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Abstract

This paper is concerned with necessary and sufficient conditions for the nonnegativity of Moore–Penrose

inverses of Gram operators between real Hilbert spaces. These conditions include statements on acuteness

(or obtuseness) of certain closed convex cones. The main result generalizes a well known result for inverses

in the finite dimensional case over the nonnegative orthant to Moore–Penrose inverses in (possibly) infinite

dimensional Hilbert spaces over any general closed convex cone.
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1. Introduction

A square real matrix A is called monotone if Ax � 0 ⇒ x � 0. Here x = (xi) � 0 means

that xi � 0 for all i. Collatz (see for example, [5]) has shown that a matrix is monotone iff it

is invertible and the inverse is nonnegative. Mangasarian [13] studied rectangular real matrices

while Berman and Plemmons [2,3] presented a plethora of generalizations. Extensions of some

of these results to spaces, not necessarily finite dimensional, were considered by Kulkarni and

Sivakumar [12,15,16]. Gil gave sufficient conditions on the entries of a matrix A in order for A−1

to be nonnegative (refer to [6,8] for finite matrices and [7] for infinite matrices). The book by

Berman and Plemmons [3] has numerous examples of applications of nonnegative generalized

inverses that include numerical analysis and linear economic models.

∗ Corresponding author. Tel.: +91 44 22574622; fax: +91 44 22574600.

E-mail address: kcskumar@iitm.ac.in (K.C. Sivakumar).

0024-3795/$ - see front matter ( 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2006.11.004



472 T. Kurmayya, K.C. Sivakumar / Linear Algebra and its Applications 422 (2007) 471–476

Monotonicity of Gram matrices has received a lot of attention in recent years. This has been

primarily motivated by applications in convex optimization problems. In this connection, there

is a well known result that characterizes nonnegative invertibility of Gram matrices in terms

of obtuseness (or acuteness) of certain polyhedral cones. (See for instance Lemma 1.6 in [4,9]

and Section 3 in [11].) The sole objective of this paper is to generalize the characterization

of nonnegativity of inverses of Gram matrices in two directions; from finite dimensional real

Euclidean spaces to (possibly) infinite dimensional real Hilbert spaces and from classical inverses

to Moore–Penrose inverses. It will be interesting to consider applications of our results to convex

optimization, similar to [4]. This is postponed for a future study. The paper is organized as follows.

In Section 2, we introduce some basic notations, definitions and results. In Section 3, we present

some preliminary results and prove the main theorem. We conclude with some observations.

2. Notations, definitions and preliminaries

We first introduce notations and definitions that will be used in the rest of the paper.

R
n, R

n
+ denote the n dimensional real Euclidean space, non-negative orthant respectively.

H, H1, H2 denote Hilbert spaces over R. BL(H1, H2) denotes the set of all bounded linear

operators from H1 into H2. When H = H1 = H2, BL(H1, H2) will be denoted by BL(H).

PR(A∗) denotes the projection of H onto R(A∗), where R(X) denotes the range space of the

operator X. 〈x, y〉 denotes the inner product of x and y.

For A ∈ BL(H1, H2), A∗ denotes the adjoint of A. For a subset K of a Hilbert space H , the

polar of K denoted K◦ is defined as K◦ = {x ∈ H1: 〈x, t〉 � 0, ∀t ∈ K}. K◦◦ denotes (K◦)◦.

Note that in general, K◦◦ = clK, where clK denotes the closure of K . If H = R
n and K = R

n
+

then K◦ = −R
n
+ and so K◦◦ = K . If K = R

n
+ ∩ R(B∗) for some m × n real matrix B, then

K◦ = −R
n
+ + N(B), where N(B) denotes the null space of the matrix B. Again K◦◦ = K . If

H = ℓ2, the Hilbert space of all square summable real sequences and K = ℓ2
+ = {x ∈ ℓ2: xi �

0, ∀i}, then K◦ = −ℓ2
+ and hence K◦◦ = ℓ2

+.

A cone C is said to be acute if 〈x, y〉 � 0, for all x, y ∈ C. C is said to obtuse if C◦ ∩

{cl span C} is acute, where span C denotes the linear subspace spanned by C. In particular, if

A ∈ BL(H1, H2), K ⊆ H1, a closed convex cone with C = AK , then the obtuseness of C is

equivalent to the acuteness of C◦ ∩ R(A). The notion of obtuseness of a cone in R
n was first

proposed by Goffin [9].

For a linear map A : H1 −→ H2, the operator A∗A is said to be the Gram operator of A. Let

A be bounded with closed range. Then the Moore–Penrose inverse of A is the unique operator

A† in BL(H2, H1) which satisfies the following equations:

AA†A = A, (1)

A†AA† = A†, (2)

(AA†)∗ = AA†, (3)

(A†A)∗ = A†A. (4)

The following properties of A† are well known [1,10]: R(A∗) = R(A†); N(A∗) = N(A†);

AA† = PR(A); A†A = PR(A∗). In particular, if x ∈ R(A∗) then x = A†Ax. This will be used

frequently in our proofs.

Let A ∈ BL(H) with R(A) closed. The group inverse of A is the unique operator A# ∈ BL(H)

which satisfies the following equations:
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AA#A = A, (5)

A#AA# = A#, (6)

AA# = A#A. (7)

It is a well known result in finite dimensional spaces that A# exists if and only if R(A) = R(A2).

Equivalently, A# exists if and only if N(A) = N(A2). Another equivalent condition is that R(A)

and N(A) are complementary subspaces. This, in particular means that every hermitian matrix

has group inverse. In infinite dimensional spaces A# exists if and only if R(A) = R(A2) and

N(A) = N(A2) [14].

The following result is fundamental in studying linear equations. Its proof is easy.

Lemma 2.1. Let A ∈ BL(H1, H2) and b ∈ H2. Then the linear equation Ax = b has a solution

iff b ∈ R(A). In this case the general solution is given by x = T b + z for some T satisfying

AT A = A and for arbitrary z ∈ N(A).

3. Main results

For proving the main theorem (Theorem 3.6) we consider the following results. Let H1 and

H2 be real Hilbert spaces, A ∈ BL(H1, H2) be with closed range, K be a closed convex cone in

H1, C = AK and D = (A†)∗K◦.

Lemma 3.1 (Theorem 2.1.5, [10]). Let A ∈ BL(H1, H2). Then

A† = (A∗A)†A∗ = A∗(AA∗)†.

Remark 3.2. From the first equation, it follows that A†(A†)∗ = (A∗A)†.

Lemma 3.3. u ∈ C◦ �⇒ A∗u ∈ K◦.

Proof. Let u ∈ C◦ and r ∈ K . Then 0 � 〈u, Ar〉 = 〈A∗u, r〉. �

Lemma 3.4. The following are equivalent:

(a) C◦ ∩ R(A) is acute.

(b) For all x, y with A∗Ax ∈ K◦, A∗Ay ∈ K◦, the inequality 〈A∗Ax, y〉 � 0 holds.

Proof. (a) ⇒ (b) Let x, y satisfy A∗Ax ∈ K◦ and A∗Ay ∈ K◦. For r ∈ K , we have

〈Ax, Ar〉 = 〈A∗Ax, r〉 � 0.

So, Ax ∈ C◦. Similarly Ay ∈ C◦. Since C◦ ∩ R(A) is acute, we have

0 � 〈Ax, Ay〉 = 〈A∗Ax, y〉.

(b) �⇒ (a) Let u, v ∈ C◦ ∩ R(A); u = Ax, v = Ay, x, y ∈ H1. Since u ∈ C◦, for r ∈ K we

have

0 � 〈Ax, Ar〉 = 〈A∗Ax, r〉.
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Thus A∗Ax ∈ K◦. Similarly A∗Ay ∈ K◦. By assumption,

0 � 〈A∗Ax, y〉 = 〈Ax, Ay〉 = 〈u, v〉. �

Lemma 3.5. D is acute iff 〈r, (A∗A)†s〉 � 0, for every r, s ∈ K◦.

Proof. Let x, y ∈ D; x = (A†)∗r , y = (A†)∗s with r , s ∈ K◦. Then D is acute iff 0 � 〈x, y〉 =

〈(A†)∗r, (A†)∗s〉 = 〈r, A†(A†)∗s〉 = 〈r, (A∗A)†s〉. �

We are now in a position to prove the main result of this paper.

Theorem 3.6. Let A ∈ BL(H1, H2) with R(A) closed, K be a closed convex cone of H1 with

A†AK ⊆ K. Let C = AK and D = (A†)∗K◦. Then the following conditions are equivalent:

(a) (A∗A)†(−K◦) ⊆ K.

(b) C◦ ∩ R(A) ⊆ −C.

(c) D is acute.

(d) C is obtuse.

(e) A∗Ax ∈ PR(A∗)(−K◦), x ∈ R(A∗) �⇒ x ∈ K.

(f) A∗Ax ∈ −K◦, x ∈ R(A∗) �⇒ x ∈ K.

Proof. (a) �⇒ (b) Let u ∈ C◦ ∩ R(A); u = Ap, p ∈ H1. Then by Lemmas 2.1 and 3.1,

p = A†u + w = (A∗A)†A∗u + w, w ∈ N(A).

Set z = (A∗A)†A∗u. Then u = Ap = Az. Also A∗u ∈ K◦, by Lemma 3.3, so that A∗(−u) ∈

−K◦. So by assumption, −z = (A∗A)†A∗(−u) ∈ K . Thus u ∈ −C.

(b) �⇒ (c) Let x =(A†)∗u and y =(A†)∗v with u,v∈K◦. Then x,y ∈R((A†)∗)=R((A∗)†)=

R((A∗)∗) = R(A). Let r ∈ K . We have r ′ = A†Ar ∈ K (as A†AK ⊆ K). Then 〈x, Ar〉 =

〈(A†)∗u, Ar〉=〈u, A†Ar〉=〈u, r ′〉�0. Thus x ∈C◦. Since C◦ ∩ R(A)⊆−C, we have x ∈−C.

Thus x = A(−p), p ∈ K . Finally, with p′ = A†Ap ∈ K , we have 〈x, y〉 = 〈A(−p), (A†)∗v〉 =

−〈A†Ap, v〉 = −〈p′, v〉 � 0. Hence D is acute.

(c) �⇒ (d) Let x, y be such that r = A∗Ax ∈ K◦ and s = A∗Ay ∈ K◦. Since D is acute,

by Lemma 3.5, 0 � 〈r, (A∗A)†s〉 = 〈A∗Ax, (A∗A)†A∗Ay〉 = 〈x, (A∗A)(A∗A)†(A∗A)y〉 =

〈x, (A∗A)y〉 = 〈A∗Ax, y〉. By Lemma 3.3, C◦ ∩ R(A) is acute.

(d) �⇒ (e) Let A∗Ax = PR(A∗)w = A†Aw for some w ∈ −K◦. Then by Lemma 2.1, for

some h∈N(A∗)=N(A†), Ax =(A†)∗A†Aw + h = (A†)∗(A†A)∗w + h = (A†AA†)∗w + h =

(A†)∗w + h. Thus A†Ax =A†(A†)∗w. If x ∈ R(A∗), then x =A†Ax. Let r ∈K◦. Then 〈x, r〉 =

〈A†Ax, r〉 = 〈A†(A†)∗w, r〉 = 〈(A†)∗w, (A†)∗r〉. Set u = (A†)∗w, v = (A†)∗r. Then, as was

shown earlier, u,v∈R(A). For t ∈K , with t ′ =A†At ∈K , we have 〈−u,At〉=〈(A†)∗(−w), At〉=

〈−w,A†At〉=〈−w,t ′〉 � 0. So −u ∈ C◦. Along similar lines it can be shown that v ∈ C◦. Thus

for all r ∈ K◦, 〈x, r〉 = 〈u, v〉 � 0. So x ∈ (K◦)◦ = K.

(e) �⇒ (f) Suppose that A∗Ax ∈ −K◦. Since A∗Ax ∈ R(A∗) = R(A†A), we have A∗Ax =

PR(A∗)(A
∗Ax) ∈ PR(A∗)(−K◦).

(f) �⇒ (a) Let u=(A∗A)†v with v∈−K◦. Then u∈R((A∗A)†)=R((A∗A)∗)=R(A∗A)=

R(A∗). Also, A∗Au=A∗A(A∗A)†v=PR(A∗)v=A†Av. Then for r ∈K with r ′ = A†Ar ∈ K ,

we have 〈A∗A(−u), r〉 = 〈A†A(−v), r〉 = 〈−v, A†Ar〉 = −〈v, r ′〉 � 0. Thus A∗A(−u) ∈ K◦.

As (f) holds, u ∈ K . Thus (A∗A)†(−K◦) ⊆ K .

This completes the proof of the theorem. �
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Corollary 3.7. Let H1 = R
n, H2 = R

m and K = R
n
+ ∩ R(A∗). Then the conditions (b)–(f) are

equivalent to (A∗A)†(Rn
+) ⊆ R

n
+, that is entrywise non-negativity of (A∗A)†.

Proof. Clearly, A†AK ⊆ K , K◦ = −R
n
+ + N(A) and K◦◦ = K . By Theorem 3.6, (b)–(f) are

equivalent to (a): (A∗A)†(Rn
++N(A)) ⊆ R

n
+ ∩ R(A∗). The conclusion now follows, since

N((A∗A)†) = N(A) and R((A∗A)†) = R(A∗). �

The next corollary includes Cegielski’s result (Lemma 1.6, [4]) as a particular case. Note that

if A is of full column rank, then A†A = I , so that A†AK ⊆ K holds trivially.

Corollary 3.8. In addition to the conditions of Theorem 3.6, suppose that A is of full column

rank. Then the conditions (b)–(f) are equivalent to (A∗A)−1 � 0.

Remark 3.9

(i) The following example illustrates Theorem 3.6. Let H1 =H2 =ℓ2, and K =ℓ2
+. Then K◦ =

−ℓ2
+. Let A be the left-shift operator on ℓ2 defined by A(x1, x2, . . .) = (x2, x3, . . .). Then

A† = A∗ = B, the right-shift operator on ℓ2 defined by B(x1, x2, . . .) = (0, x1, x2, . . .).

Here C = Aℓ2
+ = ℓ2

+ and D = (A†)∗(ℓ2
+)◦ = −ℓ2

+. We have A†A � 0 and (A∗A)† =

A∗A � 0.

(ii) Since A∗A is Hermitian, it follows that (A∗A)† = (A∗A)#.

(iii) If K is such that K ⊆ R(A∗) then it follows that A†AK ⊆ K; but the latter condition is

more general. This can be seen as follows: Let A =

(

1 1
1 1

)

. Then A† = 1
4

(

1 1
1 1

)

. We have

A†A � 0, but R
2
+ � R(A∗).

(iv) Conditions (e) and (f) with A∗A replaced by A and with K = R
n
+ were shown to be

equivalent to each other and also equivalent to the nonnegativity of A†, by Berman and

Plemmons [2]. A generalization of this to real Hilbert spaces was obtained in [12]. In

Theorem 3.6, we have more general equivalences.

(v) The condition A†A � 0 does not imply (A∗A)† � 0. This is shown as follows: Let A =
(

1 1 1
0 0 1
0 0 0

)

. Then A† = 1
2

(

1 −1 0
1 −1 0
0 2 0

)

, so that A†A = 1
2

(

1 1 0
1 1 0
0 0 2

)

. Also, (A∗A)† =

1
2

(

1 1 −1
1 1 −1

−1 −1 2

)

. Thus A†A � 0 whereas (A∗A)† � 0.
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