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Summary
Objective: To investigate the characteristics of motor manifestation during convul-

sive epileptic and psychogenic nonepileptic seizures (PNES), captured using a wrist‐
worn accelerometer (ACM) device. The main goal was to find quantitative ACM

features that can differentiate between convulsive epileptic and convulsive PNES.

Methods: In this study, motor data were recorded using wrist‐worn ACM‐based
devices. A total of 83 clinical events were recorded: 39 generalized tonic–clonic
seizures (GTCS) from 12 patients with epilepsy, and 44 convulsive PNES from 7

patients (one patient had both GTCS and PNES). The temporal variations in the

ACM traces corresponding to 39 GTCS and 44 convulsive PNES events were

extracted using Poincaré maps. Two new indices—tonic index (TI) and dispersion

decay index (DDI)—were used to quantify the Poincaré‐derived temporal varia-

tions for every GTCS and convulsive PNES event.

Results: The TI and DDI of Poincaré‐derived temporal variations for GTCS events

were higher in comparison to convulsive PNES events (P < 0.001). The onset and

the subsiding patterns captured by TI and DDI differentiated between epileptic and

convulsive nonepileptic seizures. An automated classifier built using TI and DDI of

Poincaré‐derived temporal variations could correctly differentiate 42 (sensitivity:

95.45%) of 44 convulsive PNES events and 37 (specificity: 94.87%) of 39 GTCS

events. A blinded review of the Poincaré‐derived temporal variations in GTCS and

convulsive PNES by epileptologists differentiated 26 (sensitivity: 70.27%) of 44

PNES events and 33 (specificity: 86.84%) of 39 GTCS events correctly.

Significance: In addition to quantifying the motor manifestation mechanism of

GTCS and convulsive PNES, the proposed approach also has diagnostic signifi-

cance. The new ACM features incorporate clinical characteristics of GTCS and

PNES, thus providing an accurate, low‐cost, and practical alternative to differen-

tial diagnosis of PNES.
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1 | INTRODUCTION

Psychogenic nonepileptic seizures (PNES) are sporadic
paroxysmal events that are accompanied by an apparent
change in state of consciousness or behavior without any
epileptiform activity in the brain, where the etiology is
believed to be primarily psychological.1 There is no
accepted pathophysiologically defined mechanism for
PNES; however, PNES events are found to have an associ-
ation with sporadic attacks resulting from autonomic mal-
function linked to major psychosocial distress.2 PNES are
involuntary, and can be associated with random movements
and sensory and mental manifestations resembling general-
ized epileptic tonic–clonic seizures (GTCS),3 and are often
misdiagnosed as such.4

Although a number of clinical features such as postictal
serum prolactin, postictal confusion, eye‐widening, and sei-
zure duration have been proposed to assist with diagnosti-
cally distinguishing PNES from epileptic GTCS, the
sensitivity and specificity of these features is insufficient to
establish a definitive diagnosis in many cases.5,6 Moreover,
patients with PNES are often diagnosed with concurrent
epileptic seizures, which indicates that outpatient diagnosis
of PNES is difficult.7,8 Mismanagement and delayed diag-
nosis of PNES increase the risk of morbidity and mortality
due to intubation from prolonged seizures.9,10

Definitive diagnosis of PNES currently requires long‐
term video‐electroencephalography monitoring (VEM).
However, VEM is a highly resource‐intensive procedure
incurring significant health care cost.11 In addition, VEM
can be susceptible to artifacts on electroencephalography
(EEG) recording that can render the study nondiagnostic.7

Despite the limitations, VEM remains the gold standard
and a cost‐effective approach for diagnosing PNES, as indi-
viduals with timely intervention and correct diagnosis of
PNES are shown to have a better treatment outcome.12 A
mean delay of 5.2 years was reported until the correct diag-
nosis of PNES,1 indicating the shortcomings and unsatis-
factory nature of current diagnostic procedures.

Accelerometers (ACMs) have been shown to be an
effective tool for detection of convulsive seizures espe-
cially, GTCS.13 In our previous work,14 we showed that
ACMs can be used reliably for the detection of convulsive
PNES events. However, differentiation of convulsive PNES
and GTCS requires identification of unique features that
can distinguish epileptic and nonepileptic motor activity.
Previously, approaches based on time‐frequency mapping
of the rhythmic motor activity have been employed to dif-
ferentiate GTCS from convulsive PNES.15,16 The classical
frequency‐ and time‐frequency–based analyses are suitable
for capturing variability, the existence of periodicity, and
the frequency footprint of a time‐varying signal; however,

to discover complex patterns such as quasi‐periodic or
chaotic motion, more sophisticated signal‐processing tech-
niques are required.17 Poincaré map is a technique to cap-
ture complex patterns in time‐varying signals.18 It has been
used extensively in the analysis of cardiac signals and is
central to the field of heart‐rate variability (HRV) analy-
sis.19,20 In addition, it can describe nonlinear dynamics of
short‐length signals.14 Therefore, we hypothesize that the
use of Poincaré maps will provide better insight about the
motor manifestation characteristics of different seizure
events (GTCS and PNES).

In this study, we propose new quantitative ACM fea-
tures based on Poincaré‐derived temporal variations in
rhythmic limb movement during seizures. To our best
knowledge, no study on quantification of temporal dynam-
ics of limb movements during GTCS and convulsive PNES
has been published. This study investigates the following:
(a) quantitative ACM features that can differentiate GTCS
and convulsive PNES, and (b) the relevance and clinical
utility of a wearable ACM‐based device in the differential
diagnosis of convulsive PNES.

2 | METHODS

2.1 | Participants and data acquisition

In a study from 2012‐2015, 79 patients undergoing VEM
at the comprehensive epilepsy unit of the Royal Melbourne
Hospital were recruited to the study. Patients were assessed
based on the history and description of the seizures.
Patients were included in the study, if they had a history of
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worn ACM-based device

• Two novel indices—tonic index (TI) and disper-
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vulsive PNES

• A unimodal automated classifier based on the
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events that mimic generalized seizures or events character-
ized by the presence of bilateral convulsions. Patients hav-
ing intracranial monitoring or with a psychiatric disorder
such that it prevents informed consent were excluded. The
study was performed in accordance with the Declaration of
Helsinki and was approved by the Melbourne Health
Human Research Ethics Committee (HREC Project
300:259). The patients were recruited for the complete
duration of VEM, which lasted at least 3 days. A wireless
device with a built‐in microelectromechanical system
(MEMS)21 ACM sensor was strapped on the wrists of the
recruited patients. The data packets were sampled at a rate
of 50 Hz. Movement data recorded in 3 axes with a time
stamp were saved on the flash memory of the device and
were later extracted for offline processing.

2.2 | Diagnosis of PNES vs GTCS

The diagnosis of PNES or epileptic GTCS for all
recorded convulsive events was determined at a consen-
sus meeting of 2‐6 epileptologists, where a decision was
made based on the clinical history, neuropsychiatric eval-
uation, neuroimaging studies, video‐EEG, and observed
seizure semiology as reported previously.1 A convulsive
movement was defined as simultaneous clonic or other
rhythmic motor manifestation of limb(s) that lasted at
least 10 seconds. Low‐amplitude tremors, intermittent
jerking (eg, behavioral sleep movements), and events
with only mild to moderate movements were classified as
nonconvulsive. This consensus classification of the sei-
zures by epileptologists was considered as the “gold stan-
dard.” This classification was made blinded to the ACM
traces.

2.3 | Extraction of temporal variations in
limb movement patterns

Time‐stamped ACM traces corresponding to seizure events
were used to extract the resultant ACM signal r
(r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
). The resultant signal was then filtered

to remove the effect of static gravity and frequencies above
25 Hz. The cutoff frequency is chosen empirically, based
on the analysis of rhythmic artifacts as seen on EEG. The
temporal variations are then extracted from the resultant
ACM signal.

The Poincaré map is a geometric representation of the
time‐series data, obtained by plotting each sequence in a
series against the following interval.18–20 It can be used to
extract rhythmic and chaotic patterns as well as temporal
variations of time‐series data.18 A Poincaré map can be
quantified using standard descriptors like SD1 and SD2
(Equations 1 and 2). SD1 captures the short‐term variability

or high‐frequency changes in a time‐varying signal. By
contrast, SD2 captures long‐term variations or low‐fre-
quency changes.

SD12 ¼ 1
2
Var r nð Þ � r nþ 1ð Þð Þ (1)

SD22 ¼ 1
2
Var r nð Þ þ r nþ 1ð Þ � 2�rð Þ (2)

where Var is the variance, r nð Þ denotes the resultant ACM
time series, n ∈ 1 : : : N½ �; r n þ 1ð Þ represents the
sequence at lag ¼ 1, and �r ¼ E½rðnÞ�. For a discrete time
signal, lag ¼ 1 represents a time delay of 1/Fs (s), where
Fs is the sampling frequency.

In addition, multiple parameters can be extracted from a
Poincaré map. Parameters like ratio (SD1SD2) and area
(4 � π � SD1 � SD2) obtained using the standard Poincaré
descriptors capture the nonlinear dynamics of a nonstation-
ary time sequence.19 The Poincaré‐derived temporal varia-
tions can be estimated by analyzing the progression of
different Poincaré descriptors over the course of an event.
Because events can have varied durations, the temporal
progression of the Poincaré descriptors can only be com-
pared across events if they have a uniform duration on the
time axis. Therefore, all the events were resampled using
cubic splines to a uniform length of 60 seconds. The event
resampling does not alter the frequency content of the sig-
nal, and the temporal patterns in the ACM signal are
restored.

The resultant ACM signal corresponding to the resam-
pled event was analyzed in time epochs of 2.56 seconds
with 50% overlap resulting in a total of 45 epochs (Fig-
ure 1A,B). Poincaré maps were obtained for every epoch,
resulting in a graphical representation of every sequence as
a function of the previous one (Figure 1C,D). Descriptors
capturing both linear (SD1 and SD2) and nonlinear dynam-
ics (ratio and area) were then computed from each Poincaré
map (Figure 1E‐H).

2.4 | Protocol for analysis of temporal
variations

Events with a uniform length of 60 seconds were segmented
into quartiles (Figure 1I). This allowed us to study the tem-
poral variability in Poincaré descriptors across the different
phases (onset, transition, and subsiding) of an event.

2.5 | Quantification of temporal variability

To quantify the tonic phase in an event we introduce a
new parameter in this work, which is termed as tonic index
(TI) of an event. Whereas, to capture the subsiding nature
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of an event we introduce another parameter that is termed
dispersion decay index (DDI). Both of the indices are
described by the following.

2.5.1 | Tonic index

The TI can be described as the ratio of the coefficient of
variation (CoV) of the descriptors in first quartile (onset) to
CoV of the descriptor over the rest of the signal.

The onset of a GTCS event involves increased muscle
tone, represented by stiffening limb movements that mani-
fest as long‐term variations, resulting in high SD2 and low
SD1. However, as the muscle tone decreases, high‐

frequency clonic jerking begins, which involves more
short‐term changes, resulting in low SD2 and high SD1.
Therefore, the quotient of the covariance of the computed
features captures the variations during the onset relative to
rest of the seizure. The TI can be explained as shown in
Equation 3.

TID ¼ CoV Dk1f gð Þ
CoV Dk2f gð Þ (3)

where CoV ¼ standard deviation SD½ �
mean

� �
� 100, {D} repre-

sents a discrete time series for Dth descriptor (SD1, SD2,
ratio, and area), ⌊1 ≤ k1 ≤ N/4⌋, ⌊N/4 + 1 ≤ k2 ≤ N⌋

FIGURE 1 Protocol for analysis of temporal variations: Column 1 shows a generalized tonic–clonic seizure (GTCS), and Column 2 shows a
psychogenic nonepileptic seizures (PNES) event; In each column, (A) is raw signal, (B) shows the signal after resampling to 60 seconds. The
resampled signal is analyzed in 2.56 second epochs with 50% overlap, and a total of 45 epochs are obtained by this windowing procedure. The
epochs are shown by colored blocks of 2.56 seconds; (C) shows 2.56 second accelerometer epochs (resultant signal) during start (1.28‐3.78 s),
during (30.72‐33.22 s), and at the end of an event (56.32‐58.82 s); (D) shows the Poincaré maps corresponding to each 2.56 second epoch; (E),
(F), (G), and (H) show temporal evolution of extracted Poincaré features in windows of 2.56 seconds over the course of an event, and (I) shows
the division of an event into quartiles where the first quartile division (block in red) represents the temporal variations during onset, the last
quartile division (block in purple) represents the subsiding behavior, and the region (block in green) between first and third quartiles represents
the transition from onset to subsiding period
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and N = 45 is the total number of 2.56 second windows
(50% overlap) for an event of duration 60 seconds.

2.5.2 | Dispersion decay index

The DDI measures the relative change in dispersion or ran-
domness as an event subsides. DDI captures the variance
or randomness of an event in first 3 quartiles relative to the
last quartile.

The high‐frequency clonic jerks in a GTCS event can
be characterized by an increased dispersion of the ACM
traces. However, the frequency of the jerks subsides as the
event progresses toward termination, which results in a
lower dispersion in the last quartile. A high variance of the
computed features represents increased dispersion and a
chaotic motion. Therefore, the quotient of the variance of
the 2 intervals captures the change in dispersion as an
event subsides.

The DDI can be described as shown in Equation 4.

DDID ¼ Var Dk1f gð Þ
Var Dk2f gð Þ (4)

where {D} represents a discrete time series for Dth descrip-
tor (SD1, SD2, ratio, and area), ⌊1 ≤ k1 ≤ 3*N/4⌋, ⌊3*N/
4 + 1 ≤ k2 ≤ N⌋ and N = 45 is the total number of 2.56
second windows (50% overlap) for an event of duration
60 seconds.

2.6 | Statistical analysis

The statistical analysis includes the 2‐sided nonparametric
Mann‐Whitney U test to compare the mean TI and DDI
values for GTCS and convulsive PNES events. Statistical
significance was considered for P < 0.001, and the area
under the receiver‐operating characteristic (ROC) curve
(AUC) was used to evaluate the classification perfor-
mance.22 All statistical analysis was performed using Mat-
lab2015b (MathWorks).

2.7 | Statistical machine learning:
development of automated classifiers

The next step was to build an automated classifier using
the new ACM features. A support vector machine
(SVM)23 classifier was trained using the TI and DDI of
all Poincaré descriptors. We performed a leave‐one‐
patient‐out validation, where SVM was trained using data
from N‐1 patients (N = 18), and the learned classification
model was then used to classify the events of the left‐out
patient. The classification performance was measured in
terms of PNES detection sensitivity, specificity, positive
predictive value (PPV), classification accuracy, and

Fscore. For a full description of the classification algo-
rithm refer to Data S1.

2.8 | Blinded review

To validate the clinical usefulness and potential of the pro-
posed ACM features, a blinded review was conducted by
presenting the temporal evolution of the extracted Poincaré
descriptors (Figure 1E‐H) to 2 certified clinical neurologists
(coauthors B. Yan and T.J. O'Brien). The neurologists were
required to label the events as either GTCS or convulsive
PNES, or term the event as nondiagnostic (the consensus
decision was registered). During the whole exercise, the
neurologists were blinded to the ground truth (VEM diag-
nosis) and all other neurophysiologic data.

3 | Results

3.1 | Seizure data collected with ACM device

Of the 79 recruited patients, 35 (44.3%) had seizures,
among which 20 patients (25.3%) had convulsive seizures
and 15 (18.9%) patients had nonconvulsive seizures. Of the
20 patients with convulsive seizures, 11 (55%) had GTCS
events, 6 (30%) had PNES events, one had complex partial
seizures (CPS), one had multiple types of seizures
(GTCS+CPS), and one patient had comorbid epilepsy
(PNES+GTCS). The seizure cohort comprised 60% female
participants and the mean participant age was 31.6 years
(20‐38.2, median 29). The demographics of the seizure
cohort are shown in Table S1. A total of 83 events were
recorded during the monitoring period, which included 39
(46.9%) GTCS from 12 (15.2%) patients and 44 (53%) con-
vulsive PNES events from 7 (8.8%) of 79 patients
(Table S1).

3.2 | Motor manifestation of GTCS and
convulsive PNES

A GTCS event has a clearly defined motor symptomatol-
ogy as seen on VEM: tonic phase followed by a clonic
phase (Figure 2); however, seizures are heterogeneous.
Therefore, a clear distinction between phases may not
always be possible. Nonetheless, the motor symptomatol-
ogy of every GTCS event can be defined using a combina-
tion of different phases (Figure 2). The motor manifestation
of a GTCS event can be characterized by an onset that
involves stiffening movements due to increased muscle
tone accompanied with irregular and asymmetric jerking
(Figure 3A), followed by tremulousness that translates into
clonic activity before subsiding gradually where the move-
ment activity was interrupted by silent periods (shown by
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(*) in Figure 3A). In contrast, 35 (79.5%) of 44 recorded
PNES events had overlapping phases (Figure 3 B), whereas
9 events (20.5%) had a clonic phase that was separable
from the tonic phase in the ACM recordings (Figure 3C).
The PNES events with separable phases involved quasi‐
repetitive movements that had multiple silent periods over
the course of the event (Figure 3C). Therefore, the motor

manifestation of GTCS and convulsive PNES shows dis-
tinct temporal dynamics.

3.3 | Tonic index

The TI of SD1 was significantly higher for GTCS (1.04‐
2.60; median 1.65) as compared to convulsive PNES (0.24‐

FIGURE 2 Clinically defined phases
of a generalized tonic–clonic seizure
(GTCS) event with progression in the
direction of the arrow; any GTCS event can
be defined using a combination of these
phases. The intensity of motor activity
increases in the direction of the arrow; and
the first 3 phases characterize the onset of a
GTCS event

FIGURE 3 Accelerometer (ACM)
traces of typical events. A, Generalized
tonic–clonic seizure event with
demarcations highlighting onset,
tremulousness + clonic, and subsiding
behavior. The asterisk (*) shows the silent
periods as the event terminates. B,
Convulsive psychogenic nonepileptic
seizure (PNES) event where the tonic and
the clonic phases are not separable. The
envelope of the event is continuously
waxing and waning over the course of an
event. C, A convulsive PNES event
stereotypical of a clonus activity; note the
presence of multiple silent periods over the
course of the event. X, Y, and Z represent
the ACM traces across the 3 Cartesian
coordinates

FIGURE 4 The tonic index (TI) (A),
and dispersion decay index (DDI) (B) for
descriptors SD1, SD2, ratio, and area
shown as box and whisker plots for
generalized tonic–clonic seizure (GTCS)
and convulsive psychogenic nonepileptic
seizure (PNES) events
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1.33; median 0.66) (Figure 4A). The TI of SD1 resulted in
an AUC of 0.95 (Table 1). This shows that a good class
separation can be achieved using TI of SD1. Similarly, the
TI of SD2 was significantly higher for GTCS (0.83‐3.64;
median 1.70) in comparison to convulsive PNES (0.21‐
1.43; median 0.80) (Figure 4A). An AUC value of 0.91
could be achieved using TI of SD2 (Table 1). Furthermore,
the TI of area was also significantly higher for GTCS
(1.04‐2.99; median 1.68) in comparison to convulsive
PNES (0.27‐1.34; median 0.81) (Figure 4A) and showed
an AUC value of 0.94 (Table 1). In contrast, the TI of ratio
was found to have a much lower AUC value of 0.78, while
having a significant difference between GTCS (0.46‐2.40;
median 1.05) and convulsive PNES (0.29‐1.29; median
0.69) (Figure 4A). The TI performs well for all the descrip-
tors except ratio, and the TI of SD1 showed the best class
separation between GTCS and convulsive PNES with an
AUC value of 0.95 (Table 1).

3.4 | Dispersion decay index

The DDI of SD1 was significantly different for GTCS
(0.87‐4.57; median 1.56) and convulsive PNES (0.46‐2.57;
median 1.05) (Figure 4B) events, with an AUC of 0.76.
Similarly, the DDI of SD2 was significantly higher for
GTCS (0.67‐3.23; median 1.86) in comparison to convul-
sive PNES (0.41‐2.90; median 0.94) (Figure 4B). However,
the AUC of 0.80 for DDI of SD2 was slightly higher than
the DDI of SD1 (AUC 0.76) (Table 1). Similarly, the dif-
ference in DDI of area was also statistically significant for
GTCS (0.53‐7.22; median 1.64) and convulsive PNES
(0.33‐3.22; median 0.98); however, a considerable class
overlap was seen using DDI of area (AUC 0.72) (Fig-
ure 4B). In contrast, the DDI of ratio showed a better class
separation (AUC 0.88) (Table 1). The DDI of ratio was
significantly higher for GTCS (0.92‐2.87; median 1.79) in
comparison to convulsive PNES (0.64‐1.53; median 0.92)
(Figure 4B). Thus, it can be seen that the DDI of ratio
shows the highest class separation between GTCS and con-
vulsive PNES, which suggests that ratio is the most effi-
cient Poincaré descriptor to capture dispersion or
randomness in movement of limbs as an event subsides.

3.5 | Automated classifier

Using TI and DDI of all descriptors (total of 8 features as
shown in Table 1), a classification model was built using
SVM (refer to Data S1 for full description of the algo-
rithm). The machine learning model correctly classified sei-
zure‐like events as PNES in 42 (sensitivity: 95.5%) of 44
PNES events and as GTCS in 37 (specificity: 94.9%) of 39
GTCS events, whereas the PPV and Fscore were both
95.5%, respectively (Table 2).

3.6 | Blinded review

Based on the temporal dynamics of GTCS and convulsive
PNES, the following criteria were defined for

TABLE 1 Median, interquartile range, and area under the ROC
curve (AUC) statistics for TI and DDI of Poincaré‐derived descriptors
corresponding to GTCS and convulsive PNES events

Index

GTCS
(median ±
IQR)

PNES
(median ±
IQR) P value AUC

TISD1 1.65 ± 0.69 0.66 ± 0.22 5.48 exp(−13) 0.95

TISD2 1.70 ± 1.16 0.80 ± 0.42 1.29 exp(−10) 0.91

TIratio 1.05 ± 0.64 0.69 ± 0.29 7.00 exp(−06) 0.78

TIarea 1.68 ± 0.99 0.81 ± 0.41 1.06 exp(−12) 0.94

DDISD1 1.56 ± 1.48 1.05 ± 0.77 3.94 exp(−05) 0.76

DDISD2 1.86 ± 1.26 0.94 ± 0.50 2.67 exp(−06) 0.80

DDIratio 1.79 ± 0.70 0.92 ± 0.34 2.09 exp(−09) 0.88

DDIarea 1.64 ± 1.57 0.98 ± 0.89 4.21 exp(−04) 0.72

AUC, area under the receiver‐operating characteristic curve; DDI, dispersion
decay index; GTCS, generalized tonic–clonic seizure; PNES, psychogenic
nonepileptic seizure; TI, tonic index.

TABLE 2 The diagnostic performance of the proposed approach based on the blinded analysis of Poincaré descriptors; and an automated
classifier based on the TIs and DDIs of GTCS and convulsive PNES events

Diagnosis
Gold Standard

PNES PNES GTCS GTCS Nondiagnostic
PNES GTCS GTCS PNES

n TPa FPb TNc FNd Acc* (%) Sens* (%) Spec* (%) PPV*(%) Fscore* (%)

Blinded review 83 26 5 33 11 8 78.7 70.3 86.8 83.9 76.5

Automated classifier 83 42 2 37 2 N/A 95.2 95.5 94.9 95.5 95.5

aTP is the number of psychogenic nonepileptic seizure (PNES) events distinguished correctly.
bType I error: number of false positives, that is, the number of generalized tonic–clonic seizure (GTCS) events distinguished as PNES.
cTN is the number of GTCS events distinguished correctly.
dType II error: number of false‐negatives, that is, the number of PNES events distinguished as GTCS.
*Statistical measures of performance: overall accuracy, ACCð TPþTN

TPþTNþFPþFNÞ; Sens, sensitivity ð TP
TPþTNÞ; Spec, specificity ð TN

TNþFPÞ; PPV, positive predictive value
ð TP
TPþFPÞ; and Fscore: 2�TP

2�TPþFPþFN. All metrics shown are calculated using the optimal threshold of the classifier except for the blinded review by epileptologists.
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differentiating GTCS and PNES: the Poincaré‐derived tem-
poral variations (SD1, SD2, ratio, and area) in GTCS
events demonstrate a continuously evolving nature (left
subcolumn of Figure 1E‐H). In contrast, the Poincaré‐
derived temporal variations in PNES events were relatively
stable over the course of a convulsive PNES event (right
subcolumn of Figure 1E‐H). In the blinded analysis, the
epileptologists correctly classified 26 of 37 events as PNES
(sensitivity: 70.3%) and 33 of 38 as GTCS (specificity:
86.8%), whereas one GTCS and 7 PNES events were clas-
sified as nondiagnostic.

4 | DISCUSSION

Seizures have a heterogeneous manifestation and exhibit
considerable intra‐ and interpatient variability. Given the
variability across events, trained personnel with consider-
able experience are required for a confirmed diagnosis. In
this study, we present a novel method for the differential
diagnosis of convulsive PNES based on the rhythmic limb
movement patterns captured using a wrist‐worn ACM
device. Novel ACM features to quantify the temporal varia-
tions in limb movement during seizures were proposed: (a)
TI and (b) DDI.

4.1 | Performance of tonic index

The TI captures the mean normalized variability during the
onset of an event relative to the rest of the event. The onset
of a GTCS event has a defined organic pathway and can
be captured using a wrist‐worn ACM‐based device (Fig-
ure 3). The Poincaré‐derived temporal variations showed a
specific evolution in time throughout the course of a GTCS
event: a gradual onset that peaks during the tonic phase
(left subcolumn of Figure 1E,F,H). This pattern was not
observed during convulsive PNES events (right subcolumn
of Figure 1E,F,H). Therefore, the TI of Poincaré‐derived
temporal variations for GTCS events were higher in com-
parison to the PNES events (Figure 4A, P < 0.001).
Among all the Poincaré‐derived descriptors, TISD1, TISD2,
and TIarea showed a high class separation between GTCS
and convulsive PNES (Table 1). The descriptors SD1,
SD2, and area showed a continuously evolving pattern
including a prominent onset for GTCS events, whereas the
descriptors were comparatively stable or had less variability
over the course of a convulsive PNES event (Figure 1E,F,
H). Therefore, the TI of descriptors (SD1, SD2, and area)
showed the best discriminative ability for GTCS and con-
vulsive PNES. On the other hand, both GTCS and convul-
sive PNES events showed a continuously evolving pattern
for ratio (Figure 1G); therefore, the TI of ratio showed the
least discriminative ability.

4.2 | Performance of dispersion decay index

Although TI captures the temporal variations during the
onset, the DDI captures the subsiding pattern of an event.
DDI measures the variance in two‐thirds of the signal rela-
tive to the last quartile. GTCS events involve a clonic
phase that follows the tonic phase. The clonic phase can be
characterized by high‐frequency jerking movements of the
limbs. The frequency of these clonic jerks decreases as the
event terminates (the silent periods shown by (*) in Fig-
ure 3A), leading to a lower variance in the last quartile rel-
ative to rest of the signal (P < 0.001). However, no such
pattern was observed in convulsive PNES events with dis-
tinct tonic and clonic phases. All these cases of PNES
involved quasi‐periodic movements; the clonus activity
continued after the silent periods (Figure 3C). Therefore,
DDIs of Poincaré‐derived temporal variations for GTCS
events were higher in comparison to PNES events (Fig-
ure 4B, P < 0.001). Among DDIs of all the Poincaré‐
derived descriptors, the DDIratio showed the highest AUC
for differentiating GTCS and convulsive PNES (Table 1).
Ratio is a measure of randomness or dispersion in a time‐
varying signal; therefore, the DDI of ratio (DDIratio) has
the highest AUC in comparison to rest of the descriptors
(Table 1 and Figure 4B).

Among TIs and DDIs, the TI of Poincaré‐derived
descriptors showed a higher class separation (Figure 4 and
Table 1). The reason for the better performance of TI can
be attributed to the more distinct onset phase in GTCS than
in convulsive PNES. These findings indicate that convul-
sive PNES events have a characteristic nonevolving pattern
on the time scale over the course of an event. By contrast,
GTCS events have distinct phases and thus exhibit a con-
tinuously evolving pattern on the time scale. Given that the
proposed approach is based on a timescale analysis, the
validity of this approach further reinforces the findings of
the preliminary study by Vinton et al,24 who showed that
convulsive PNES events display a characteristic pattern of
rhythmic EEG artifact with a stable nonevolving frequency
footprint that differs from the evolving pattern during an
epileptic seizure.

4.3 | Performance of automated classifier vs
blinded review

The TI and DDI of Poincaré‐derived temporal variations
were found to be a reliable and objective marker for differ-
entiating between GTCS and convulsive PNES, with GTCS
events demonstrating significantly higher values of TI and
DDI (Table 1). The automated classifier achieved a PNES
detection sensitivity of 95.5% (95% confidence interval
[CI] 90%‐96%) and a specificity of 94.87% (95% CI 87%‐
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99%) (Table 2). Two PNES and 2 GTCS events were mis-
classified by the automated approach, resulting in diagnos-
tic accuracy that was superior to the blinded review of
Poincaré‐derived temporal variations by epileptologists
(Table 2). In addition, 7 of 8 events labeled as nondiagnos-
tic during the blinded review belonged to a single patient
(P17; Table S1). The automated classifier correctly differen-
tiated all the 7 PNES events of P17 that were labeled non-
diagnostic (PNES cases without rhythmic clonic
movements) (Table S2). Therefore, the results suggest that
the new quantitative features (TI and DDI) are performing
better than the qualitative assessment of features by
experts. However, the blinded analysis of the Poincaré‐
derived temporal variations was of utmost importance, as it
ensured removal of any bias that the automated classifier
might have had towards the gold standard VEM diagnosis.

Furthermore, it is important to recognize that a patient
can experience both types of seizures (GTCS and PNES).
In a study by Jones et al1 it was found that 8.1%‐17.9% of
the patients admitted to our VEM unit had comorbid epi-
lepsy along with PNES. In this study, one patient experi-
enced both seizure types (P5, Table S1) and the automated
classifier was able to differentiate all GTCS and PNES
events correctly, thus illustrating the importance of long‐
term longitudinal recordings that can capture a greater
number of patient's typical seizures and present the entire
diagnostic picture. This is possible by outpatient monitor-
ing where ACM‐based devices can be a feasible solution.
Therefore, the new ACM features (TI and DDI) show the
potential for a significant positive impact on the clinical
management and prognosis of patients with PNES.

4.4 | Comparison with existing studies

As a first comparison we compare the results of the pro-
posed approach to our previously published method.15 In
our previous study,15 we showed that a 32% cutoff on CoV
of limb movement frequency differentiated between con-
vulsive epileptic seizures and PNES. In contrast to the pre-
vious approach based on a stringent CoV threshold (AUC:
0.78), the proposed automated classifier (AUC: 0.96)
resulted in better performance (ΔAUC: 0.18, P = 0.002).
The better performance of the proposed approach can be
attributed to the multiple Poincaré‐derived parameters
(Table 1) in comparison to a single frequency‐based index
proposed earlier.

Although non–EEG‐based differential diagnosis of PNES
is seldom discussed, a few research groups have investigated
different modalities for diagnosing nonepileptic seizures.16,25

Electrocardiography (ECG)‐derived ictal heart rate variabil-
ity (or HRV) parameters differentiated 88% of GTCS and
73% of PNES correctly.25 However, heart rate changes may
vary with the vigilance state of the person; therefore, ECG‐

based systems are not specific.26 Beniczky et al16 investi-
gated surface electromyography (sEMG) signals recorded
from the deltoid muscles for differentiating GTCS and con-
vulsive PNES. They showed that the HF/LF ratio (HF: high‐
frequency 64‐256 Hz; LF: low‐frequency 2‐8 Hz) and root
mean square (RMS) of the sEMG signal could differentiate
all GTCS from convulsive PNES (sensitivity 100%). How-
ever, the proposed approach has several advantages over an
sEMG‐based system: continuous use of sEMG electrodes
can be uncomfortable and the electrodes can detach.27 In
contrast, the proposed system is an electrode‐less system,
and thus is more comfortable and less encumbering to the
patient. Moreover, the proposed approach is based on a time‐
domain analysis, which is computationally efficient and con-
fers the opportunity for real‐time analysis.28

4.5 | Clinical utility of the proposed
approach

Considerable experience is required for analysis of a patient's
neurophysiologic and VEM data to make a definitive prog-
nosis.29 The proposed quantitative method yields a nonlinear
projection of the three‐dimensional (3D) rhythmic limb
movement into a numerical score, thus allowing reliable dis-
tinction between GTCS and convulsive PNES with less
experience. In addition, wearable ACM‐based devices can
be used reliably for long‐term continuous monitoring of
patients14; therefore, in the future, the clinical utility of the
proposed approach can be further enhanced into a wearable
device by the incorporation of automated algorithm for
detection and differentiation of GTCS and convulsive PNES.

At this stage, an analysis of other convulsive epileptic
and nonepileptic types was beyond the scope and limita-
tions of the current study. However, it is probable that TI
and DDI may also facilitate identification of other seizure
types that do not manifest as rhythmic clonic activity, as in
complex partial seizures.14 Nonetheless, the proposed
method can help overcome the limitations of the current
diagnostic procedures7,29; and shows the potential to be
used as a diagnostic tool to assist epileptologists in differ-
entiating GTCS and convulsive PNES.
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