
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3.2.1 Upper surface

The velocity distributions on the upper surface of
the S-shaped hydrofoil at different locations are
reported in Fig. 5. The profiles are taken normal
to the hydrofoil surface. It may be noted that the

local velocity at the edge of the boundary layer is
used to normalize the experimentally obtained and
numerically predicted velocities. It is seen that all
the models capture the experimental trend quite
well except at x/c = 0.5, where a small separation
was observed experimentally. From the numerically

Fig. 6 Variation of boundary-layer thickness along (a) upper and (b) lower surfaces. k–ε: k–ε

realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress model

Fig. 7 Semi-logarithmic plots of velocity profiles at different stations on the upper surface.

k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress model
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predicted velocity profiles, the boundary-layer thick-
ness was determined at different locations on upper
and lower surfaces. These are shown in Fig. 6.

Figure 7 shows the non-dimensional velocity distri-
butions at stations x/c = 0.2, 0.5, 0.6, 0.8, and 0.9 in
the boundary layer for the different turbulence mod-
els. It can be noticed that in the viscous sublayer
(about y+ � 5) all the curves coincide with each other
irrespective of their locations, as is the case with the
boundary layer over a flat plate. However, in the over-
lap region, there is a big difference due to curvature in
the S-shaped profile. From Fig. 6(a), it can be seen that
there is an increase in the boundary-layer thickness
in the upper surface till x/c = 0.8. Correspondingly,
there is a decrease in the slope of the log–law region
predicted by the RSM and ν ′2−f models. This fea-
ture was also reported by Lueptow et al. [26]. At the
trailing edge, there is an increase in the slope of the

log–law region due to a decrease in the boundary-layer
thickness.

3.2.2 Lower surface

The velocity distributions in the boundary layer for the
different models on the lower surface of the hydrofoil
are reported in Fig. 8. Here also, the local velocity at
the edge of the boundary layer was used to normalize
the velocities. It was seen that, except at x/c = 0.2, the
velocities have been predicted well by all the models
with ν ′2−f and the RSM being the closest to the exper-
imental values. As mentioned before, all the models
had underpredicted the separation region and this is
clear from the velocity profiles at x/c = 0.2. Careful
observation of this figure and the corresponding figure
for the upper surface (Fig. 5) suggests that the models
cannot capture the effects of change of the curvature

Fig. 8 Velocity distributions across the boundary layer on the lower surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model
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(from convex to concave on the upper surface and
reverse on the lower one) very accurately.

Figure 9 shows the semi-logarithmic plot of veloc-
ity profile at different stations on the lower surface.
In the viscous sublayer, there is not much difference
between the flat plate boundary layer and S-shaped
profile at different locations. This was also observed
by Willmarth et al. [27] and Lueptow et al. [26]. How-
ever, in the overlap region and outer turbulent layer,
there is a significant deviation from the logarithmic
trend of flat plate boundary layer. At x/c = 0.2 and
0.9, the slope of log-law region is more than the cor-
responding region for a flat plate. The boundary-layer
thickness increases, as shown in Fig. 6(b), till x/c = 0.3
and the slope of the log–law region decreases, simi-
lar to the observation of Lueptow et al. [26]. Beyond
x/c = 0.5, the boundary-layer thickness increases but
the slope of the log–law region increases. This is due to
the significant curvature effect on this portion of the
lower surface. It may be pointed out in this context that
the curvature effect is more significant in the region
x/c > 0.5, whereas in the region x/c < 0.5, the curva-
ture is insignificant and the results confirm the role
played by the curvatures.

3.3 Prediction of fluctuating quantities

3.3.1 Upper surface

The distribution of u′/U∞, ν ′/U∞, and −u′ν ′/U 2
∞ as pre-

dicted by the different models at locations x/c = 0.6,
0.8, and 0.98 are shown in Figs 10 to 12, respectively.
Corresponding values obtained from experiments [24]
are also shown in the same figures.These ratios provide
useful information about turbulent boundary-layer
structure. u′/U∞, ν ′/U∞, and −u′ν ′/U 2

∞ generally have
peak values very close to the surface and gradually fall
to small values as the free stream is approached. This
aspect is predicted well by all the turbulence models
as shown in these figures.

Experimental results show that the maximum value
of u′/U∞ is 0.16 at x/c = 0.6. All the models under-
predict this value, with the RSM being the closest
(∼0.11) to that of the experimental value. From x/c =
0.6 to 0.98, two competing phenomena are likely
to occur. Concave curvature is expected to increase
the turbulence intensity but it is also known that
the downstream of reattachment turbulent inten-
sity should reduce. Between x/c = 0.6 and 0.98, |δ/R|
varies between 0.0015 and 0.12, and it is expected

Fig. 9 Semi-logarithmic plot of velocity profile at different stations on the lower surface. k–ε: k–ε

realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress model
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Fig. 10 Variation of u′ across the boundary layer on the upper surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model

that the curvature effect will be moderate [28]. Exper-
imental as well as numerical results indicate that the
curvature effect is less significant when compared with
reattachment and turbulent intensity decreases. Of all
the models, the RSM seem to capture the qualitative
trend best although there is a quantitative difference
between the experimental and numerical results.

Figures 11 and 12 show the variations of ν ′/U∞
and −u′ν ′/U 2

∞, respectively. Here also, both ν ′/U∞
and −u′ν ′/U 2

∞ show a decreasing trend with x/c,
thus confirming that the curvature effect is less pro-
nounced. The experimental results indicate that there
is a slight shift of the location of the maximum away
from the wall, and all the models indicate this fact.
For u′/U∞ and ν ′/U∞, the model predictions reach
the free stream turbulence level at the end of the
boundary layer.

3.3.2 Lower surface

Turbulence quantities for different models are com-
pared with the experimental results at different loca-
tions on lower surface.These are shown in Figs 13 to 15,
respectively.

At x/c = 0.05, there is flow separation and the max-
ima of u′/U∞, ν ′/U∞, and −u′ν ′/U 2

∞ (shown in Figs 13
to 15, respectively) are shifted away from the wall.
This was also observed by Simpson et al. [29] and
Shiloh et al. [30]. Between x/c = 0.3 and x/c = 0.5,
the boundary layer is influenced by the concave cur-
vature, favourable pressure gradient, and there can
also be an effect of flow reattachment. Although con-
cave curvature tends to promote turbulence, regions
downstream of a reattachment point will tend to have
less turbulence intensity. From the experimental and
numerical results, it is seen that the maximum val-
ues of u′/U∞, ν ′/U∞, and −u′ν ′/U 2

∞ decrease slightly.
Thus, the curvature seems to be slightly less effective
compared with flow reattachment and this is expected
because the maximum value of |δ/R| in this region is
0.002, and the curvature effect can be considered as
mild [28]. Experimental u′/U∞ data show two loca-
tions of peak – one near the wall and another away
from the wall. The RSM captures this trend better than
the other models.

For locations x/c = 0.6 and 0.7, the flow has convex
curvature and favourable pressure gradient. Experi-
mental data show that u′/U∞ has its peak near the wall
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Fig. 11 Variation of ν′ across the boundary layer on the upper surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f , RSM: Reynolds stress

model

and remains constant before dropping to free stream
value. All the models show a peak near the axis but
none of these models could capture the trend well.
Experimental ν ′/U∞ and −u′ν ′/U 2

∞ data show a peak
away from the wall and this feature has been picked
only by the RSM. Other models show a peak near
the wall.

Points x/c = 0.8 and 0.9 are in the region of adverse
pressure gradient and convex curvature. Experimen-
tal data of u′/U∞, ν ′/U∞, and −u′ν ′/U 2

∞ show one
sharp peak near the wall. There is also a second,
broadened peak away from the wall. None of the
models could capture this feature properly. In gen-
eral, it is seen that the suppression of the turbulence
due to convex curvature is captured better by the
RSM and as shown in Fig. 14, the EVM tends to
overpredict the turbulence level for flow over con-
vex surface.

A discussion of the successes and limitations of
the different turbulent models used in the present
work is essential to understand the general applica-
bility of these models to flows having combination of
successive changes in curvatures and pressure gradi-
ents. It is well known that k–ε models are diffusive

in boundary layers subjected to adverse pressure
gradients and in the presence of the streamline cur-
vatures [18]. The defects arise from the limitations
of the linear EVM and also because of their ten-
dency to overestimate the turbulent length scale, and
hence the viscosity in decelerating near-wall flows.
This results in the separation from continuous sur-
faces to be inhibited and even if it is predicted, the
recirculation region tends to be short. Though the SST
model is better than the k–ε models near the wall,
yet they also cannot account for anisotropy aris-
ing particularly near the curved surfaces. The ν ′2−f
model, which includes a transport equation for ν ′2

instead of k and an additional wall-related relax-
ation equation, which relaxes ν ′2 to k away from the
wall, leans heavily on closure ideas pertaining to the
Reynolds stress transport modelling [18]. Hence, this
model can predict the mean and turbulent quantities
for flow over both the concave and convex curva-
tures better than the other EVMs employed in the
present study.

Thus, it is seen that of all the turbulent mod-
els, the RSM is the best in capturing the experi-
mental trends qualitatively; quantitatively, however,
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Fig. 12 Variation of −u′ν′ across the boundary layer on the upper surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k–ω: k − ω SST; v2f : ν′2−f ; RSM: Reynolds

stress model

there exists discrepancies even for this model. Other
researchers have also mentioned this fact [9, 10, 15]. It
may be mentioned that the RSM employs k–ε model
for estimating ε and so it is felt that the ε equation
needs to be modified in order to properly account
for the curvature effects. A similar conclusion was
drawn by Luo and Lakshminarayana [10]. Another
problem that arises with the RSM is the modelling of
pressure–strain term. In the results presented, linear
pressure–strain model was used. Simulation was also
carried out with the quadratic pressure–strain model
of Speziale et al. [31] but the results, not reported here,
showed no improvement. In fact, the low-Reynolds
number modification of the linear pressure–strain
relationship along with the wall reflection term pre-
sented here predicted results closest to that of the
experiments. There is one more plausible reason that
might have resulted in the comparisons not so conclu-
sive. There could be a lack of three-dimensional effects
in the two-dimensional modelling and simulation.
Perhaps, as a result of this, there was a qualitative, and

not quantitative, agreement between the numerical
results and the experimental trend.

Also, the use of a hot-wire probe for experimental
measurement of turbulent fluctuations needs to be
subjected to scrutiny. Though the experimental uncer-
tainty in determining the turbulent quantities using
a hot-wire probe was not mentioned in the paper by
Madhusudan et al. [24], it is known that determina-
tion of these quantities using a hot-wire probe close to
the surface poses great difficulty in terms of the exact
location of the probe and also produces greater error
in their estimation [28].

The results presented in this work have in gen-
eral captured the experimental trend. It is difficult to
derive some strict conclusions. But it is clear from the
present work that the curvature effects, especially the
ones related to flow destablization, lead to the need of
enhanced modelling. The main difference, and even
an additional aspect, between the already published
works on curvature effect and the present work is
that unlike the previous geometries, the surface here
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Fig. 13 Variation of u′ across the boundary layer on the lower surface of the hydrofoil. Expt: exper-

imental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model

has consecutive convex and concave curvatures and
there is also a simultaneous presence of favourable
and adverse pressure gradients. The difference in the
order in which the flow approaches the curvatures
(like, convex surface followed by concave one on the
upper surface and in the reverse order for the lower
surface) is also a notable aspect of the present geome-
try and simulation. Thus, it is felt that this geometry
subjects the models to stricter scrutiny of different
extra-strain effects. Further, a very close investiga-
tion has been performed by reporting all the steps
during the modelling of the flow, and comparisons are
presented not only for the velocity distributions but
also for the Reynolds-stress components.

3.4 Computational cost

Although accuracy in the turbulent flow prediction is
of extreme importance in choosing a turbulent model,
computational cost is also an important constraint. A
brief outline of the computational efforts required in
simulating the flow with each of the turbulent models
is briefly discussed. In the present work, all simulations
were done using the Pentium® 4 CPU 3.40 GHz, 1 GB
of RAM hp workstation xw4200. k–ε realizable and
k–ω SST models are computationally more efficient:
the turbulent flow simulations using these models
converge much faster than ν ′2−f and RSM. When
compared with the k–ε realizable or k–ω SST model,
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Fig. 14 Variation of ν′ across the boundary layer on the lower surface of the hydrofoil. Expt: exper-

imental data [24]; k–ε: k–ε realizable; k–ω: k–ω SST; v2f : ν′2−f ; RSM: Reynolds stress

model

ν ′2−f , and the RSM, respectively, take about 5 and
22 times more time to reach the defined convergence
level of 10−5.

4 CONCLUSION

The turbulent flow over the S-shaped hydrofoil, even
at 0◦ angle of attack, is complicated due to the simul-
taneous presence of concave and convex surfaces,
adverse and favourable pressure gradients, and also
flow separation and reattachment. Modelling such
a flow poses a formidable challenge. In the present
work, four turbulence models, namely, k–ε realizable,

k–ω SST, ν ′2−f , and the RSM were examined. Grid
independence study was conducted for all the models
and, in order to capture the boundary-layer phe-
nomena better, wall y+ value was maintained <1 in
all cases. Comparison of experimental data [24] and
numerical predictions were made and the suitabil-
ity of turbulence models was ascertained for both
the mean and turbulent quantities. It is seen that
in terms of mean quantities like the lift and drag
coefficients, the prediction of flow separation and reat-
tachment, ν ′2−f out-performs other models. When it
comes to predicting the turbulent quantities, none
of the models could match the experimental data
quantitatively. Qualitatively, however, RSM matched
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Fig. 15 Variation of −u′ν′ across the boundary layer on the lower surface of the hydrofoil. Expt:

experimental data [24]; k–ε: k–ε realizable; k − ω: k − ω SST; v2f : ν′2 − f ; RSM: Reynolds

stress model

the experimental data best. The difference between
experimental and numerical data could be because
of the inability of these models to capture the details
shown in the experimental results as has been stated
by other researchers in the past. It could also be
because of the inherent high uncertainty present in
measuring the turbulent quantities using a hot-wire
probe and also in exactly determining the location of
the probe in regions very close to the surface. In terms
of computational cost, k–ε realizable and k–ω SST are
the least expensive, and the RSM is more expensive
than the other three models.

REFERENCES

1 Bradshaw, P. Effects of streamline curvature on turbulent
flow. AGARD-AG-169, 1973.

2 So, R. M. C. and Mellor, G. L. Experiment on convex cur-
vature in turbulent boundary layer. J. Fluid Mech., 1973,
60, 43–62.

3 So, R. M. C. and Mellor, G. L. Experiment on turbulent
boundary layers on a concave wall. Aeronaut. Q., 1975,
26, 25–40.

4 Barlow, R. S. and Johnston J. P. Structure of a turbulent
boundary layer on a concave surface. J. Fluid Mech., 1988,
191, 137–176.

5 Baskaran, V., Smits, A. J., and Joubert, P. N. A turbu-
lent flow over a curved hill part 1. growth of an internal
boundary layer. J. Fluid Mech., 1987, 182, 47–83.

6 Baskaran, V., Smits, A. J., and Joubert, P. N. A turbu-
lent flow over a curved hill part 2. effect of streamline
curvature and streamwise pressure gradient. J. Fluid
Mech., 1991, 232, 377–402.

7 Gibson, M. M., Jones, W. P., and Younis, B. A. Calculation
of turbulent boundary layers on curved surfaces. Phys.
Fluids, 1981, 24(3), 389–395.

JMES929 © IMechE 2008 Proc. IMechE Vol. 222 Part C: J. Mechanical Engineering Science

 at CORNELL UNIV on November 1, 2014pic.sagepub.comDownloaded from 



1734 T Micha Prem Kumar and Dhiman Chatterjee

8 Richmond, M. C. and Patel, V. C. Convex and con-
cave surface curvature effects in wall-bounded turbulent
flows. AIAA J., 1991, 29(6), 895–902.

9 Luo, J. and Lakshminarayana, B. Prediction of strongly
curved turbulent duct flows with Reynolds stress model.
AIAA J., 1997a, 35(1), 91–98.

10 Luo, J. and Lakshminarayana, B. Analysis of streamline
curvature effects on wall-bounded turbulent flows. AIAA
J., 1997b, 35(8), 1273–1279.

11 Davidson, L. Prediction of the flow around an airfoil
using a Reynolds Stress transport model. Trans. ASME
J. Fluids Eng., 1995, 117, 50–57.

12 Rumsey, C. L. and Gatski, T. B. Turbulence model pre-
dictions of extra-strain rate effects in strongly-curved
flow. In the 37th Aerospace Sciences Meeting and Exhibit,
Reno, NV, 11–14 January 1999, AIAA 99-0157.

13 Sleiti, A. K. and Kapat, J. S. Comparison between EVM
and RSM turbulence models in predicting flow and heat
transfer in rib-roughened channels. J. Turbulence, 2006,
7(29), 1–21.

14 Jing-lei, X. U., Hui-yang, M. A., and Yu-ning, H. Non-
linear turbulence models for predicting strong curvature
effects. Appl. Math. Mech.-Engl Ed., 2008, 29(1), 31–42.

15 Yakinthos, K.,Vlahostergios, Z., and Goulas, A. Modeling
the flow in a 90◦ rectangular duct using one Reynolds-
stress and two eddy-viscosity models. Int. J. Heat and
Fluid Flow, 2008, 29, 35–47.

16 Balabaskaran, V., Lakshmana Gowda, B. H., and
Venkatasubramanian, N. Flow visualization studies over
S-Blades. J. Flow Vis. Image Process., 1998, 5, 249–259.

17 Ramachandran, R. M., Radha Krishna, H. C., and
Aswatha Narayana, P. A. Aerodynamic characteristics of
‘S’ blade profile. Irrigation Power, 1984, 41(2), 205–212.

18 Leschziner, M. A. Modelling turbulent separated flow in
the context of aerodynamic applications. Fluid Dyn. Res.,
2006, 38, 174–210.

19 Wilcox, D. Turbulence modeling for CFD, 1993 (DCW
Industries Inc, CA).

20 Durbin, P. A. Separated flow computations with the
k–ε − v2 model. AIAA J., 1995, 33, 659–664.

21 Iaccarino, G. Predictions of a turbulent separated flow
using commercial CFD codes. J. Fluids Eng., 2001, 123,
819–828.

22 Fluent® Reference Manual, version 6.2.16, 2005 (Fluent
Inc., Lebanon, NH, USA).

23 Menter, F. R. Two equation eddy viscosity turbulence
models for engineering applications. AIAA J., 1994, 32,
1598–1605.

24 Madhusudan, R. S., Aswatha Narayana, P. A.,
Balabaskaran, V., and Tulapukara, E. G. Boundary layer
studies over an S-blade. Fluid Dyn. Res., 1994, 14(5),
241–258.

25 Madhusudan, R. S. Flow studies of S-blade for fully
reversible axial flow pump-turbines. PhD Thesis, IIT
Madras, 1992.

26 Lueptow, M. R., Leehey, P., and Stellinger, T. The thick,
turbulent boundary layer on a cylinder: mean and
fluctuating velocity. Phys. Fluids, 1985, 28, 3495–3505.

27 Willmarth, W. W., Winkel, R. E., Sharma, L. K. and
Bogar, T. J. Axially symmetric turbulent boundary layers
on cylinders: mean velocity profiles and wall pressure
fluctuations. J. Fluid Mech., 1976, 76, 35–64.

28 Patel,V. C. and Sotiropoulos, F. Longitudional curvature
effects in turbulent boundary layers. Prog. Aerosp. Sci.,
1997, 33, 1–70.

29 Simpson, R. L., Chew, Y. T., and Shivaprasad, B. G. The
structure of a separating turbulent boundary layer, part 1,
mean flow and Reynolds stresses. J. Fluid Mech., 1981,
113, 23–51

30 Shiloh, K., Shivaprasad, B. G., and Simpson, R. L. The
structure of a separating turbulent boundary layer, part 3,
transverse velocity measurements. J. Fluid Mech., 1981,
113, 75–90.

31 Speziale, C. G., Sarkar, S., and Gatski, T. B. Modeling
the pressure-strain correlation of turbulence: an invari-
ant dynamical systems approach. J. Fluid Mech., 1991,
227, 245–272.

APPENDIX

Notation

c profile chord
CD lift coefficient
Cf skin-friction coefficient
CL drag co-efficient
Cp surface pressure co-efficient

= (Ps − Ps1)/(Pt1 − Ps1)

k turbulent kinetic energy
p pressure
Ps1 free stream static pressure
Pt1 frees stream total pressure
Ps static pressure
R radius of curvature
u∗ friction velocity = (τw/ρ)1/2

u+ U /U ∗

u′, ν ′ RMS value of turbulent fluctuations
along x- and y- directions

−u′ν ′ RMS value of Reynolds shear stress
ui mean velocity components
U mean velocity in stream wise direction
Ue external velocity outside the boundary

layer
U∞ free stream velocity
x distance measured along the chord from

leading edge
y+ yU ∗ρ/μ = viscous distance
y distance normal to the profile surface

δ boundary-layer thickness
ε turbulent dissipation
μ dynamic viscosity
μt eddy viscosity
ν kinematic viscosity
νt kinematic eddy viscosity
ρ density
τw wall shear stress
ω specific dissipation rate
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