Header menu link for other important links
Numerical Modeling on the Influence of Reservoir Porosity and MicrobialKinetics on Enhanced Oil Recovery by Microbial Flooding
Published in Society of Petroleum Engineers
During the implementation of microbial enhanced oil recovery (MEOR) technique in reservoirs, variousreservoir and microbial kinetic parameters play major roles in governing the efficiency of crude oil recoveryfrom hydrocarbon reservoirs. The present study numerically investigates the sensitivity of reservoir porosity,injected microbial species at different temperatures, maximum microbial specific growth rate, Monodsaturation constant and yield coefficient on biomass and biosurfactant production and their impacts onmicroscopic oil displacement efficiency within the reservoir. A black-oil biochemical multi-species reactive transport model in porous media is developed by couplingthe kinetic model with the corresponding transport model. The governing equations involve coupledtransport of nutrients and microbes by dispersion and convection, growth and decay rates of microbes,chemotaxis, nutrient consumption, and deposition of microbes and nutrients on rock-grain surfaces. Coupledempirical equations are used to estimate biosurfactant production, oil-water interfacial tension reduction,change in viscosity of injection fluid and their impacts on oil mobility and decrease in residual oil saturationwithin reservoir. Finite difference discretization technique is adopted to solve the governing equations. Results of the present model are found to be numerically stable and match very well, when verified,with the previously published analytical and experimental results. The model results suggest that at verylow reservoir porosity (less than 20%), an early breakthrough of nutrients, microbe and biosurfactantleave insignificant concentrations in their respective fronts which are insufficient for the recovery of thetrapped oil. Also, increase in porosity beyond 20% causes loss of nutrients, microbes and biosurfactantbecause they undergo higher dispersion during their transport within reservoir. Further it is observed thatthe nature of microbes and nutrients used for MEOR application affect biosurfactant production and inturn oil recovery to a large extent. Those microbial species having very less Monod saturation constantvalues have high affinity towards their substrates. This phenomenon drastically increases the rates ofnutrient consumption and production of biomass and biosurfactant within reservoir when suitable substratecompounds are used, irrespective of differences in the yield coefficients of the microbes. The optimizedreservoir and microbial kinetic properties increase capillary number above 10-3 which further increases oil mobility towards production well and there is a significant decline in the effective residual oil saturation(less than 5%) within the reservoir. The present study provides an improved understanding of the combined effects of reservoir porosity andmicrobial kinetic parameters on fundamental MEOR processes which will better characterize the suitabilityof a MEOR technique in a typical petroleum reservoir. Moreover, the developed numerical model is easierto implement and produces faster results with relatively lower computational cost which helps in makingquick decision before applying MEOR processes in the field. © 2020 Society of Petroleum Engineers. All rights reserved.
About the journal
JournalSociety of Petroleum Engineers - SPE Europec Featured at 82nd EAGE Conference and Exhibition
PublisherSociety of Petroleum Engineers
Open AccessNo