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ABSTRACT

Protein–DNA complexes play vital roles in many
cellular processes by the interactions of amino
acids with DNA. Several computational methods
have been developed for predicting the interacting
residues in DNA-binding proteins using sequence
and/or structural information. These methods
showed different levels of accuracies, which may
depend on the choice of data sets used in training,
the feature sets selected for developing a predictive
model, the ability of the models to capture informa-
tion useful for prediction or a combination of these
factors. In many cases, different methods are likely
to produce similar results, whereas in others,
the predictors may return contradictory predictions.
In this situation, a priori estimates of prediction
performance applicable to the system being
investigated would be helpful for biologists to
choose the best method for designing their experi-
ments. In this work, we have constructed unbiased,
stringent and diverse data sets for DNA-binding
proteins based on various biologically relevant con-
siderations: (i) seven structural classes, (ii) 86 folds,
(iii) 106 superfamilies, (iv) 194 families, (v) 15 binding
motifs, (vi) single/double-stranded DNA, (vii) DNA
conformation (A, B, Z, etc.), (viii) three functions
and (ix) disordered regions. These data sets were
culled as non-redundant with sequence identities
of 25 and 40% and used to evaluate the performance
of 11 different methods in which online services or
standalone programs are available. We observed
that the best performing methods for each of
the data sets showed significant biases toward the
data sets selected for their benchmark. Our analysis
revealed important data set features, which could

be used to estimate these context-specific biases
and hence suggest the best method to be used for
a given problem. We have developed a web server,
which considers these features on demand and
displays the best method that the investigator
should use. The web server is freely available at
http://www.biotech.iitm.ac.in/DNA-protein/. Further,
we have grouped the methods based on their com-
plexity and analyzed the performance. The infor-
mation gained in this work could be effectively
used to select the best method for designing
experiments.

INTRODUCTION

Protein–DNA interactions play vital roles in several bio-
logical processes, including gene regulation, DNA repair,
DNA replication and DNA packaging. The knowledge
about DNA-binding residues and binding specificity
would help to understand the recognition mechanism of
protein–DNA complexes. The availability of experimental
data on binding specificity (1) and 3D structures of
protein–DNA complexes (2) encouraged researchers to
reveal important factors for understanding protein–
DNA recognition. The analysis has been focused on
different directions such as amino acid properties, conser-
vation of residues, contribution of non-covalent inter-
actions and conformational changes of DNA (3–26).
The importance of hydrogen bonds, electrostatic, hydro-
phobic and van der Waals interactions along with weak
interactions including cation-p has been stressed by
several investigators in the field (12,14,19,24,27–32). The
contributions of energetic terms along with physical and
chemical features have been used to understand the
recognition mechanism of protein–DNA complexes.
Furthermore, knowledge-based statistical potentials have
been derived using atomic contacts between protein and
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DNA, and these potentials have been used to predict the
binding specificity of protein–DNA complexes (33,34).
Gromiha et al. (2004) combined both inter and intra-
molecular interactions for understanding the recognition
mechanism.

On the other hand, owing to the exponential increase in
the gap between the available sequences and structures of
DNA-binding proteins in Uniprot (35) and Protein Data
Bank (2), several methods have been proposed to identify
the binding site residues just from amino acid sequences.
These methods are based on amino acid frequency,
evolutionary profile, sequence conservation, predicted
secondary structure and solvent accessibility, electrostatic
potential, hydrophobicity, position-specific scoring matrix
by using various machine learning methods such as
support vector machine, neural network, Naı̈ve Bayes
classifier and random forest (33,36–51). Careful inspection
of these methods revealed the fact that they are applicable
to specific types of proteins, and the performance of each
method varies drastically in the range of 20–90%. This
situation leads confusions to the biologists for selecting
the best method to identify the binding sites for designing
their experiments. Hence, it is essential and important to
reveal the applications and predictive ability of existing
predictors to specific data sets based on various properties
of the query protein.

In this work, we have systematically categorized the
protein–DNA complexes into several groups based on
the structure of the protein, structure of the DNA,
binding motif and function. The complexes in each
category have been divided into several sub-categories
using known annotations in structural and functional
databases. On the other hand, we have collected all the
prediction servers, which have either online services or
available standalone programs. We have developed neces-
sary in-house programs to analyze the results obtained
with each method using nine types of data sets. We
noticed that no method is uniformly predicting the
binding sites at high accuracy in all the data sets. This is
applicable to the most recently developed methods with
tuned parameters, efficient techniques and large data set as
well as the earliest methods reported in the literature. We
have related the performance of each method with differ-
ent data sets and revealed the correspondence between
them. These results would help the biologists to select
the best method to design their experiments rather than
choosing any specific method arbitrarily or a combination
of methods. In addition, the present study explores the
necessity of refining/developing bioinformatics tools to
improve the performance in specific categories of DNA-
binding proteins. Specific examples for the best and worst
performance of methods in selected categories of data sets
will be discussed.

MATERIALS AND METHODS

Data sets

We have collected all the protein–DNA complexes (2317
entries) deposited in Protein Data Bank (last accessed
on 16 May 2012). These complexes were classified into

four broader categories based on (i) protein structure,
(ii) DNA structure, (iii) binding motif and (iv) protein
function as described later in the text. All the data sets
have been culled with the sequence identities of <25 and
40%. We obtained similar results, and the data with the
cutoff of <25% sequence identity are presented in this
article.

Classification based on protein structure

We have used the SCOP database (52) for structural
classification of proteins based on their structural
classes, folding types, superfamilies and families. Our
final data set contains 260 protein chains from seven
classes, 86 folds, 106 superfamilies and 194 families with
the sequence identity of <25%.
Further, we have identified the disordered regions by

comparing the structures of proteins in free and complex
forms and analyzed the performance of different methods
in disordered regions.

Classification based on DNA structure

We have classified the protein–DNA complexes based on
DNA structure on two aspects: (i) DNA conformation
such as A, B, Z, RH and U and (ii) type of DNA (single
stranded, double stranded and palindrome and double
stranded and non-palindrome). The conformation of
DNA has been obtained from Nucleic acid database
(NDB) (53). The databases PDB, NDB and PDIdb (54)
have been used to get the information on double/single-
stranded DNA and palindrome/non-palindrome DNA.
The final data set contains 283 and 301 protein chains
based on DNA conformation and type, respectively.

Motif-based classification

The binding motif is considered to be an important factor
for identifying the binding sites (55). Hence, we classified
the protein–DNA complexes based on their binding
motifs, and the major ones are helix-turn-helix, b-barrel
and b-ribbon. We obtained the motif information from
different databases such as ProNuc (56), PDIdb (54) and
Biomolecules gallery (http://gibk26.bio.kyutech.ac.jp/
jouhou/image/dna-protein/all/all.html). The final data set
contains 69 chains from 15 motifs. We noticed that several
complexes are listed under enzymes, which are considered
in the classification based on functions.

Functional classification of protein–DNA complexes

We have classified the protein–DNA complexes based on
their functions such as enzymes, regulatory proteins and
structural proteins. The functional information has
been obtained from NDB. The final data set contains
126 enzymes, 149 regulatory proteins and 19 structural
proteins with the sequence identity of <25%.

Methods for predicting the binding sites in DNA-binding
proteins

We have collected all the available methods for predicting
the binding sites in DNA-binding proteins from
amino acid sequence, which have either online services
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or available standalone programs (57). The methods are
BindN (39), BindN+(47), BindN-RF (46), DBS-Pred (37),
DBS-PSSM (38), DNABindR (49), DP-Bind with three
categories, binary, BLOSUM and PSSM encoding (48),
metaDBSite (51) and NAPS (50). The details about the
name, features, technique, reference and link for the
methods used in the present work are listed in
Supplementary Table S1. These methods used different
data sets and accuracies reported by the authors are in
the range of 70–80%.

Identification of DNA-binding residues

Several criteria have been proposed to identify the DNA-
binding sites such as the distance between contacting
atoms in protein and DNA (37), reduction in solvent ac-
cessibility on binding (58) and interaction energy between
protein and DNA (21). Most of the prediction methods
analyzed in this work used the distance based criteria for
identifying the binding sites. In this approach, a residue in
a DNA-binding protein is identified as binding if the
distance between any of its heavy atoms and a heavy
atom in DNA is �3.5 Å. We have identified the binding
sites using the same conditions in all the considered
protein–DNA complexes.

Assessing the performance of prediction methods

We have assessed the performance of different methods
using the measures, sensitivity, specificity, accuracy and
Matthews correlation coefficient (MCC). Sensitivity
shows the correct prediction of DNA-binding residues,
specificity reveals the ability of excluding non-binding resi-
dues and accuracy provides the overall performance (59).

Sensitivity ¼ TP= TP+FNð Þ ð1Þ

Specificity ¼ TN= TN+FPð Þ ð2Þ

Accuracy1 ¼ TP+TNð Þ= TP+TN+FP+FNð Þ ð3Þ

Accuracy2 ¼ sensitivity+specificityð Þ=2 ð4Þ

MCC ¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ

p ð5Þ

In these equations, TP (binding residues predicted as
binding), TN (non-binding residues predicted as non
binding), FP (non-binding residues predicted as binding)

and FN (binding residues predicted as non binding) rep-
resent, true positives, true negatives, false positives and
false negatives, respectively.

RESULTS AND DISCUSSIONS

We have assessed the performance of all the available
methods in different sets of data as described in the
‘Materials and Methods’ section.

Structural classes

Protein–DNA complexes have been classified into seven
structural classes such as all-a, all-b, a+b, a/b, multi-
domain, coiled coil and small proteins. The accuracies
obtained with all the 11 considered methods in these
data sets are presented in Table 1. From Table 1, we
noticed that the performance of a method depends on
the structural class. Most of the methods predict well in
all-a proteins where as the performance is poor in all-b
class of proteins. This trend is similar to protein secondary
structure prediction that all-a class proteins are better pre-
dicted than all-b class proteins (60). The binding sites in
coiled coil proteins are predicted well in most of the
methods. The comparison of different methods showed
that BindN-RF has the best performance in all-a and
all-b proteins. The sensitivity of BindN-RF and DP-
Bind_BLOSUM is <60%, although the overall accuracies
of these methods are more than metaDBSite. Further,
none of the method showed the sensitivity of more than
59% in multi-domain proteins. This might be due to the
size of the protein, and the binding site residues are <2%.
Hence, we have separated domains in these proteins using
SBASE (61) and predicted the binding sites in DNA-
binding domain. We observed that the methods DP-
Bind_PSSM and NAPS could predict the binding sites
with >60% sensitivity, specificity and accuracy. Further,
we have evaluated the performance of different methods
using MCC, and the results are presented in
Supplementary Table S2. We noticed that the trend is
similar to that reported using the measure, accuracy.

Folds, superfamilies and families

The classification of protein–DNA complexes based on
their structures showed that they are distributed in 86 dif-
ferent folding types, 106 superfamilies and 194 families. We

Table 1. Prediction accuracy of binding sites in different classes

Methods Average Accuracy all-a all-b a+b a/b Coiled coil Multidomain Small proteins

BindN 64.2 (74.9) 66.2 (76.3) 62.1 (74.6) 60.3 (74.8) 62.2 (79.6) 75.1 (73.2) 61.3 (79.7) 62.4 (66.5)
BindN+ 71.1 (82.8) 76.2 (83.8) 66.0 (83.7) 67.9 (81.9) 66.5 (85.8) 88.4 (86.9) 65.5 (87.3) 66.9 (70.2)
BindN-RF 71.9 (82.3) 76.4 (83.7) 68.0 (82.7) 68.4 (82.8) 67.8 (84.8) 88.1 (86.5) 65.8 (86.6) 68.5 (69.2)
DBS-Pred 64.3 (72.6) 64.2 (73.0) 62.6 (71.6) 62.0 (71.7) 63.1 (75.4) 74.4 (73.6) 59.8 (76.4) 63.6 (66.5)
DBS-PSSM 70.2 (78.5) 73.2 (80.2) 65.5 (78.2) 65.8 (76.5) 67.1 (83.3) 87.4 (81.6) 65.3 (87.0) 67.3 (62.3)
DP-Bind_Binary 66.9 (68.0) 68.1 68.6) 63.5 (65.8) 63.1 (67.2) 66.3 (70.6) 79.8 (70.4) 62.0 (70.7) 65.4 (62.9)
DP-Bind_BLOSUM 66.1 (67.8) 69.2 (69.5) 63.2 (66.3) 62.8 (67.8) 66.3 (71.5) 75.6 (66.6) 61.1 (70.5) 65.0 (62.4)
DP-Bind_PSSM 72.1 (76.4) 73.7 (78.4) 67.9 (75.3) 69.6 (76.6) 70.4 (80.5) 88.1 (84.6) 69.9 (79.4) 64.8 (56.8)
DNABindR 68.0 (71.9) 70.1 (72.9) 62.6 (68.1) 65.2 (71.0) 66.2 (75.2) 82.9 (77.3) 64.2 (77.1) 64.4 (61.7)
metaDBSite 69.9 (72.3) 72.0 (74.1) 66.9 (70.2) 67.2 (71.5) 69.2 (76.6) 82.0 (74.0) 65.4 (76.6) 66.5 (62.9)
NAPS 63.6 (65.1) 64.6 (64.8) 58.8 (61.3) 59.4 (62.5) 57.6 (66.9) 80.6 (75.0) 62.5 (67.9) 61.6 (57.6)

Accuracies obtained with Equation (3) are given in parentheses. The highest accuracy in each class is shown in bold.
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have analyzed the performance of all the 11 prediction
methods in all folds, superfamilies and families, and the
summarized results are presented in Figure 1 and
Supplementary Table S3. DP-Bind_PSSM showed the
best performance in >20% of the folds/superfamilies.
However, the accuracy of this method is <60% in 13 of
the 86 considered folds. BindN-RF scored the highest
rank in the classification of families. Methods such as
DBS-PSSM and BindN+ predicted the binding sites
with topmost accuracy in 10–20% of the considered 186
DNA-binding proteins. Interestingly, one of the earliest
prediction methods DBS-Pred (37) also showed the best
performance in four folds, four superfamiles and three
families. These results showed that the prediction methods
are complimenting each other in different types of DNA-
binding proteins. It is essential to reveal the best method in
specific type of proteins for practical applications.

We have systematically analyzed the correspondence
between the structure of the complex and prediction per-
formance, and the methods showing highest and lowest
accuracies for identifying the binding sites in 86 folds,
106 superfamilies and 194 families are listed in
Supplementary Table S4. Few typical examples for the
best and worst predicted folds along with their perform-
ances are presented in Table 2. BindN+, DBS-Pred and
DP-Bind_PSSM showed the best performance in profilin-
like, tetracyclin repressor-like and transcription factor IIA
types of folds, respectively. The predicted accuracies are
>90% based on the average between sensitivity and spe-
cificity. On the other hand, other methods showed a poor
performance in these folds with the accuracy in the range
of 50–70%. Further, the accuracies of several folds are
<70%, and three typical examples are listed in Table 2.
The best method showed the accuracy of 57% in
Retrovirus zinc finger-like domain fold. The sensitivity
and specificity are 70.2 and 43.0%, respectively. In
addition, PUA domain-like and HLH-like folds showed
the accuracy of 61.1 and 61.2%, respectively. These results
indicate the requirement of methods to be applicable to
folds in which the binding sites are poorly predicted.

The best predicted superfamilies and their performance
are included in Table 2. We observed that pheromone
binding and dimeric a+b barrel are predicted with the
accuracy of >90% where as the lowest accuracies are 65
and 47%, respectively. The binding sites in eukaryotic
transcription factors are predicted well with all the
methods, and the highest and lowest accuracies are 94
and 72%, respectively. The worst predicted superfamiles
are chromo-domain-like, immunoglobulin and RNase A-
line with the highest accuracy of �60% (Table 2).
Interestingly, the binding site residues in chromo-domain
superfamily are predicted with high specificity, whereas
other two superfamilies identify the binding residues
with high sensitivity. This suggests that the interface
residues in these domains may consist of a small number
of residues with strong binding signal, which remain un-
changed across the family, whereas there are other
residues, which show diversity, and their binding is not
directly predicted from sequence features alone.
We observed similar tendency in the classification of

families. BindN-RF predicted the binding sites in AraC
type transcriptional activator with the accuracy of
99.5%; the sensitivity and specificity are 100 and 99%,
respectively. The binding sites in CopG and Z-DNA-
binding domain are predicted with >90% accuracy by
BindN and DBS-PSSM, respectively.
This analysis revealed that although newly developed

methods included several features, fine tuning of param-
eters and large data set, which showed excellent perform-
ance over other methods, simpler methods reported earlier
than others may outperform more complex methods on
some systems, and hence their availability should be made
use of predictions.

Disordered regions

We have analyzed the performance of different methods in
disordered regions of 73 protein chains. The results are
presented in Table 3. We observed that the methods,
BindN-RF and DP-Bind_PSSM, which showed high
accuracy in different structures classes (Table 1), have

Figure 1. Performance of DNA-binding site prediction methods in various folds, superfamilies and families.
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less sensitivity and specificity, respectively in disordered
regions. The overall accuracy also reduced to 62%. On
the other hand, DBS-Pred maintained the accuracy of
61% for disordered regions. The accuracy obtained with
different methods given in Table 3 showed the necessity of
developing new methods for predicting the binding sites in
disordered regions.

Motifs

We have grouped the protein–DNA complexes into 15
different motifs, which have the representation of 1–30

complexes. The best performance of each method in all
the motifs is shown in Supplementary Table S5. In this
Table, we have also included the number of motifs, sensi-
tivity, specificity and accuracy. We noticed that BindN+
performed the best in alpha/beta, beta sheet and helix-
loop-helix motifs. On the other hand, the performance
is poor in Zalpha motif. BindN-RF showed the best per-
formance in 9 of the 15 considered motifs. DBS-PSSM is
ranked as the first in the ribbon-helix-helix and Zalpha
motifs.

We have analyzed the performance of each method in
all these motifs with the condition that the sensitivity
and specificity are >60%, and the results are shown in
Figure 2. We observed that all the methods performed
well at least 2 of the 15 considered motifs. BindN-RF
showed the best performances in 12 of 15 motifs
followed by BindN+ (10/15). DBS-PSSM, DNABindR
and metaDBSite showed the sensitivity and specificity of
>70% in 5–8 motifs.

Type of DNA

We have classified the protein–DNA complexes based on
three types of DNA such as single-stranded, double-
stranded and palindrome, and double-stranded and
non-palindrome DNA. We observed that the performance
is poor for all the methods to predict the binding sites

Table 2. Typical examples of best and worst predicted folds, superfamilies and families

Fold/Superfamily/Family Method Sensitivity Specificity Accuracy1 Accuracy2 MCC Lowest Accuracy MCC

Fold

Profilin-like (1) BindN+ 100.0 96.4 96.6 98.2 0.32 64.5 (DP-Bind_BLOSUM) 0.20
Tetracyclin repressor-like,

C terminal domain (2)
DP-Bind_PSSM 96.2 89.6 89.8 92.9 0.28 51.1 (DP-Bind_BLOSUM) 0.20

Transcription factor
IIA(TFIIA), beta-barrel
domain (2)

DBS-Pred 100.0 80.4 82.0 90.2 0.16 67.9 (NAPS) 0.13

HLH-like (1) BindN+ 40.0 82.4 72.7 61.2 0.38 49.6 (NAPS) 0.16
PUA domain-like (1) DNABindR 75.0 47.3 51.0 61.1 0.21 54.4 (NAPS) 0.13
Retrovirus zinc finger -like

domains (2)
DP-Bind_PSSM 70.2 43.0 54.7 56.6 0.29 46.5 (DNABindR) 0.22

Superfamily

Pheromone-binding,
quourm-sensing
transcription factors (1)

BindN+ 100.0 96.4 96.6 98.2 0.31 64.5 (DP-Bind_BLOSUM) 0.20

Dimeric alpha+beta
barrel (1)

BindN-RF 87.5 96.4 95.9 92.0 0.34 47.3 (DBS-Pred) 0.17

DNA-binding domain-
eukaryotic transcription
factors (1)

DBS-PSSM 100.0 88.5 90.5 94.3 0.28 72.3 (DBS-Pred) 0.20

Chromo domain-like (1) DBS-Pred 27.8 73.9 60.9 50.8 0.20 42.2 (NAPS) 0.14
Immunoglobin (3) DBS-PSSM 77.8 60.0 60.4 68.9 0.29 37.4 (NAPS) 0.13
RNase A-like (1) DP-Bind_PSSM 71.4 47.0 48.4 59.2 0.29 34.9 (BindN) 0.18

Family

AraC type transcriptional
activator (1)

BindN-RF 100.0 99.0 99.1 99.5 0.32 65.9 (DBS-Pred) 0.19

CopG-like (1) BindN 100.0 81.1 83.7 90.5 0.22 78.1 (BindN-RF) 0.20
Z-DNA binding

domain (1)
DBS-PSSM 100.0 81.1 82.5 90.6 0.26 47.4 (DP-Bind_Binary) 0.19

T7 RNA polymerase (1) DP-Bind_PSSM 50.0 88.0 86.2 69.0 0.28 58.5 (NAPS) 0.13
RecA protein-like

(ATPase-domain) (1)
BindN-RF 33.3 87.7 86.5 60.5 0.33 44.1 (DNABindR) 0.23

SRA domain-like (1) DNABindR 75.0 47.3 51.0 61.1 0.23 54.4 (NAPS) 0.13

The worst predicted folds/superfamilies/families are shown in italics.

Table 3. Prediction performance of binding sites in disordered

regions

Method Sensitivity Specificity Accuracy1 Accuracy2 MCC

DBS-Pred 61.3 60.7 60.8 61.0 0.17
BindN 55.5 67.5 65.2 61.5 0.19
BindN+ 61.3 64.6 64.0 63.0 0.21
BindN-RF 55.5 68.3 65.9 61.9 0.19
DP-Bind_Binary 78.1 48.4 54.0 63.3 0.21
DP-Bind_BLOSUM 73.0 50.3 54.5 61.6 0.18
DP-Bind_PSSM 65.7 56.4 60.6 61.0 0.20
NAPS 59.1 58.9 58.9 59.0 0.14
DNABindR 75.9 51.9 56.4 63.9 0.22
metaDBSite 73.0 56.0 59.2 64.5 0.23
DBS-PSSM 65.0 61.1 61.8 63.0 0.20
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when the DNA is of single strand. The highest accuracy is
61.5% with the sensitivity and specificity of 49.9 and 73%,
respectively, obtained for the method DP-Bind_PSSM.
The binding sites with double-stranded DNA are pre-
dicted with >70% accuracy in both palindrome and
non-palindrome cases. Further, the performance with
double-stranded palindrome DNA–protein complexes is
better than that with non-palindrome DNA. The
accuracies are 71 and 76%, respectively. This result is
understandable because many more double-stranded
DNA-binding proteins have been solved and hence
included in training sets than those binding to single-
strand DNA. For example, the first published method
for predicting DNA-binding sites (DBS-Pred) used only
dsDNA-binding proteins for training the model.

DNA conformation

We have collected the DNA conformation details from
NDB and accordingly classified the considered
protein–DNA complexes. Majority of the DNA have the
conformation of B-type. The prediction method, DP-
Bind_PSSM showed the highest accuracy of 71% to
predict the binding sites. The RH and Z-DNA types are
predicted with the accuracy of 71%. Supplementary Table
S6 shows the performance in the complexes with different
types of DNA.

Functional classification of protein–DNA complexes

We have classified the protein–DNA complexes based on
their functions and are mainly under three categories,
namely, enzymes, regulatory and structural proteins.

The enzymes are classified into 17 groups, which have
one to 52 protein–DNA complexes. The sensitivity, speci-
ficity and accuracy of the best methods in each group of
enzymes are presented in Supplementary Table S7. We
noticed that none of the prediction methods worked well
in 13 of the 17 groups. Only four groups of enzymes,
kinase, phosphatase, recombinase invertase and recombin-
ase resolvase are predicted well with the accuracy of

>80%. DNA endonuclease is a major group of enzymes
with 52 complexes, and the prediction accuracy is 71%
with the sensitivity of 63% and specificity of 78%. For
the class of rare enzymes with only one complex, the
accuracy varies from poor to good. The excellent perform-
ance of several methods in these enzymes might be due to
the presence of these proteins in the training set of their
respective methods. In contrast, DNA reverse transcript-
ase has two proteins, and the performance is poor in
all the methods; the highest accuracy is 59.4% with the
sensitivity of 39.4%. DNA polymerase with 17 samples is
predicted poorly with the accuracy of 66%.
Regulatory proteins are classified into 13 groups with

149 chains and the accuracy of different methods lies in
the range of 60–80% (Supplementary Table S7). Further
inspection of Supplementary Table S7 shows that few
classes of regulatory proteins such as DNA repair repres-
sor, transcription factor co-activator and transcription
factor termination have poor performance to identify the
binding site residues with high sensitivity; the sensitivity is
33–46%.
Considering the structural proteins, the average accuracy

is in the range of 65–78% for the 19 DNA-binding proteins
in this data set. In this group of proteins, we noticed a
balance between sensitivity and specificity in most of the
methods. Further, one of the poorly performed methods,
NAPS showed the best performance in viral coat protein.

General trends on different prediction methods

In addition, we have evaluated the performance of differ-
ent prediction methods using two independent sets of test
data: (i) using the protein–DNA complex structures de-
posited recently (since June 2011) and (ii) the structures,
which were not used in individual methods for developing
the respective algorithm. The results obtained with these
two sets of data are presented in Table 4. We observed
that the balance between sensitivity and specificity lies
in the range of 60–70% in most of the methods for
both the data sets. However, the accuracy is >75% in

Figure 2. Performance of prediction methods in 15 different types of DNA binding motifs. Number of motifs, which are predicted with the
sensitivity and specificity of >60% each in all considered methods are shown.
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several methods, when the accuracy was evaluated using
Equation (3), which shows the ability of different methods
for either correctly predicting the binding sites or
excluding non-binding sites. The data presented in this
work based on different categories of data sets would be
a valuable resource for the biologists to select the best
method for their target DNA–binding protein.

Comparison between the best predicted method and
combination of methods

The method, metaDBSite, combined six different methods
and developed a prediction system for identifying the
binding sites in DNA-binding proteins. We have
compared the performance of metaDBSite with the best
predicted method in different groups of DNA-binding
proteins and the results are presented in Supplementary
Table S8. We noticed that among 86 folds, metaDBSite
performed the best only in six folds. Similar trend is
observed in all the nine classification of data sets. This
analysis emphasizes the importance of the present
method over combination of different methods. In
addition, we have estimated the difference in accuracy
between the best method and metaDBSite, and we
noticed an improved accuracy of up to 54% in all the
DNA-binding proteins and the average accuracy is
9.6%. We have also carried out an ensemble-based predic-
tion based on the majority of voting of the 11 methods
used in this work, and we observed a similar trend that we
obtained with metaDBSite predictor.

Grouping of methods based on their complexities

We have combined the methods into three groups based
on their complexities such as (i) additive feature models
(models which treat each input feature independent of the
other), (ii) complex feature models (which use non-
additive combination of features) without using PSSM
and (iii) complex feature models using PSSM. The per-
formance of these three groups of models was analyzed
in all the considered data sets, and the results are pre-
sented in Supplementary Table S9. The results showed
that the performance of additive feature models is

similar to complex feature models without using PSSM.
The complex feature models, which use PSSM, showed
better performance for identifying the binding sites in
most of the classes. However, the performance of these
models to identify the binding sites of disordered regions
was poor.

Applications

The insights obtained in the present work have several
applications, and some of them are discussed later in the
text. (i) For a protein with known structure and without
the information of the complex, one can get all the struc-
tural information such as class, family, superfamily and
so forth. In this case, depending on the type of the protein-
specific method can be used to identify the binding sites,
and the results will be reliable for designing experiments.
(ii) Currently, protein secondary structure prediction are
reported to show the accuracy of close to 85%, and
structural class can be predicted with the accuracy of
>95%. On a large scale analysis, it is possible to predict
the structural class and apply suitable method to identify
the binding sites. For example, the correct prediction of
structural classes would predict the binding sites with
the higher accuracy than the average accuracy of best
methods reported in the literature. (iii) For a specific
protein, it is possible to obtain the structural information
using homology modeling or ab initio structure-prediction
methods with reasonable accuracy. For selecting the best
prediction method, the modeled structure would be suffi-
cient to obtain the necessary structural information. The
binding sites can be predicted by selecting the respective
method based on structural information, which will be
reliable for designing experiments. In addition, other
information reported in this work can also be combined
to get the desired information.

The data presented in Table 1 suggested that BindN+,
BindN-RF and DP-Bind_PSSM are the best methods for
identifying the binding sites in DNA-binding proteins.
However, inspection of these methods showed a wide
range of accuracies. For example, BindN+ showed the
worst performance in predicting the binding sites in
HMG-D protein (1QRV), and the average accuracy is

Table 4. Prediction performance of different methods in two independent data sets

Method Data set 1 Data set 2

Accuracy1 Accuracy2 MCC Accuracy1 Accuracy2 MCC

BindN 76.1 63.1 0.17 76.4 61.4 0.14
BindN+ 80.2 69.2 0.28 79.6 68.7 0.26
BindN-RF 78.0 69.5 0.28 75.3 68.7 0.24
DBS-Pred 72.6 62.4 0.16 72.8 62.2 0.14
DBS-PSSM 78.3 66.5 0.25 78.4 69.7 0.23
NAPS 63.5 60.2 0.13 64.8 60.3 0.12
DNABindR 71.6 66.3 0.21 72.1 66.7 0.20
metaDBSite 74.7 68.7 0.24 78.2 66.2 0.22
DP-Bind_Binary 67.9 65.9 0.19 68.6 67.7 0.19
DP-Bind_BLOSUM 68.4 66.1 0.19 67.3 65.4 0.17
DP-Bind_PSSM 75.9 70.3 0.27 77.7 70.0 0.25

Data set 1: List of DNA–protein complexes analyzed in this work and not used in the respective methods.
Data set 2: List of DNA–protein complexes published from June 2011, after the publication of all the analyzed methods.
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35%. On the other hand, BindN-RF showed the best
performance with an accuracy of 87% in this protein.
BindN-RF showed an accuracy of 67% in T4 phage
beta-glucosyltransferase (1M5R), whereas DNABindR
performed well with an accuracy of 85%. The accuracy
is 31% in centromere-binding protein using DP-Bind_
PSSM, and BindN-RF could predict with the highest
accuracy of 55%, which requires further improvement.
These data demonstrated the necessity of selecting
methods for efficient prediction and the requirement of
improvements in specific proteins.

Online tool for the correspondence between protein/DNA
type and the best method

We have developed a web server to provide the best
method for any type of protein/DNA-based on its class,
fold, family, superfamily, motif, function, single/double-
stranded DNA and DNA conformation. It takes the struc-
tural/function information of protein/DNA and displays
the best method in the output. The web server is freely
available at http://www.biotech.iitm.ac.in/DNA-protein/.

CONCLUSIONS

Selecting the best method for identifying the binding sites
in DNA-binding proteins is one of the immediate require-
ments for biologists to design experiments. We have ad-
dressed this problem by carefully analyzing the available
prediction methods using nine different types of data sets
based on structural information, motifs, DNA types and
functional information. The one-to-one correspondence
between the subclass of DNA-binding proteins and best/
worst prediction method are given for all the studied data
sets. These information would be highly valuable to select
the best method for understanding the recognition mech-
anism for specific proteins as well as massive analysis with
large data sets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–9.
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