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AbstratThe problem of solving large sparse systems of linear equations of the form (Ax = b)- i.e. systems of linear equations in whih majority of oeÆients (A[i; j℄) are zero -arise in various appliations suh as �nite element analysis, omputational uid dy-namis, and power systems analysis. The tehniques for solving sparse linear systemsinvolve more omplex data strutures and algorithms than their dense ounterparts.We have developed new parallel algorithms for solution of three lasses of sparse linearsystems - (i) blok tridiagonal linear systems, (ii) sparse symmetri linear systems,and (iii) general sparse linear systems. For the solution of blok tridiagonal systemof linear equations, we propose a new mapping of the Cyli Elimination (CE) algo-rithm onto hyperube multiproessors. Unlike the previous mapping shemes, in ourmapping of the CE algorithm, all ommuniations are restrited to physially adjaentproessors, using the onept of data repliation. For the solution of sparse symmetrilinear systems, we propose a new bidiretional algorithm, based on Cholesky fatoriza-tion. Unlike the regular algorithm based on Cholesky fatorization, in our algorithm,the numerial fatorization phase is arried out in suh a manner that the entire baksubstitution omponent of the substitution phase is replaed by a single step division.On similar lines, for the solution of general sparse system of linear equations, we pro-pose a new bidiretional algorithm, based on LU fatorization. As with the sparsesymmetri ase, the substitution phase of our algorithm does not have a bak substitu-tion omponent. However, due to absene of symmetry, important di�erenes arise inthe ordering tehnique, the symboli fatorization phase, and message passing duringnumerial fatorization phase. Extensive simulations, omparing the two bidiretionalalgorithms with their orresponding existing algorithms indiate that, when solvingfor multiple b-vetors, the speedups obtained from these two bidiretional algorithm-s steadily overtake those obtained from the orresponding regular algorithms, as thenumber of b-vetors for whih the system is solved inreases.
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Chapter 1
Introdution1.1 Multiproessing Systems and Parallel AlgorithmsVarious sienti� omputing problems, suh as omputational uid dynamis and nu-merial weather predition, are highly omputationally intensive. The high omputa-tional power required for fast solution of suh problems is beyond the reah of presentday onventional uniproessors. Furthermore, the performane of uniproessors tendsto display an early saturation in relation to their osts. This implies that even modestgains in performane of a uniproessor omes at an exorbitant inrease in its ost. Thusordinary miroproessors, whih ost many orders of magnitude lower than the fastestserial omputers, have only marginally lower performane. By onneting many suhmiroproessors together to form a multiproessor, we an obtain raw omputing poweromparable to that of the fastest serial omputers available, that too at a onsiderablylower prie.However, this raw power of multiproessors needs to be translated to high ompu-tational rates that are realizable for atual appliations. For this purpose, we need todesign eÆient parallel algorithms that an exploit the maximum possible parallelismavailable in the problem and deliver the high performane required. Unlike a sequentialalgorithm, whih simply exeutes a sequene of instrutions on a single proessor, aparallel algorithm proeeds by dividing a problem into multiple sub-problems. Eahof these sub-problems an in turn be solved on di�erent proessors in an asynhronousfashion. In addition, a parallel algorithm handles the various interations that ourbetween these sub-problems in the form of exhange of messages. In the next setion,we look at some of the fundamental issues that rop up in the design of a parallelalgorithm. 1



1.2 Key Issues in Design of Parallel AlgorithmsThe following two prinipal issues arise in the design of parallel algorithms.� Problem partitioning and mapping : refers to dividing a problem into a numberof o-operating sub-problems (tasks) whih an be exeuted onurrently andassigning these tasks to various proessors.� Communiation : refers to interation between various tasks of a parallel algo-rithm by exhange of messages ontaining data or ontrol information aross theinter-proessor links.A parallel algorithm may exeute di�erent number of tasks simultaneously at dif-ferent instants of time. The maximum number of tasks that an be exeuted simul-taneously at any time in a parallel algorithm is alled its degree of onurreny. Thedegree of onurreny depends prinipally upon how amenable a given problem is toparallelization.The measure of the amount of omputation involved in eah task of a parallelalgorithm is alled task granularity. Task granularity an be lassi�ed as �ne, medium,or oarse depending upon the proessing levels involved.Speedup is a simple metri to measure the performane of a parallel algorithm. Itrefers to the ratio of the serial run time of the best sequential algorithm for solvinga problem to the time taken by a parallel algorithm for solving the same problem onp idential proessors. For an ideal multiproessor system, the speedup is equal to p.In pratie, however, depending upon the inter-task dependenies and ommuniationoverheads, the speedup is less than p.1.3 Statement of the ProblemIn this thesis, we address the problem of solving the sparse system of linear equationsa11x1 + a12x2 + � � �+ a1NxN = b1a21x1 + a22x2 + � � �+ a2NxN = b2...aN1x1 + aN2x2 + � � �+ aNNxN = bN2



where majority of the oeÆients aij are zero. In other words, we have to solve thelinear system Ax = b, where A is a sparse oeÆient matrix (i.e., majority of itselements are zero) of dimension N � N , x is an N � 1 unknown solution vetor, andb is an N � 1 known right hand side vetor.In this work we have onsidered the solution of the following three lasses of sparselinear systems.� Blok tridiagonal linear systems : in whih the oeÆient matrix A has nonzerosalong the three diagonals as shown below.
A = 0BBBBBBBBBBB�

� �� � �. . . . . . . . .� � �� �
1CCCCCCCCCCCAEah � is an n� n matrix blok.� Sparse symmetri linear systems : in whih the relation A[i; j℄ = A[j; i℄ holds foreah element of the oeÆient matrix A.� General sparse linear systems : in whih the oeÆient matrix does not haveany spei� pattern in the loation of nonzeros.The tehniques for obtaining solution for sparse linear systems an be dividedinto two broad ategories - iterative and diret. Iterative methods, suh as Jaobi,Gauss-Seidel, and onjugate gradient methods, onverge towards an approximate �nalsolution by means of a sequene of iterations. The number of iterations required tosolve a system of linear equations with a desired preision is not known beforehand.Iterative methods do not guarantee onvergene towards a �nal solution, but whenthey do yield a solution, they are usually less omputationally expensive than thediret methods.Diret methods, suh as Guassian elimination, LU fatorization, and Choleskyfatorization based methods, yield an exat �nal solution by exeuting a predeterminednumber of arithmeti operations. Although these methods are more omputationally3



intensive than iterative methods, they are important for solving sparse linear systemsdue to their auray, robustness, and generality. In this work we onsider the diretmethods for solution of sparse linear systems.1.4 Brief Survey of Relevant WorkThe problem of solving a system of linear equations (Ax = b) is entral to many prob-lems in engineering and sienti� omputing. Large sparse systems of linear equationsarise in various appliations suh as �nite element analysis, omputational uid dynam-is, and power systems analysis. Developing fast parallel algorithms for solving sparselinear systems has been the fous of researh in reent years not only beause they areenountered frequently in sienti� omputing problems, but also beause they usuallyform the most omputationally intensive part of these problems. Furthermore, thetehniques for solving sparse linear systems involve more omplex data strutures andalgorithms than their dense ounterparts. There is an enormous amount of literatureavailable in this �eld. The urrent state of art in developing parallel algorithms forsparse linear systems an be found in [19, 13, 20, 30℄.Although there is substantial parallelism inherent in sparse linear systems, e�ortsmade till date to develop eÆient parallel algorithms for solving these have ahievedonly limited suess. This is beause most of the attempts are based on trying toparallelize good sequential algorithms. However, the goal of a good sequential algorithmi.e., minimizing the total operation ount, diretly onits with the goal of a goodparallel algorithm, whih is maximizing the number of onurrent sub-problems. Hene,parallelizing the good sequential formulations may not yield good parallel ounterparts.Existing works on parallel algorithms for solving tridiagonal and blok tridiagonalsystems an be found in [3, 31, 50, 51, 52℄.Existing works on solving sparse symmetri and general sparse linear system-s an be lassi�ed aording to the phases of solution that eah work address-es. Parallelization of the numerial fatorization phase has reeived muh attention[2, 4, 14, 15, 11, 20, 44, 30℄ due to its being a omputationally intensive phase. A lassof algorithms alled multifrontal algorithms has also gained popularity reently [9, 40℄.4



Ashraft et. al. [5℄ ompare the fan-out, fan-in and multifrontal approahes to sparsenumerial fatorization.The substitution phase, whih involves solution of triangular systems, has limitedinherent parallelism. Therefore e�orts towards parallelizing this phase have reeivedmuh less attention. Solving sparse triangular systems in parallel is disussed in [14,22, 29℄.Literature on the various tehniques for the ordering phase an be found in [12, 26,38, 33, 32℄. Work on developing parallel ordering algorithms is fairly rudimentary tilldate [8, 41, 47℄. Work on parallel algorithms for the symboli fatorization phase anbe found in [2, 18, 28℄.1.5 Contribution of the ThesisWe have proposed new parallel algorithms for the following three problems in our work:� In the �rst problem, we have proposed a new mapping of the Cyli Elimination(CE) algorithm [25℄ for the solution of blok tridiagonal system of linear equa-tions onto hyperube multiproessors. Unlike the previous mapping shemes, inour mapping of the CE algorithm, all ommuniations are restrited to physiallyadjaent proessors, using the onept of data repliation.� In the seond problem, we have proposed a new parallel bidiretional algorithm,based on Cholesky fatorization, for the solution of sparse symmetri systemof linear equations. Traditionally, the proess of obtaining a diret solutionof a sparse symmetri linear system, Ax = b, where A is a sparse symmetrimatrix, involves the four distint phases - (i) Ordering, (ii)Symboli fatorization(iii)Numerial fatorization, and (iv) Substitution. For solution of multiple b-vetors, the �rst three phases are arried out only one to obtain the Choleskyfator L. The substitution phase is then repeated for eah b-vetor in orderto obtain a di�erent solution vetor x in eah ase. Thus, in problems whihinvolve solution of multiple b-vetors, the time taken by repeated exeution ofsubstitution phase dominates the overall solution time.5



In the bidiretional algorithm based on Cholesky fatorization, that we haveproposed, the numerial fatorization phase is arried out in suh a manner thatthe entire bak substitution omponent of the substitution phase is replaedby a single step division. The appliation of the novel onept of bidiretionalelimination to dense linear systems an be found in [42, 43℄.� In the third problem, we have proposed a new parallel bidiretional algorithm,based on LU fatorization, for the solution of general sparse system of linearequations. The traditional method for parallel solution of this lass of problemonsists of the four phases mentioned above. As with sparse symmetri systems,the numerial fatorization phase is arried out in suh a manner that the entirebak substitution omponent of the substitution phase is replaed by a singlestep division. However, due to absene of symmetry, important di�erenes arisein the ordering tehnique, the symboli fatorization phase, and message passingduring numerial fatorization phase. The bidiretional substitution phase forsolving general sparse systems is the same as that for sparse symmetri systems.The e�etiveness of all our algorithms have been demonstrated by omparing them withtheir orresponding existing parallel algorithms using extensive simulation studies.1.6 Organization of the ThesisThe rest of the thesis is organized as follows. In hapter 2, we present an improvedmapping of the yli elimination algorithm onto hyperube multiproessors. We alsopresent analytial and experimental performane studies for the new mapping sheme.In hapter 3, we desribe new parallel algorithms based on Cholesky fatorization forsolving sparse symmetri linear systems. We onsider the ase where the system needsto be solved for multiple b-vetors and ompare the new sheme with the existingmethod for solving sparse symmetri linear systems. In hapter 4, we present newparallel algorithms, based on LU fatorization, for solving general sparse linear systemswith multiple b-vetors and present omparison with the existing methods based onLU fatorization. Chapter 5 onludes the work with a summary of the thesis andpointers to some diretions in whih the work presented here an be extended.6



Chapter 2
Solving Blok Tridiagonal Linear Systemson Hyperube Multiproessors2.1 IntrodutionThe numerial solution of blok tridiagonal linear system of equations is one of theimportant lasses of problems whih ours in many areas of numerial analysis suhas solving partial di�erential equations using �nite di�erene shemes. The most ef-�ient method for solving blok tridiagonal linear systems on a uniproessor is theBlok Gaussian Elimination (BGE) [19℄. However, the BGE algorithm is not suitablefor multiproessor environment beause of lak of adequate parallelism. On the otherhand algorithms suh as blok Cyli Redution (CR) [24℄, Buneman's algorithm [7℄,blok Cyli Elimination (CE) [25, 19℄ and reursive doubling [31℄ exploit the inherentparallelism present in the problem. For eÆient implementation of these algorithms onmultiproessors, the prinipal hallenge lies in reduing the overhead involved in om-muniation between proessors. This aim an be ahieved by using eÆient mappingshemes and overlapping the ommuniation and omputation steps.A mapping of any algorithm onto a hyperube is said to be desirable if all om-muniations are restrited to physially adjaent proessors. However, the following(statement) result due to Lakshmivarahan and Dhall [31℄ relates to non-existene of adesirable mapping of the CR and CE algorithms onto base-2 (binary) hyperube.\In any mapping of the CR or CE algorithm onto a p-node base-2 hyperube, it isneessary that at least log p2 �1 steps involve ommuniation between proessors that areat a distane two or more apart." (For proof refer to [31℄, pp 364-365.) Further, it hasbeen shown by Johnsson [27℄ that upon using the binary reeted Gray ode mapping[48℄, the distane between any two ommuniating proessors is no more than two.7



However, we show, in this hapter, that it is possible to obtain a desirable mapping ofCE algorithm onto hyperube multiproessors using the onept of data repliation.Complete details about mapping of CR or CE algorithm onto a hyperube multi-proessor an be found in [31℄. Here we give a brief overview of the major di�erenesbetween the CR and CE algorithms. The CR algorithm onsists of two phases - redu-tion and substitution. The CE algorithm onsists of only one phase, namely, redution.The degree of parallelism in the redution phase of CR algorithm halves with everyonseutive stage. On the other hand, the degree of parallelism in the redution phaseof CE algorithm remains onstant through all stages. Thus, theoretially, CE algorith-m ought to be preferred over CR algorithm. However, the ommuniation overheadinurred in the existing mapping of CE algorithm onto hyperubes is muh higher thanthat of CR algorithm. In partiular, the ommuniation graph of the CR algorithm is asub-graph of the ommuniation graph of CE algorithm. The ommuniation overheadinurred by the existing mapping of CE algorithm beomes ostly, espeially sine su-essive stages of the redution phase all for data ommuniation between proessorswhih are not neighbours. A large number of suh multiple hop data ommuniationslead to link ontentions and, onsequently, lower performane.In order to gainfully exploit the higher degree of parallelism of the CE algorithmwe propose an improved mapping of the CE algorithm onto a hyperube multiproes-sor with whih the data ommuniations are restrited to our between neighbouringproessors only. This is ahieved by eÆient dupliation of data at every stage of thealgorithm. Thus the problem due to link ontentions are overome and better perfor-mane ahieved. Two signi�ant features of our algorithm are that, the omputationalload is balaned among all the proessors at all stages of the algorithm and seondly,muh of the ommuniation gets overlapped with omputation giving an overall betterperformane.The rest of the hapter is organised as follows. In setion 2.2, we make a problemstatement and introdue some notations whih will be used in the subsequent setions.In setion 2.3, we disuss the sequential BGE algorithm on a uniproessor, and theparallel CR and CE algorithms. In setion 2.4, using an example, we �rst look at theexisting shemes for mapping CR and CE algorithms onto hyperube multiproessors8



and then present our improved mapping sheme for the CE algorithm followed byits analytial performane study. In setion 2.5, we present numerial results for thespeedups obtained from our new mapping sheme and the existing mapping of CRalgorithm, and ompare the two shemes. Setion 2.6 onludes the work with somepointers for future researh.2.2 Problem Statement and NotationsThe blok tridiagonal matrix A is de�ned as
A = 0BBBBBBBBBBB�

d1 f1e2 d2 f2. . . . . . . . .eN�1 dN�1 fN�1eN dN
1CCCCCCCCCCCAwhere the omponents ei; di and fi are n � n matries (or bloks) with e1 = fN = 0.There are N suh bloks along prinipal diagonal of A where N is a power of 2. So theoverall dimension of A is (Nn)� (Nn). We are to solve the system AX = b, where thevetor X = (x1; x2; : : : ; xN)t, the vetor b = (b1; b2; :::; bN)t, the omponents xi and biare n-vetors and ejxj�1 + djxj + fjxj+1 = bj ; j = 1; : : : ; N:The CR algorithm for solving the system Ax = b onsists of the redution phasefollowed by the bak substitution phase. Eah of these two phases, in turn, is dividedinto logN stages. The CE algorithm onsists of redution phase alone whih is dividedinto logN stages. In both CR and CE algorithms, at the beginning of stage l = 1 ofthe redution phase, we de�ne the 5-tuple row(0)i asrow(0)i = (e(0)i ; d(0)i ; (d(0)i )�1; f (0)i ; b(0)i ) = (ei; di; (di)�1; fi; bi):At eah stage l 2 f1; : : : ; logNg of redution phase, we de�ne the tuple row(l)i asrow(l)i = 8><>: (e(l)i ; d(l)i ; (d(l)i )�1; f (l)i ; b(l)i ) ; 8i 2 f1; : : : ; Ng(0; I; I; 0; 0) ; 8i � 0 or i > N:9



Here e(l)i is the value of ei at the end of stage l, f (l)i is the value of fi at the endof stage l and so on. The matrix I is the n � n identity matrix. Note that (d(l)i )�1is inluded as a member of the tuple row(l)i . This is done beause, the inverse, oneomputed at a soure proessor, an be transferred along with the tuple row(l)i toother proessors whih need it, thus avoiding its re-omputation at the destinationproessors. Figure 2.1 gives an example of the above notations for an 8 � 8 bloktridiagonal system. 0BBBBBB� d1 f1e2 d2 f2. . . . . . . . .e7 d7 f7e8 d8
1CCCCCCA 0BBBBBB� x1x2...x7x8

1CCCCCCA = 0BBBBBB� b1b2...b7b8
1CCCCCCAA x = bStage1 Stage2 Stage3row(0)1 = (e1; d1; (d1)�1; f1; b1) row(1)1 = (e(1)1 ; d(1)1 ; (d(1)1 )�1; f (1)1 ; b(1)1 ) row(2)1 = (e(2)1 ; d(2)1 ; (d(2)1 )�1; f (2)1 ; b(2)1 )row(0)2 = (e2; d2; (d2)�1; f2; b2) row(1)2 = (e(1)2 ; d(1)2 ; (d(1)2 )�1; f (1)2 ; b(1)2 ) row(2)2 = (e(2)2 ; d(2)2 ; (d(2)2 )�1; f (2)2 ; b(2)2 )row(0)3 = (e3; d3; (d3)�1; f3; b3) row(1)3 = (e(1)3 ; d(1)3 ; (d(1)3 )�1; f (1)3 ; b(1)3 ) row(2)3 = (e(2)3 ; d(2)3 ; (d(2)3 )�1; f (2)3 ; b(2)3 )Figure 2.1: An 8� 8 blok tridiagonal system and listing of row(l)i at various stages2.3 Solving Blok Tridiagonal Linear SystemsIn this setion, we �rst briey present the theoretial onepts behind the sequentialBGE and then the parallel versions of CR and CE algorithms.2.3.1 Sequential Blok Gaussian Elimination (BGE)There are two phases in this algorithm - forward elimination and bak substitution.Computation within eah phase is ompletely sequential in nature.

10



Algorithm 1(*Forward elimination phase*)for i = 2 to N doCalulate (di�1)�1ai = ei(di�1)�1ei = 0di = di � aifi�1fi = fibi = bi � aibi�1endfor(*Bak substitution phase*)Calulate (dN)�1xN = (dN)�1bNfor i = (N � 1) downto 1 doxi = (di)�1(bi � fixi+1)endfor.The time taken for alulating the inverse of an n�n matrix blok, using the exhangemethod, is Tinv = 3n3 � 4n2 + 2n omputational time units. Multiplying two n � nmatries takes Tmult = 2n3 � n2 time units, whereas multiplying an n � n matrixwith an n-vetor takes T 0mult = 2n2 � n time units. The sequential BGE algorithmexeutes N matrix inversions, 2(N � 1) matrix-matrix multipliations, 3N � 2 matrix-vetor multipliations, N � 1 matrix subtrations, and 2(N � 1) vetor subtrations.Summing up all the omponents, this step takesTBGE = N(3n3�4n2+2n)+2(N�1)(2n3�n2)+(3N�2)(22�n)+(N�1)n2+2(N�1)n= (N � 1)(7n3 + n2 + n) + (3n3 + 2n2 + n) time units.2.3.2 The Basi Elimination StepBoth CE and CR algorithms, have a basi elimination step in ommon. We name thisstep Compute row(l)i , where i 2 f1; : : : ; Ng is the index of a row of bloks and l 2f1; : : : ; logNg is the stage being onsidered. Let h = 2(l�1). The Compute row(l)i step11



eliminates the dependene of equation i on the variables xi+h and xi�h by subtratingappropriate multiples of equations i+h and i�h from equation i. The Compute row(l)istep onsists of the following omputation steps.u(l)i = �e(l)i (d(l�1)i�h )�1v(l)i = �f (l)i (d(l�1)i+h )�1e(l)i = u(l)i e(l�1)i�hd(l)i = d(l�1)i + u(l)i f (l�1)i�h + v(l)i e(l�1)i+hCalulate (d(l)i )�1f (l)i = v(l)i f (l�1)i+hb(l)i = b(l�1)i + u(l)i b(l�1)i�h + v(l)i b(l�1)i+hThe Compute row(l)i step involves six matrix-matrix multipliations, two matrix-vetormultipliations, one matrix inversion, two matrix additions, and two vetor additions.Summing up the omponents, this step takes e = (15n3 � 4n2 + 2n) time units.2.3.3 The Blok Cyli Redution Algorithm (CR)The CR algorithm onsists of two phases, namely redution (or elimination) phaseand bak substitution phase. These two phases are essentially sequential although theomputations within eah phase an be arried out in parallel. Therefore, the totalparallel time is the sum of the individual parallel times. Figure 2.2 shows the patternof elimination and bak substitution steps for the ase of N = 8 blok equations.Algorithm 2(*Redution phase*)1. for l = 1 to logN doh = 2(l�1)for i 2 f2l; 2� 2l; 3� 2l; : : : ; logNgdo in parallelCompute row(l)iendforendfor(*Bak substitution phase*)2. xN = (d(logN)N )�1blogNN 12
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Algorithm 31. for l = 1 to logN doh = 2(l�1)for i 2 f1; 2; : : : ; Ngdo in parallelCompute row(l)iendforendfor2. for i 2 f1; 2; : : : ; Ngdo in parallelxi = (d(logN)i )�1b(logN)iendfor.2.4 Solving Blok Tridiagonal Linear Systems on HyperubesThe hyperube, one of the most popular arhiteture for multiproessor systems, isa generalization of a ube to d dimensions suh that eah of the 2d proessors has dneighbours. In this setion, we present an improved mapping of the CE algorithmon a hyperube multiproessor whih ahieves neighbouring proessor ommuniationby eÆient use of the onept of data dupliation. We begin by omparing the threemapping shemes, namely, the existing mapping of the CR algorithm, the existingmapping of the CE algorithm, and our improved mapping of the CE algorithm withthe help of a simple example. We then proeed to formally present our algorithm andexplain the various steps.2.4.1 Comparison of Three ShemesLet us onsider the simple problem of solving a blok tridiagonal system with N = 16blok equations and blok size 1 � 1 (i.e., n = 1) on a two-dimensional hyperube(i.e., there are four proessors in the hyperube). We trae the step by step exeutionof eah of the shemes below and alulate the time taken in eah ase. For thesake of simpliity, we onsider only the non-overlapped exeution of omputation andommuniation steps.We de�ne the following notations to make our omparison learer.15



� pk symbolially represents the kth proessor of a hyperube.� p represents the number of proessors in a hyperube. Thus the dimension ofthe hyperube is log p.� e represents the number of operations involved in exeuting the Compute row(l)iwith no ommuniation overheads. As shown in setion 3.2, this works out tobe e = 15n3 � 4n2 + 2n omputational time units.� s represents the number of operations involved in exeuting one bak substi-tution step, whih involves three matrix-vetor multipliations and two vetorsubtrations. This works out to be s = 6n2 � n omputational time units.� Communiation to Computation ratio, C=E, represents the the ratio of time tak-en to ommuniate one oating point value between two neighbouring proessorsto the time taken to exeute one oating point operation.� Tb represents the time taken to ommuniate the ontents of an n � n matrixblok between two neighbouring proessors. This works out to be n2(C=E)omputational time units.� Te represents the time taken to ommuniate the ontents of a 5-tuple row(l)ibetween two neighbouring proessors. This works out to be 5Tb = 5n2(C=E)omputational time units.� kth dimension of a hyperube is represented by a set of links eah of whihonnets some proessor pj to its neighbour pj0 , suh that j 0 is obtained byinverting the kth bit in the binary representation of j.2.4.1.1 Existing Mapping of the CR AlgorithmFigure 2.4 shows the step by step exeution of the CR algorithm for solving the tridi-agonal system of 16 equations using a hyperube of four proessors. The equation-s are initially mapped onto proessors in a blok wrap manner (see �gure 2.4(a)).The redution phase of the mapped algorithm onsists of 4 (i.e., log 16) stages. The�rst stage onsists of a one hop ommuniation of tuples row(0)5 (from proessor p1 top0), row(0)9 (from p3 to p1), row(0)13 (from p2 to p3) followed by the omputation steps16
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Table 2.1: Counts of tasks exeuted by the CR algorithm
Redution phase task ountstage Te e1 1 22 1 13 1 14 2 1 Substitution phase task ountstage Tb s1 2 12 1 13 1 14 1 2Compute row(1)2 and Compute row(1)4 at p0, Compute row(1)6 and Compute row(1)8 at p1,Compute row(1)10 and Compute row(1)12 at p3 and Compute row(1)14 and Compute row(1)16at p2. This ompletes the �rst stage of redution phase. Similarly, seond and thirdstages involve one hop ommuniation of row(l)i tuples and one step eah of the formCompute row(l)i . Stage 4 onsists of a two hop ommuniation of row(3)8 from p1 to p2followed by the step Compute row(4)16 . The substitution phase of the algorithm followsa ompletely reverse pattern of ommuniation and an be desribed by reversing theorder of the stages and the diretion of the arrows in the redution phase. The dataitems ommuniated are the oating point values of the variables xi (instead of row(l)ias in redution phase).The ounts of various tasks exeuted at eah stage of the algorithm are summarisedin table 2.1. We see from table 2.1 that it takes 5Te + 5e omputational time unitsfor the redution phase, followed by a division step, followed by 5Tb + 5s units for thesubstitution phase. Thus the total exeution time is TCR = 5(Te + Tb) + 5(e + s) + 1units. Typially the ommuniation to omputation ratio (C/E) is of the order of 100.Thus with N = 16, n = 1 and p = 4 we have Te = 500, Tb = 100, e = 13 and s = 5.Thus TCR = 3091 omputational time units from the above expression.2.4.1.2 Existing Mapping of the CE AlgorithmFigure 2.5 shows the step by step exeution of the CE algorithm for solving the tridi-agonal system of 16 equations using a hyperube with four proessors. The equationsare initially mapped onto proessors in a blok wrap manner (see �gure 2.5(a)). The18
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Table 2.2: Counts of tasks exeuted by the CE algorithm with the existing mappingtask ountstage Te e1 1 42 2 43 4 44 8(2hops) 4algorithm onsists of only redution phase whih has 4 (i.e., log 16) stages. In the�rst stage, row(0)5 tuple is ommuniated from p1 to p0 preeding the step Computerow(1)4 . Simultaneously, row(0)4 tuple is ommuniated from p0 to p1 preeding thestep Compute row(1)5 and so on. Thus stage 1 onsists of one-hop ommuniationof row(l)i tuples followed by four Compute row(l)i steps per proessor. At the end ofstage 1, there are two independent sets of equations, namely, f1; 3; 5; 7; 9; 11; 13; 15gand f2; 4; 6; 8; 10; 12; 14; 16g. Similarly, stage 2 onsists of two one-hop ommuniationof row(l)i tuples followed by four Compute row(l)i steps per proessor. At the end ofstage 2 there are four independent sets of equations, namely f1; 5; 9; 13g, f3; 7; 11; 15g,f2; 6; 10; 14g, and f4; 8; 12; 16g. Stage 3 onsists of four one hop ommuniations ofrow(l)i tuples followed by four Compute row(l)i steps.The ounts of various tasks exeuted at eah stage of the algorithm are summarisedin table 2.2. We see from table 2.2 that ommuniation overhead doubles with eahstage as the number of independent sets of equations doubles at eah stage. Further, thelast stage onsists of four onseutive two-hop ommuniation of row(l)i tuples. Stage4 is followed by four divisions per proessor. Thus the total exeution time taken inthe present ase is TCE = 15Te + 16e + 4 omputational time units. Substituting thevalues for Te and e, we get TCE = 7712 time units. Thus, in the present ase, theexisting mapping of CE algorithm performs poorly in omparison to the mapping ofCR algorithm onto hyperubes.
20
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2.4.1.3 The Improved Mapping of CE AlgorithmFigure 2.6 shows the step by step exeution of our improved mapping of CE algorithmfor solving the tridiagonal system of 16 equations using a hyperube with four proes-sors. In this improved mapping sheme, all the ommuniation steps our betweenneighbouring proessors only. The initial distribution of data is as follows. We di-vide the proessors of the hyperube into two sets - fp0; p1g and fp2; p3g - the formerbeing the set of proessors in the lower half of the hyperube along 2nd dimensionand the latter being the set of proessors in the upper half of the hyperube alongthe 1st dimension. The 16 equations are then mapped onto eah of the two sets ofproessors in a blok wrap manner. Thus we get the initial data distribution as shownin �gure 2.6(a). There are log p stages of the improved mapping. Eah of the �rstlog p� 1 stages (only the �rst stage in the present ase) onsists of two phases - elimi-nation and repliation (opying). The elimination phase orresponds to the redutionstage of the CE algorithm in whih Compute row(l)i steps are exeuted. Thus in stage1 of the algorithm (�gure 2.6(b)), the proessors in the set fp0; p1g exeute Computerow(l)i steps for odd-indexed equations and the proessor set fp2; p3g exeutes Computerow(l)i for even-indexed equations. This involves a one-hop ommuniation of row(l)ituples followed by four Compute row(l)i steps per proessor. At the end of elimina-tion phase of stage 1, the proessor set fp0; p1g holds the independent set of equationsf1; 3; 5; 7; 9; 11; 13; 15g and the proessor set fp2; p3g holds the independent set of e-quations f2; 4; 6; 8; 10; 12; 14; 16g. The next phase of stage 1 is the opying phase inwhih eah proessor opies the row(1)i tuples of its set of equations to the neighbouringproessor along the 1st dimension of the hyperube. Thus p0 opies the row(1)i tuples ofequations f1; 3; 5; 7g to p1 and p1 opies those of equations f9; 11; 13; 15g to p0. Similaropying ours between proessors p2 and p3. Stage 2 of the algorithm onsists of onlythe elimination phase. Thus p0 exeutes Compute row(2)i steps for i = 1; 5; 9; 13, p1exeutes Compute row(2)i steps for i = 3; 7; 11; 15, p2 exeutes Compute row(2)i stepsfor i = 2; 6; 10; 14, and p3 exeutes Compute row(2)i steps for i = 4; 8; 12; 16. Thusat the end of log p stages (i.e., elimination phase of stage 2 in the present ase) eahproessor ontains an independent set of equations whih an be solved using BGEalgorithm without ommuniating with any other proessor.22



Table 2.3: Counts of tasks exeuted by the CE algorithm with improved mappingstage task ountTe e1 elimination 1 4opying 4 02 elimination 0 4The ounts of various tasks exeuted at eah stage of the algorithm are summarisedin table 2.3. The BGE algorithm for solving 4 equations per proessor takes TBGE = 33omputational time units (see setion 3.1). Thus the total time taken in the presentase is Tnew = 5Te + 8e + TBGE units. Substituting the values for Te and e, we getTnew = 2637 time units.Thus we see that in the ase of N = 16, n = 1 and p = 4, our improved mappingof CE algorithm performs better than the existing mappings of both CR and the CEalgorithms. Further, the existing mapping of CR algorithm performs better than theexisting mapping of CE algorithm due to lower ommuniation overhead. We nowpresent some de�nitions and then formally present our improved mapping of the CEalgorithm. We then evaluate its performane by omparing with the existing mappingof the CR algorithm only, sine this mapping fares better than the existing mappingof CE algorithm, as shown in the above example.2.4.2 De�nitions� Binary reeted gray odes [48℄ are a lass of odes useful in embedding a ringstruture onto a binary hyperube. Let G(n) denote the set of all n-digit odewords of the base-2 (binary) reeted gray ode i.e.,G(n) = fG0(n); G1(n); : : : ; G2n�1(n)gwhere, Gi(n) ith ode word of binary reeted gray ode, i 2 f0; : : : ; 2n � 1g.Let i = inin�1 � � � i2i1i023



in binary with in = 0 and Gi(n) = gngn�1 � � � g2g1in binary. If � denotes the exlusive-OR addition of binary bits, then the en-oding funtion En :< N >! G(n) is given byEn(i) = Gi(n) = gngn�1 � � � g1where gj = ij � ij�1for all j = 1; 2; : : : ; N , and the deoding funtion Dn : G(n) !< N > is givenby Dn(g) = iwhere ij = gj+1 � gj+2 � � � � � gn:� pj : send(row(l)i ; pj0) indiates that proessor pj sends ontents of row(l)i to pro-essor pj0 .� pj : reeive(row(l)i ; pj0 ) indiates that proessor pj reeives ontents of row(l)ifrom proessor pj0 .� neighbour(j; k) indiates the neighbour of proessor pj along the kth dimensionof hyperube. If j 0 = neighbour(j; k) then j 0 is obtained by omplementing thekth bit in the binary representation of j.� Let d be the dimension of the hyperube and l 2 f1; : : : ; dg be the dimensionaross whih the hyperube is to be divided into two halves. We de�ne two setsP (l)upper and P (l)lower as P (l)upper = fj j j > neighbour(j; l)gP (l)lower = fj j j < neighbour(j; l)gwhere j 2 f0; : : : ; p� 1g. Further,P (0)upper = fp=2; p=2 + 1; : : : ; p� 1g24



P (0)lower = f0; 1; : : : ; p=2� 1g:In the next two sub-setions the following assumptions hold.� Eah proessor ontains suÆient loal memory and no global memory exists.� N=p � 1, where N is the number of rows of bloks in the blok tridiagonal linearsystem.� All links between the proessors of the hyperube are apable of full-duplexommuniation.� For eah ommuniation step between a pair of neighbouring proessors, thestartup time is assumed to be negligible.� Eah proessor an overlap its omputation with the data ommuniationfrom/to its neighbours.� Inversion of matrix bloks is done using the exhange method.� The matrix bloks d(l)i , i = 1; : : : ; N , are non-singular at all stages l =1; : : : ; logN .2.4.3 Our Improved Mapping of CE onto HyperubesInitially, all row(0)i , i = 1; : : : ; N in the blok tridiagonal linear system are partitionedinto p=2 sets S(0)1 ; S(0)2 ; : : : ; S(0)p=2 of 2N=p rows eah suh thatS(0)i = frow(0)2(i�1)Np +1; row(0)2(i�1)Np +2; : : : ; row(0)2iNp gi = 1; : : : ; p=2.One opy of eah set S(0)i is stored in a pair of proessors pj and pj0 , j 2 f0; : : : ; p=2�1gand j 0 2 fp=2; : : : ; p� 1gsuh thatj = Elog p�1(i� 1)i.e., j = (i� 1)th ode word of the binary reeted gray ode with log p� 1 bits andj 0 = neighbour(j; log p)25



At any stage l of the algorithm, we maintain sets C(l)j at every proessor pj suhthat C(l)j = frow(l�1)i j row(l)i is omputed at proessor pjg:For all j 2 P (0)lower, let k = Dlog p�1(j) + 1. Thus the members of the set S(0)k are storedat proessor pj. Initially, letC(1)j = frow(0)i j row(0)i 2 S(0)k and i 2 f1; 3; : : : ; N � 1ggi.e., Compute row(l)i step is exeuted at pj for all odd indexed equations whih are mem-bers of the set S(0)k . Similarly, for all j 0 2 P (0)upper, let k = Dlog p�1(neighbour(j 0; log p))+1. Then C(1)j0 = frow(0)i j row(0)i 2 S(0)k and i 2 f2; 4; : : : ; Nggi.e., Compute row(l)i step is exeuted at pj for all even indexed equations whih aremembers of the set S(0)k . We now formally present our CE algorithm for hyperubes.Algorithm 4(*Cyli elimination on hyperube*)1. for j 2 f0; 1; : : : ; p=2� 1g do in parallel2. pj, pj+p=2 : k = Dlog p�1(j) + 13. h = 2l�14. endfor5. for l = 1 to log p� 1 do6. (*Elimination phase*)7. for all j 2 f0; : : : ; p� 1g do in parallel8. pj : for all i suh that ( row(l)i 2 C(l)j ) do9. Compute row(l)i10. endfor11. endfor12. if ( l < log p� 1 ) then13. (*Copying phase*)14. for j 2 f0; : : : ; p� 1g do in parallel15. pj : S(l)k = C(l)j 26



16. for all i suh that ( row(l�1)i 2 C(l)j )17. send(row(l)i ; pneighbour(j;l))18. reeive(row(l)i0 ; pneighbour(j;l))19. S(l)k = S(l)k [ frow(l)i g20. endfor21. endfor22. (*Updating C(l+1)j *)23. for j 2 P (l)lower and j 0 2 P (l)upper do in parallel24. pj : min = minimumfi j row(l)i 2 S(l)k g25. C(l+1)j = �26. for i = min to min + (Np � 1)h step 2h do27. C(l+1)j = C l+1j [ frow(l)i g28. endfor29. pj0 :min = minimumfi j row(l)i 2 S(l)K g30. C(l+1)j0 = �31. for i = min+ h to min +Nh=p step 2h do32. C(l+1)j0 = C l+1j0 [ frow(l)i g33. endfor34. endfor35. endif36. endfor37. (*Obtaining xi*)38. for j 2 f0; : : : ; p� 1g do in parallel39. pj :if ( Np > 1 ) then40. Solve the independent system of Np blok equations inC(log p�1)j using BGE algorithm to obtainfxi j row(log p�1)i 2 C(log p�1)j g41. else (*N = p*)42. for all i suh that ( row(log p�1)i 2 C(log p�1)j ) do43. xi = (d(log p�1)i )�1b(log p�1)i44. endfor 27



45. endif46. endWe see that the ommuniation of data ours in the lines 7-11 (elimination phase)and lines 14-21 (opying phase). Lines 7-11 for omputing row(l)i at proessor pj requiredata of row(l�1)i�h ; row(l�1)i , and row(l�1)i+h . Of the three, row(l�1)i is available on pj. Ifrow(l�1)i�h and row(l�1)i+h are not available on pj, then they have to be brought in from itsneighbouring proessors. In lines 14-21 of the opying phase, (see �gures 2.7(),(e)),at every stage l, exatly Np rows of bloks are opied in eah diretion between everypair of neighbouring proessors along dimension l � 1 of the hyperube. Again theommuniation is between neighbouring proessors only. Hene the number of hops inany ommuniation step is no more than one at any stage of the algorithm.Note that after log p�1 stages, the above algorithm swithes over to BGE algorithmon uniproessor. This is beause after log p � 1 stages eah proessor ontains anindependent set of equations whih an be solved without ommuniating with anyother proessor. Sine on a uniproessor, the BGE algorithm is the most eÆient one,swithing over to BGE enhanes the performane.2.4.4 Analytial Performane StudiesWe now derive expressions for the exeution time of our algorithm and also the CRalgorithm.2.4.4.1 Our Improved CE AlgorithmThe lines 1-4 take T1 = 3 time units to exeute in parallel on p proessors. In lines5-36, the opying phase of every iteration l overlaps with the omputation phase of(l + 1)th iteration. Thus this step (lines 5-36) takesT2 = maxf(Np � 1)e; Teg+ e+(log p� 2)(maxf(Np � 1)e; Np (Te + 1)g+ Te + e)+(Te + (Np � 1)max(e; Te) + e) units.
28
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For lines 38-46, T3 = (Np � 1)(e+ s) + (2n3 � n2). Thus the total time taken, Ttotal =T1 + T2 + T3.Let us look at the ommuniation omplexity of our algorithm without onsideringany overlap between the ommuniation and omputation steps. The ontributionfrom elimination phase (lines 7-11 ) alone is (log p� 1)Te and that from opying phase(lines 14-21 ) alone is Np (log p� 2)Te. Thus the total ommuniation omplexity of ouralgorithm is a sum of these two, given by (Np + 1) log p� 2Np � 1!Te unitswhere Te = 5n2(C=E), n� n being the size of eah blok.2.4.4.2 CR AlgorithmIn redution phase, the �rst log(N=p) stages involve one hop ommuniation of rowsof bloks and N=(p2l) omputations of row(l)i (�gure 2.4(b) and ()). Here the ommu-niation of a row of bloks and (log(N=p)� 1) omputations of row(l)i are overlapped.The log(N=p) + 1th stage involves one hop ommuniation of a row of bloks and onerow(l)i omputation step in a non-overlapped manner (�gure 2.4(d)). The remaining(log p � 1) stages involve two hop ommuniation of a row of bloks and one row(l)iomputation step in a non-overlapped manner (�gure 2.4(e)). Thus the total time forthe redution phase works out to beTredution = (e+ 4) log(Np )+Plog(Np )l=1 (maxf(N=(p2l)� 1)(e+ 1); Teg+(Te + e+ 4) + (log p� 1)(2Te + e+ 4) unitsSimilar ommuniation pattern exists for bak substitution but in reversed manner.Thus the time taken for bak substitution phase works out to be
31



Tbak substitution = (s+ 3) log(Np )+Plog(Np )l=1 maxf(N=(p2l)� 1)s; Tbg+(Tb + s+ 3) + (log p� 1)(2Tb + s+ 3) units.Taking a blok multipliation step between these two phases into aount, thetotal time TCR = Tredution + Tmult + Tbaksubstitution. Let us look at the ommuniationomplexity of CR algorithm without onsidering any overlap of the ommuniation andomputation steps. The ontribution from redution phase alone is (logN+log p�1)Teand ontribution from bak substitution phase alone is (logN + log p� 1)Tb. Thus thetotal ommuniation omplexity of CR algorithm, as a sum of these two, is given by(logN + log p� 1)(Te + Tb) unitswhere Te = 5n2(C=E) and Tb = n2(C=E), n� n being the size of eah blok.2.5 Experimental ResultsTo evaluate the auray of the above analytial expressions, we implemented a hy-perube simulator in C language and ompared the speedups obtained from our newmapping of CE algorithm with those obtained from the existing mapping of CR algo-rithm. We used SPARC Classi mahines to arry out our simulations. The parametersthat were varied were the number of rows of bloks N (512 and 1024), the blok sizen (1,2, and 4), the ratio of ommuniation step to omputation step C=E (10, 25, 50,and 100), and the number of proessors p (1 to 1024). The �gures 2.8-2.13 show theomparison of measured speedups of the two algorithms for various values of the aboveparameters. We observe the following fats.
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(d) C/E=100.0Figure 2.8: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=1
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(d) C/E=100.0Figure 2.9: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=2
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(d) C/E=100.0Figure 2.10: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=4
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(d) C/E=100.0Figure 2.11: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=1
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(d) C/E=100.0Figure 2.12: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=2
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(d) C/E=100.0Figure 2.13: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=4
� For N = p our improved mapping sheme for CE algorithm always gives higherspeedup than the CR algorithm.� Inreasing the blok size n inreases the magnitude of speedups obtained by thetwo shemes (see �gures 2.11(a),2.12(a), and 2.13(a)). Inreasing the number ofrows of bloks, N , shows up a similar trend (see �gures 2.8 and 2.11, 2.9 and2.12 and, 2.10 and 2.13). On the other hand, as the C=E ratio inreases, themagnitude of speedup redues in both the algorithms (see �gures 2.8(a), (b),and ()). 38



� The speedup of CR algorithm tends to saturate and even fall as the number ofproessors inreases. Suh a saturation e�et is absent from our algorithm inwhih the speedup progressively inreases with the number of proessors andreahes its maximum value at N = p.� The results obtained from the simulation studies ompared well with the theo-retial preditions obtained from the analytial method. The small di�erenesbetween the speedups obtained from both the methods arise due to the follow-ing reason. The analytial method tries to estimate, as losely as possible, theamount of overlap between the omputation and ommuniation steps. How-ever, the exat amount of overlap depends on various fators suh as the C/Eratio, preedene onstraints between various omputation and ommuniationtasks, and routing sheme used in the multiproessor system. The e�et of allthese fators on the speedup of the algorithms annot be enapsulated neatlyinto a single analytial expression.2.6 ConlusionsWe have proposed a new mapping of the CE algorithm onto hyperube multiproes-sors for solving blok tridiagonal linear systems. This mapping maintains the samedegree of parallelism throughout and uses the onept of data repliation to ahieveonly neighbouring proessor ommuniation at all stages of the proessing. We havedemonstrated the e�etiveness of our mapping by omparing it with the existing map-ping of CR algorithm onto hyperubes using both analytial and simulation methods.Further work is possible in the diretion of ontrolling the amount of parallelism in ourimplementation of the CE algorithm [42℄. In its present form, our algorithm swithesto the sequential BGE algorithm only after log p � 1 stages when eah proessor hasan independent set of equations whih an be solved without ommuniating with anyneighbour. However, swithing over to BGE algorithm at an earlier stage (say k) maylead to further improvements in the performane of our algorithm. Determining theoptimal value of k is an open problem.
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Chapter 3
A New Algorithm for Diret Solution ofSparse Symmetri Linear Systems3.1 IntrodutionIn this hapter, we onsider the problem of solving sparse symmetri system of linearequations of the form Ax = b, where A is a sparse symmetri matrix of dimensionN � N , and x and b are N -vetors. Suh equations arise in various appliations suhas �nite element problems, power systems analysis, and iruit simulations for VLSICAD. Traditionally, the proess for obtaining the diret solution for a sparse symmetrisystem of linear equations, Ax = b, involves the following four distint phases.� Ordering : Apply an appropriate symmetri permutation matrix P suh thatthe new system is of the form (PAP T )(Px) = (Pb).� Symboli fatorization : Set up the appropriate data strutures for the numerialfatorization phase.� Numerial fatorization : Determine the Cholesky fator L suh that A = LLT .� Substitution : Determine the solution vetor x by �rst solving the forward trian-gular system Ly = b and then solving the bakward triangular system LTx = y.For solution of multiple b-vetors, the �rst three phases are arried out only oneto obtain the Cholesky fator L. The substitution phase is then repeated for eahb-vetor in order to obtain a di�erent solution vetor x in eah ase. Thus, in problemswhih involve solution of multiple b-vetors, the time taken by repeated exeution ofsubstitution phase dominates the overall solution time. Any parallel formulation, whihan redue the time taken by the substitution phase, will ontribute signi�antly toenhaned performane of the entire proess.40



Although traditional approahes to parallel solution of sparse symmetri system oflinear equations have yielded eÆient parallel algorithms for the numerial fatorizationphase [4, 15, 20, 30℄, not muh progress has been made in the ase of substitutionphase due to the limited amount of parallelism inherent in this phase. Moreover,the forward and bakward substitution omponents of the substitution phase requiredi�erent parallel algorithms due to the manner in whih data is distributed over variousproessors. Existing work on parallel formulations for this phase an be found in[14, 22, 29℄.In this hapter we present a new bidiretional algorithm, based on Cholesky fa-torization, for the solution of sparse symmetri system of linear equations. In ouralgorithm, the numerial fatorization phase is arried out in suh a manner that theentire bak substitution omponent of the substitution phase is replaed by a singlestep division. The appliation of the novel onept of bidiretional elimination to denselinear systems an be found in [42, 43℄.The rest of the hapter is organized as follows. In setion 3.2, we present thebidiretional sparse Cholesky fatorization algorithm for sparse symmetri matries.In setion 3.3, we present the bidiretional algorithm for the substitution phase whihdoes not have a bak substitution omponent. In setion 3.4 we develop a bidire-tional heuristi algorithm for ordering on the lines of the popular nested dissetionordering algorithm [13, 10℄ for sparse symmetri matries. In setion 3.5, we desribea symboli fatorization algorithm whih sets up data strutures required by the bidi-retional Cholesky fatorization phase. In setion 3.6, we evaluate the performaneof the bidiretional algorithm on hyperube multiproessors and present omparisonof our algorithm with the existing sheme based on sparse Cholesky fatorization. Insetion 3.7, we onlude the work with some observations about possible future im-provements to the bidiretional sheme.3.2 The Bidiretional Sparse Cholesky Fatorization (BSCF) AlgorithmUnlike the regular Cholesky fatorization algorithm whih fatorizes A to obtain thelower triangular matrix L, suh that A = LLT , the BSCF algorithm fatorizes A into aseries of trapezoidal matries of multipliers. This series of trapezoidal matries remove41



the need for the bak substitution omponent in the substitution phase.In this setion, we �rst present an overall view of the onept of bidiretionalCholesky fatorization. We then proeed to desribe the manner in whih the sparsity ofthe oeÆient matrix an be exploited to obtain higher degree of parallelism. Followingthis we present the details of implementing BSCF algorithm on multiproessor systems.3.2.1 Bidiretional Cholesky Fatorization - The ConeptIn regular Cholesky algorithm, the lower triangular matrix L is obtained by hoosingolumns 1 through N of matrix A as pivots so that A = LLT . We name this proess asfatorization in forward diretion. On the other hand, we an also hoose olumns Nthrough 1 of matrix A as pivots and fatorize A in a reverse fashion to obtain an uppertriangular matrix U suh that A = UTU . We name this proess as fatorization inbakward diretion. The bidiretional Cholesky fatorization of the oeÆient matrixA proeeds as follows.� Step 1: We form two matries, namely A0 and A1, idential to the oeÆientmatrix A. We fatorize A0 in the forward diretion, but only through the �rstdN2 e pivot olumns, to obtain a lower trapezoidal matrix L0, as shown in �g-ure 3.1, in whih only the sub-diagonal entries in olumns 1 to dN2 e are present.Conurrently, we fatorize A1 in bakward diretion, through pivot olumns Nto dN2 + 1e, to obtain an upper trapezoidal matrix L1, as shown in �gure 3.1, inwhih only the super-diagonal elements in olumns N to dN2 + 1e are present.� Step 2: We dupliate the redued matrix A0 to form A00 and A01, and alsodupliate the redued matrix A1 to form A10 and A11. The matries A00 andA10 are fatorized halfway through in the forward diretion to produe lowertrapezoidal matries L00 and L10 respetively. Similarly, the matries A01 andA11 are fatorized halfway through in the bakward diretion to produe uppertrapezoidal matries L01 and L11 respetively. Note that here we fatorize thefour matries A00, A01, A10, and A11 in parallel.� Step 3: We ontinue this proess of halving the size of the sub-matries throughsimultaneous Cholesky fatorization in both forward and bakward diretions42
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and thus doubling the number of sub-matries for logN times. Finally we endup with N sub-matries of order 1� 1.The bidiretional Cholesky fatorization algorithm desribed above produes a tree oftrapezoids of multipliers (i.e., Lmatries). In the substitution phase, whih is desribedin setion 3.3, the b-vetor, orresponding to whih a solution vetor x has to be found,is moved down this tree of trapezoids. At the end of this proess eah leaf produesan equation with just one variable whih is then solved by a single step division toprodue the solution vetor x.3.2.2 Exploiting the Sparsity of the CoeÆient Matrix AIn regular sparse Cholesky fatorization of a oeÆient matrix A, olumn i diretlymodi�es olumn j if j > i and A[i; j℄ 6= 0. Column i indiretly modi�es olumn j ifolumn i diretly modi�es another olumn k whih in turn modi�es olumn j diretlyor indiretly. Columns i and j are mutually independent if olumn i does not modifyolumn j diretly or indiretly. The mutually independent olumns of the sparse matrixan be used as pivots in parallel.This onept of mutually independent olumns an be easily extended to the BSCFalgorithm. At any stage s 2 f1 � � � logNg, olumns i and j (j > i ) are forwardindependent if pivot olumn i does not modify olumn j diretly or indiretly duringfatorization in forward diretion. The forward independent olumns, i and j, an besimultaneously used as pivots in forward diretion. The olumns i and j are bakwardindependent if pivot olumn j does not modify olumn i diretly or indiretly duringfatorization in bakward diretion. The bakward independent olumns, i and j, anbe simultaneously used as pivots in bakward diretion.In regular sparse Cholesky fatorization, the onept of mutually independentolumns an be abstrated with the help of elimination trees. An elimination treeontains a node orresponding to eah olumn of the oeÆient matrix. The parent ofa node i is de�ned asparent(i) = min fj j j > i and L[j; i℄ 6= 0g :The elimination tree de�nes a partially ordered preedene relation whih determines44



when a ertain olumn an be used as pivot.Similarly, in BSCF algorithm, we an abstrat the onepts of forward indepen-dene and bakward independene by means of forward elimination tree and bakwardelimination tree respetively. At some stage s 2 f1 � � � logNg, let Ax0 be a sub-matrixbeing fatorized in forward diretion and Ax1 be a sub-matrix being fatorized in thebakward diretion (x being a possibly empty string of 0's and 1's). The forward parentof node i, is de�ned asfparent(i; Ax0) = min fj j j > i and Lx0[j; i℄ 6= 0g :Similarly, the bakward parent of node i, is de�ned asbparent(i; Ax1) = max fj j j < i and Lx1[j; i℄ 6= 0g :For ahieving high degree of parallelism during fatorization phase, both the for-ward and the bakward elimination trees should be as short and wide as possible. Thisis the funtion of the ordering phase (desribed in setion 3.4).In the next subsetion, we examine the parallel implementation of BSCF algorithmon multiproessors.3.2.3 Implementing the BSCF Algorithm on MultiproessorsFor our present study, we onsider themedium grain model of parallelism in whih tasksperform oating point operations over nonzero elements of entire olumns of oeÆientmatrix. The following elementary tasks are onsidered for the BSCF algorithm.� fdivide(i,s) divides by qAx0[i; i℄ every nonzero element of the sub-diagonal partof the ith olumn of sub-matrix Ax0.� bdivide(i,s) divides by qAx1[i; i℄ every nonzero element of the super-diagonalpart of the ith olumn of sub-matrix Ax1.� fmodify(i,vetor,s) subtrats the ontents of vetor from the ith olumn of asub-matrix Ax0, at stage s 2 f1 � � � logNg. vetor is an appropriate multiple ofsome olumn j of Ax0, whih modi�es olumn i diretly in forward diretion atstage s. 45



� bmodify(i,vetor,s) subtrats the ontents of vetor from the ith olumn of asub-matrix Ax1, at stage s 2 f1 � � � logNg. vetor is an appropriate multiple ofsome olumn j of Ax1, whih modi�es olumn i diretly in bakward diretionat stage s.To keep trak of the olumns that eah pivot should modify at eah of the logN stages,we maintain the following data strutures.� F (s)i denotes the set of all olumns with indies smaller than i that modify theith olumn in the forward diretion at stage s.� B(s)i denotes the set of all olumns with indies greater than i that modify theith olumn in the bakward diretion at stage s.These data strutures are generated during the symboli fatorization phase. Thisphase is desribed in setion 3.5. In the remaining part of this setion, we desribethe implementation of BSCF algorithm on a message passing multiproessor - initiallyfor the ase where eah proessor is responsible for only one olumn of the oeÆientmatrix and then for the ase where the number of proessors p is less than the orderN of the oeÆient matrix.Case p = N : In algorithm 1 below, N proessors are being used to fatorize anN � N sparse symmetri matrix A. For eah proessor Pi, the index of the olumnstored in it is myol. At any stage s 2 f1 � � �Ng, there are two opies of olumn myolstored in proessor Pi. The �rst opy is a part of the forward sub-matrix Ax0 and isrepresented by Ax0[�; myol℄. The seond opy is a part of the bakward sub-matrixAx1 and is represented by Ax1[�; myol℄. Thus eah proessor is responsible for arry-ing out fmodify(myol; vetor; s), bmodify(myol; vetor; s), fdivide(myol; s), andbdivide(myol; s) operations at every stage, s, of the BSCF algorithm.Algorithm 1 (*The parallel BSCF algorithm for ase p = N*)beginfor s := 1 to logN doLet Ax0 be the forward sub-matrix and Ax1 be thebakward sub-matrix to whih olumn myol belongsat stage s. 46



parbeginForward fatorize(myol,s);Bakward fatorize(myol,s);parendendproedure Forward fatorize(ol,s)beginfor all i 2 F (s)ol doreeive message of the form (ol,vetor,s) fromproessor storing the olumn i;fmodify(ol; vetor; s);if ol belongs to the �rst half of sub-matrix Ax0 thenfdivide(ol; s);for all j suh that ol 2 F (s)j dosend the message (j, Ax0[j; ol℄� Ax0[�; ol℄, s)to proessor storing olumn j;else if s < logN then(*opy olumn ol of Ax0 to olumn ol of Ax00*)Ax00[�; ol℄ := Ax0[�; ol℄;(*opy olumn ol of Ax0 to row ol of Ax01 sine onlysub-diagonal part of the olumns of the symmetri matrix Ax0are stored*)for all j suh that Ax0[j; ol℄ 6= 0 doAx01[ol; j℄ := Ax0[j; ol℄;endproedure Bakward fatorize(ol,s)beginfor all i 2 B(s)ol do 47



reeive message of the form (ol,vetor,s) fromproessor storing the olumn i;bmodify(ol; vetor; s);if ol belongs to the seond half of sub-matrix Ax1 thenbdivide(ol; s);for all j suh that ol 2 B(s)j dosend the message (j, Ax1[j; ol℄� Ax1[�; ol℄, s)to proessor storing olumn j;else if s < logN then(*opy olumn ol of Ax1 to row ol of Ax10 sine onlysuper-diagonal part of the olumns of the symmetri matrix Ax1are stored*)for all j suh that Ax1[j; ol℄ 6= 0 doAx10[ol; j℄ := Ax1[j; ol℄;(*opy olumn ol of Ax1 to olumn ol of Ax11*)Ax11[�; ol℄ := Ax1[�; ol℄;endThe progression of the above algorithm for the ase of p = N = 4 is shown in�gure 3.2. In this �gure we note that the size of the subset of proessors with whihany proessor Pi ommuniates, redues by half with every stage. In stage s = 1, allproessors P1 through P4 ommuniate with eah other. In stage s = 2, P1 and P2ommuniate only with eah other, and P3 and P4 ommuniate only with eah other.Thus ommuniation gets loalized with every stage. Suh a pattern of ommuniationalso holds for the ase of p < N .In pratie, algorithm 1 would be extremely ineÆient due to the exessive numberof messages being passed. Also, the number of proessors is usually muh less than N ,the order of the oeÆient matrix. We now disuss the modi�ation of algorithm 1 tothe ase where p < N .
48
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Case p < N : In Cholesky fatorization, if olumn i modi�es olumn j, thenthe fator, by whih the modifying olumn i is multiplied, is an element A[j; i℄ of themodifying olumn i itself. This happens due to the symmetri nature of the oeÆientmatrix being operated upon. Thus, as seen in algorithm 1, the multiple of the modifyingolumn is alulated at the proessor storing olumn i itself and the resulting vetor issent over to the proessor storing olumn j whih needs to be modi�ed.When p < N , there might be more than one olumn at a proessor Pk, whihmodi�es olumn j (i.e., more than one olumn stored at proessor Pk might belong tothe sets F (s)j or B(s)j ). In plae of sending a separate vetor as message orrespondingto every olumn at Pk that modi�es olumn j, we an add all these outgoing vetorstogether and send them as one vetor to the proessor storing olumn j. In this manner,the number of outgoing messages an be signi�antly redued. Note that the aboveobservation applies for modi�ations in both forward and bakward fatorizations.In algorithm 2 below, we inorporate the above idea in the BSCF algorithm andpresent the fan-in BSCF algorithm. The set Listmyid is the set of olumns stored inproessor Pmyid. Eah proessor maintains the sparse vetors fUpdatej and bUpdatejfor 1 � j � N . If olumn i is to modify olumn j in forward diretion at stage s then,after performing fdivide(i; s) operation, the proessor Pmyid, whih stores the olumni, adds an appropriate multiple of olumn i to the vetor fUpdatej. When suh anaddition has been performed for all the olumns in proessor Pmyid that modify olumnj in forward diretion at stage s, a message ontaining the fUpdate vetor is sent tothe proessor storing the olumn j. Similar mehanism operates for fatorization inbakward diretion.Algorithm 2 (*The parallel fan-in BSCF algorithm for ase p < N*)beginfor s := 1 to logN doparbeginForward fatorize(Listmyid,s);Bakward fatorize(Listmyid,s);parendend 50



proedure Forward fatorize(List,s)beginfor i := 0 to N � 1 do fUpdatei :=0;while List 6= � doif 9i 2 List suh that fdivide(j; s) has been performed for all j 2 F (s)i thenLet olumn i belong to the forward sub-matrix Ax0 at stage s;while messages of the form (i,fvetor,s) have not been reeived fromall proessors that store olumns belonging to F (s)i doreeive messages of the form (i,fvetor,s);fmodify(i; fvetor; s);if olumn i belongs to the �rst half of sub-matrix Ax0 thenfdivide(i; s);for all j suh that i 2 F (s)j dofUpdatej := fUpdatej + Ax0[j; i℄� Ax0[�; i℄;if fdivide(k; s) has been done for all k 2 F (s)k \ List thensend a message of the form (j,fUpdatej,s)to proessor storing olumn j;else if s < logN then(*opy olumn i of Ax0 to olumn i of Ax00*)Ax00[�; i℄ := Ax0[�; i℄;(*opy olumn i of Ax0 to row i of Ax01 sine only sub-diagonalpart of the olumns of the symmetrimatrix Ax0 are stored*)for all j suh that Ax0[j; i℄ 6= 0 doAx01[i; j℄ := Ax0[j; i℄;List := List� i;end
51



proedure Bakward fatorize(List,s)beginfor i := 0 to N � 1 do bUpdatei :=0;while List 6= � doif 9i 2 List suh that bdivide(j; s) has been performed for all j 2 B(s)i thenLet olumn i belong to the bakward sub-matrix Ax1 at stage s;while messages of the form (i,bvetor,s) have not been reeived fromall proessors that store olumns belonging to B(s)i doreeive messages of the form (i,bvetor,s);bmodify(i; bvetor; s);if olumn i belongs to the seond half of sub-matrix Ax1 thenbdivide(i; s);for all j suh that i 2 B(s)j dobUpdatej := bUpdatej + Ax1[j; i℄� Ax1[�; i℄;if bdivide(k; s) has been done for all k 2 B(s)k \ List thensend a message of the form (j,bUpdatej ,s)to proessor storing olumn j;else if s < logN then(*opy olumn i of Ax1 to row i of Ax10 sine onlysuper-diagonal part of the olumns of thesymmetri matrix Ax1 are stored*)for all j suh that Ax1[j; i℄ 6= 0 doAx10[i; j℄ := Ax1[j; i℄;(*opy olumn i of Ax1 to olumn i of Ax11*)Ax11[�; i℄ := Ax1[�; i℄;List := List� i;endAn important observation is in order in algorithm 2. Let the number of proessorsp = 2d (as in hyperube multiproessors) and N = 2n (n; d 2 N , the set of natu-52
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ral numbers). Assume that we map the equations on the proessors in a blok wrapmanner (as shown in �gure 3.3). Thus eah proessor holds Np = 2n�d onseutiveequations. At the end of d = log p stages of the fan-in BSCF algorithm, eah proessorontains an independent system of Np equations. This independent system an be fa-torized within a single proessor without any ommuniation with any other proessor.Sine, on a single proessor, regular sequential sparse Cholesky fatorization performsmore eÆiently than the fan-in BSCF algorithm, we an swith over to this regularsequential version after log p stages and fatorize the oeÆient matrix (say Aind) ofthis independent system into the form Aind = LindLTind. This results in enhaning theperformane of the fan-in BSCF algorithm. The manner in whih this fatorizationproeeds is shown in �gure 3.3.3.3 The Substitution PhaseIn this setion we present the bidiretional substitution (BS) algorithm. Unlike the reg-ular algorithm, whih onsists of two triangular solution omponents (i.e., the forwardsubstitution followed by the bakward substiution), the BS algorithm onsists of onlyone forward solution omponent, whih is followed by a single step division to yieldthe solution vetor x. Following the pattern of the previous setion, we �rst presentan overall view of the onepts behind the BS algorithm. We then proeed to desribethe manner in whih the sparsity of the series of trapezoidal fator matries an beexploited to obtain a higher degree of parallelism.3.3.1 Bidiretional Substitution Algorithm - The ConeptThe sheme we propose below is somewhat on similar lines to the parallel olumntriangular solver (PCTS) proposed by Li and Coleman in [34℄. To �nd the solutionvetor x, for a given b-vetor, we begin with two opies of b-vetors b0 and b1.� Step 1 : The vetor b0 is modi�ed by suessive olumns of trapezoids of multipli-ers L0 (i.e., from olumn 1 to olumn dN2 e). In other words, after modi�ation byolumn i�1, the proessor ontaining olumn i omputes xi as xi = b0[i℄=L0[i; i℄54
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and modi�es the remaining elements of b0-vetor as b0[j℄ = b0[j℄ � L0[j; i℄ � xifor all j suh that L0[j; i℄ 6= 0. At the end of updation by L0, the size of ve-tor b0 is redued to half its original size (see �gure 3.4). Simultaneously, thevetor b1 is updated by suessive olumns of the trapezoidal matrix of multi-pliers L1 in bakward diretion (i.e., from olumn N to olumn dN2 e + 1). Inother words, after modi�ation by olumn i + 1, the proessor ontaining ol-umn i omputes xi as xi = b1[i℄=L1[i; i℄ and modi�es the remaining b1-vetor asb1[j℄ = b1[j℄� L1[j; i℄ � xi for all j suh that L1[j; i℄ 6= 0. At the end of updationby L1, the size of vetor b1 is redued to half its original size (see �gure 3.4).� Step 2 : The redued b0 is opied to form vetors b00 and b01 whereas the reduedb1 is opied to form vetors b10 and b11. The new vetors b00 and b10 are modi�edby L00 and L10 respetively in forward diretion whereas the vetors b01 and b11are modi�ed by L01 and L11 respetively in bakward diretion. Thus the sizeof these new b-vetors gets redued by another fator of half (see �gure 3.4).� Step 3 : This proess of reduing the size of b-vetors and doubling their numbersontinues for logN stages by whih time there will be N b-vetors of only oneelement eah. These N b-vetors, when divided by N elements obtained at theend of fatorization phase, will give N x-vetor elements.3.3.2 Inreasing Parallelism by Exploiting SparsityIn the above sheme we observe that the proess of modifying a b-vetor through su-essive olumns of a trapezoid is inherently sequential and is ommuniation intensivein ase the suessive olumns happen to reside on separate proessors. George et.al.have proposed in [14℄, parallel shemes for solving sparse triangular systems resultingfrom regular Cholesky fatorization. Their sheme is an adaptaion of the orrespond-ing dense algorithm proposed by Romine and Ortega in [49℄ and it uses the followinginner produt form to arry out forward fatorization.xi = 0�bi � XfjjL[i;j℄6=0g(L[i; j℄ � xj)1A =L[i; i℄ i = 1; 2; � � � ; NSine the olumns and the orresponding solution omponents are distributed amongthe proessors, the inner produt omputation is partitioned aordingly.56



The above onept of distributed omputation of inner produt an be applied tothe BS algorithm. Consider the ase where the vetor bx0 is to be updated by thetrapezoid Lx0 in the forward diretion. Instead of moving the vetor bx0 from left toright aross the trapezoid Lx0, eah element bx0[i℄ is updated as follows. Eah proessoromputes the produts of the elements of the row i of the trapezoid that it ontainswith the orresponding elements of the solution vetor x and sends their sum i.e., thepartial inner produt, to the proessor ontaining olumn i. Upon reeiving the on-tributions to the inner produt from eah proessor, the proessor storing the olumni subtrats them from bx0. If olumn i belongs to the �rst half of the matrix Ax0 then,after subtrating the omplete inner produt of row i in Lx0 from bx0[i℄, the proessorstoring the olumn i omputes xi = bx0[i℄=Lx0[i; i℄. This xi is then used for alulatingthe partial inner produts of rows j > i. On the other hand if the olumn i belongsto the seond half then after subtrating the omplete inner produt of row i in Lx0from bx0[i℄, two opies of the element bxo[i℄, namely bx00[i℄ and bx01[i℄, are made formodi�ation at the next stage of the BS algorithm. Similar mehanism operates whileupdating a vetor bx1 with a trapezoid Lx1 in bakward diretion. The omplete detailsof the BS algorithm are given below.Algorithm 3 (* The bidiretional substitution algorithm *)beginfor s := 1 to logN doparbeginForward modify(Listmyid,s);Bakward modify(Listmyid,s);parendendproedure Forward modify(List,s)beginLet bx0 be the forward opy of the b-vetor to be modi�edby trapezoid Lx0 at stage s.for i := 1 to N do ti := 0; 57



for all i 2 List dofor all j suh that proessor Pj has nonzeros belonging to row i of Lx0 doreeive message (i,t) having partial inner produt t from proessor Pj;bx0[i℄ := bx0[i℄� t;if olumn i belongs to the �rst half of Lx0 thenxi := bx0[i℄=Lx0[i; i℄;for all j suh that Lx0[j; i℄ 6= 0 dotj := tj + xi � Lx0[j; i℄;if xk has been alulated for all k suh that Lx0[j; k℄ 6= 0 andk 2 List thensend message (j,tj) to proessor storing olumn j;else if s < logN thenbx00[i℄ := bx0[i℄;bx01[i℄ := bx0[i℄;else (* s = logN *) xi := bx0[i℄=Lx0[i℄;endproedure Bakward modify(List,s)beginLet bx1 be the bakward opy of the b-vetor to be modi�edby trapezoid Lx1 at stage s.for i := 1 to N do ti := 0;for all i 2 List dofor all j suh that proessor Pj has nonzeros belonging to row i of Lx1 doreeive message (i,t) having partial inner produt t from proessor Pj;bx1[i℄ := bx1[i℄� t;if olumn i belongs to the seond half of Lx1 thenxi := bx1[i℄=Lx1[i; i℄;for all j suh that Lx1[j; i℄ 6= 0 dotj := tj + xi � Lx1[j; i℄;if xk has been alulated for all k suh that Lx1[j; k℄ 6= 0 and58



k 2 List thensend message (j,tj) to proessor storing olumn j;else if s < logN thenbx10[i℄ := bx1[i℄;bx11[i℄ := bx1[i℄;else (* s = logN *) xi := bx1[i℄=Lx1[i℄;endAs in the ase of the BSCF algorithm, a speial situation arises when p = 2d andN = 2n (n; d 2 N ). After d = log p stages, the BSCF algorithm swithes over to theregular sparse Cholesky fatorization and produes triangular fator matrix of the formLind in the last stage suh that Aind = LindLTind. Thus in the substitution phase, letbind be one of the p redued vetors after log p stages of BS algorithm. We now swithover to the sequential substitution algorithm for solving the two triangular systems,Lindy = bind and LTindx = y. In this manner, we avoid exeuting exessive number ofoating point operations when all the remaining omputations are resrited to ourwithin individual proessors.In the next two setions, we desribe the ordering and the symboli fatorizationalgorithms that preede the BSCF algorithm.3.4 Ordering the Sparse Symmetri Matrix for Bidiretional FatorizationA good initial ordering of a sparse matrix A is ruial to the eÆient solution of thesparse symmetri system Ax = b. The basi aim of the ordering phase is to reorderthe olumns of the oeÆient matrix in suh a manner that during the fatorizationphase, the amount of �ll-in is minimized and the degree of parallelism is maximized.In a parallel environment, the former aim is not as important as the latter aim sinelarge amounts of memory are available very heaply.Sparse symmetri matries hiey arise from k � k regular grids that are enoun-tered in �nite element problems. The prinipal ordering heuristi used for reorderingthe matries obtained from the regular grid problems is the popular nested disse-tion ordering method [13, 10℄. The nested dissetion ordering yields short and wideelimination trees that are well suited for parallel fatorization algorithms. For regular59



Cholesky fatorization, this ordering tehnique satis�es the riteria of both low �ll-inand short and wide elimination trees. However, the nested dissetion ordering in itsexisting form is not suited for the BSCF algorithm due to reasons given below. Reallthat in setion 3.2.2 we de�ned the onepts of forward elimination tree and bakwardelimination tree for the BSCF algorithm. The degree of parallelism while fatorizingin forward diretion depends on the shape of the forward elimination tree and that forfatorizing in bakward diretion depends on the shape of the bakward eliminationtree. An ideal ordering for the BSCF algorithm is one in whih both the eliminationtrees are as short and wide as possible. The forward elimination tree obtained fromnested dissetion algorithm is short and wide and hene desirable for parallel fatoriza-tion. On the other hand the bakward elimination tree obtained from nested dissetionalgorithm is lean and tall and hene undesirable for parallel fatorization.In the remaining part of this setion, with the help of an example of a 7� 7 grid,we show why the regular nested dissetion algorithm is not suited for BSCF algorithmand then we desribe how it an be modi�ed to yield orderings suitable for the BSCFalgorithm.The nested dissetion algorithm begins by reursively dividing a k � k grid into twodisjoint parts using a set of nodes as separator nodes and applying the nested dissetionalgorithm again to the two separated halves. Figure 3.5 shows the manner in whih theseparators (S1 to S15) divide a 7 � 7 grid. The reursive division of the grid yields atree struture of separators and nodes as shown in �gure 3.6. We all this tree a nesteddissetion tree. The internal nodes of the tree are separator bloks and the leaves ofthe tree are bloks of node(s) at lowermost level whih annot be further sub-dividedusing nested dissetion. The dimension of suh bloks an be 1 � 1, 1 � 2, 2 � 1 or2� 2. Suh indivisible bloks are alled leaf bloks.In regular nested dissetion ordering, all the grid points at the leaf bloks(say atlevel 0) are numbered in asending order. Then the separator grid points at level 1are numbered, then level 2 and so on until the grid points at the root separator bloksget numbered. The ordering resulting from this sheme is shown in �gure 3.7 andthe forward and bakward elimination trees resulting from this ordering are shownin �gure 3.8. As seen from �gure 3.8, although the forward tree is short and wide,60
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whih alloates memory and sets up the appropriate data strutures prior to the BSCFalgorithm.3.5 The Bidiretional Symboli Fatorization AlgorithmThe prinipal aim of the symboli fatorization phase is to determine apriori, the datastruture of the fator matries that result from the numerial fatorization phase. Asseen in setion 3.2, the BSCF algorithm reates a series of trapezoidal fator matries ofmultipliers. Hene, the bidiretional symboli fatorization algorithm, whih preedesthe BSCF phase, does the following.� It determines the struture of eah trapezoidal fator matrix at eah of the logNstages and� It initializes the data strutures for the sets F (s)i and B(s)i whih are requiredduring the BSCF algorithm.We de�ne Colstrut(Ax0; i) to denote the set of row indies of nonzeros in thesub-diagonal part of olumn i in the forward matrix Ax0.Colstrut(Ax0; i) = fj j j > i and Ax0[j; i℄ 6= 0g :In a similar fashion, we de�ne Colstrut0(Ax1; i) to denote the set of row indies ofnonzeros in the super-diagonal part of olumn i of the bakward matrix Ax1.Colstrut0(Ax1; i) = fj j j < i and Ax1[j; i℄ 6= 0g :We now desribe the bidiretional symboli fatorization algorithm.Algorithm 4 (*The bidiretional symboli fatorization algorithm*)beginfor s := 1 to logN dofor ol := 1 to N doF (s)ol := �;B(s)ol := �;for s := 1 to logN dofor ol := 1 to N do 66



Forward SF(ol,s);for ol := N downto 1 doBakward SF(ol,s);endproedure Forward SF(ol,s)beginLet Ax0 be the forward sub-matrix that ontains olumn ol at stage s;if ol belongs to the �rst half of Ax0 thenCalulate fparent(ol; Ax0) using de�nition given in setion 3.2.2;if fparent(ol; Ax0) belongs to the �rst half of Ax0 thenColstrut(Ax0; fparent(ol; Ax0)) :=Colstrut(Ax0; fparent(ol; Ax0) [ Colstrut(Ax0; ol);for all j suh that j belongs to seond half of Ax0 and Ax0[ol; j℄ 6= 0 doColstrut(Ax0; j) := Colstrut(Ax0; j) [ Colstrut(Ax0; ol);for all j suh that j 2 Colstrut(Ax0; ol) doF (s)j := F (s)j [ folg;elseColstrut(Ax00; ol) := Colstrut(Ax0; ol);for all j 2 Colstrut(Ax0; ol) doColstrut0(Ax01; j) := Colstrut0(Ax01; j) [ folg;endproedure Bakward SF(ol,s)beginLet Ax1 be the bakward sub-matrix that ontains olumn ol at stage s;if ol belongs to the seond half of Ax1 thenCalulate bparent(ol; Ax1) using de�nition given in setion 3.2.2;if bparent(ol; Ax1) belongs to the seond half of Ax1 thenColstrut0(Ax1; fparent(ol; Ax1)) :=Colstrut0(Ax1; fparent(ol; Ax1) [ Colstrut0(Ax1; ol);67



for all j suh that j belongs to �rst half of Ax1 and Ax1[ol; j℄ 6= 0 doColstrut0(Ax1; j) := Colstrut0(Ax1; j) [ Colstrut0(Ax1; ol);for all j suh that j 2 Colstrut0(Ax1; ol) doB(s)j := B(s)j [ folg;elsefor all j 2 Colstrut0(Ax1; ol) doColstrut(Ax10; j) := Colstrut(Ax10; j) [ folg;Colstrut0(Ax11; ol) := Colstrut0(Ax1; ol);endThe bidiretional symboli fatorization algorithm desribed above has time om-plexity proportional to the number of nonzero elements stored in trapezoids at eahstage. Sine the symboli fatorization algorithm is exeuted only one while solv-ing for multiple b-vetors and also sine this phase takes signi�antly lower time thanthe numerial fatorization phase, parallelizing this phase does not yield signi�antimprovements in the overall performane.For the ase of regular symboli fatorization, parallel algorithms have been de-sribed in [16, 28℄. While the former sheme by George et.al. requires the informationabout the elimination tree struture apriori, the latter sheme by P. S. Kumar et.al.does not require this information and uses the onept of false elimination trees (fet)to ompute the symboli fatorization. More spei�ally, the omputation begins withthe leaves of the false elimination tree whih pass their olumn struture informationto their true parents. Eah internal node then ombines the olumn strutures of all itshildren with its own olumn struture, omputes the true parent and sends its olumnstruture information to its true parent. This proess ontinues till all the informationpropagates to the root node.We have developed a parallel bidiretional symboli fatorization algorithm basedon a similar onept of forward and bakward false elimination trees.� ffparent(i; s) denotes the false forward parent of a olumn i in the sub-matrix
68



Ax0 being fatorized in the forward diretion at stage s.ffparent(i; s) = min fj j j 2 �rst half of Ax0 and j 2 Colstrut(Ax0; i)g :� fbparent(i; s) denotes the false bakward parent of a olumn i in the sub-matrixAx1 being fatorized in the bakward diretion at stage s.fbparent(i; s) = max fj j j 2 seond half of Ax1 and j 2 Colstrut0(Ax1; i)g :The details of this algorithm are desribed below.Algorithm 5 (*The parallel bidiretional symboli fatorization*)beginfor s := 1 to logN doparbeginForward SF(Listmyid,s);Bakward SF(Listmyid,s);parendend.proedure Forward SF(List,s)beginfor eah i 2 List doLet Ax0 be the forward sub-matrix to whih olumn i belongs at stage s;dummy parent := last node of sub-matrix Ax0;Determine the false forward parent ffparent(i; s);send ffparent(i; s) to proessor ontaining dummy parent;if i = dummy parent thenreeive ffparent(j; s) from eah olumn j;broadast forward fet Tff onstruted from reeivedffparent information;reeive forward fet Tff broadast from dummy parent;Let the hildren of olumn i in Tff be CHLD(i);(*initialise the expeted and aumulated weights for node i*)69



exp wt(i) :=j CHLD(i) j; a wt(i) := 0;first(i):=true;if olumn i is a true leaf of Tff and olumn i is in�rst half of sub-matrix Ax0 thensend Colstrut(Ax0; i) to ffparent(i; s) with weight 1;send Colstrut(Ax0; i) with weight 0 to all nodes j in seond half ofAx0 suh that j 2 Colstrut(Ax0; i) ;repeatreeive a message S intended for olumn i;Let the message be from proessor storing olumn j with weight w;if olumn i is in �rst half of sub-matrix Ax0 thenase type of Sattah or ordinary:Colstrut(Ax0; i) := Colstrut(Ax0; i) [ Colstrut(Ax0; j);a wt := a wt+ w;if j 2 CHLD(i) then delete j from CHLD(i);if (j CHLD(i) = 0 j) and (a wt(i) � exp wt(i)) thenffparent(i; s) := k where k = min(Colstrut(Ax0; i));if ffparent(i) has hanged thensend a detah message to old parent;if first(i) thenwt := a wt(i)� exp wt(i) + 1;exp wt(i) := 0;first(i) :=false;elsewt := w;send Colstrut(Ax0; i) to ffparent(i) with weight wt;send Colstrut(Ax0; i) to all nodes j in seond half of Ax0suh that j 2 Colstrut(Ax0; i) with weight 0;detah :delete j from CHLD(i);70



elsease type of Sattah or ordinary:if j 2 Colstrut(Ax0; i) thenColstrut(Ax0; i) := Colstrut(Ax0; i) [ Colstrut(Ax0; j);detah:if i = dummy parent thendelete j from CHLD(i);if (j CHLD(i) = 0 j) thenbroadast forward phase over message;until S is forward phase over message;for eah i 2 List doif olumn i is in seond half of sub-matrix thenColstrut(Ax00; i) := Colstrut(Ax0; i);for all j suh that Ax0[j; i℄ 6= 0 doColstrut0(Ax01; j) := Colstrut(Ax01; j) [ i;endproedure Bakward SF(List,s)beginfor eah i 2 List doLet Ax1 be the bakward sub-matrix to whih olumn i belongs at stage s;dummy parent := last node of sub-matrix Ax1;Determine the false bakward parent fbparent(i; s);send fbparent(i; s) to proessor ontaining dummy parent;if i = dummy parent thenreeive fbparent(j; s) from eah olumn j;broadast bakward fet Tfb onstruted from reeivedfbparent information;reeive bakward fet Tfb broadast from dummy parent;Let the hildren of olumn i in Tfb be CHLD(i);71



exp wt(i) :=j CHLD(i) j; a wt(i) := 0;first(i):=true;if olumn i is a true leaf of Tfb and olumn i is in seond halfof sub-matrix Ax1 thensend Colstrut0(Ax1; i) to fbparent(i; s) with weight 1;send Colstrut0(Ax1; i) with weight 0 to all nodes j in �rst halfof sub-matrix Ax1 suh that j 2 Colstrut0(Ax1; i) ;repeatreeive a message S intended for olumn i;Let the message be from proessor storing olumn j with weight w;if olumn i is in seond half of sub-matrix Ax1 thenase type of Sattah or ordinary:Colstrut0(Ax1; i) := Colstrut0(Ax1; i) [ Colstrut0(Ax1; j);a wt := a wt+ w;if j 2 CHLD(i) then delete j from CHLD(i);if (j CHLD(i) = 0 j) and (a wt(i) � exp wt(i)) thenfbparent(i; s) := k where k = max(Colstrut0(Ax1; i));if fbparent(i) has hanged thensend a detah message to old parent;if first(i) thenwt := a wt(i)� exp wt(i) + 1;exp wt(i) := 0;first(i) :=false;elsewt := w;send Colstrut0(Ax1; i) to fbparent(i) with weight wt;send Colstrut0(Ax1; i) to all nodes j in �rst half of sub-matrixsuh that j 2 Colstrut0(Ax1; i) with weight 0;detah :delete j from CHLD(i);72



elsease type of Sattah or ordinary:if j 2 Colstrut0(Ax1; i) thenColstrut0(Ax1; i) := Colstrut0(Ax1; i) [ Colstrut0(Ax1; j);detah:if i = dummy parent thendelete j from CHLD(i);if (j CHLD(i) = 0 j) thenbroadast bakward phase over message;until S is bakward phase over message;for eah i 2 List doif olumn i is in �rst half of sub-matrix thenfor all j suh that Ax1[j; i℄ 6= 0 doColstrut(Ax10; j) := Colstrut0(Ax10; j) [ i;Colstrut0(Ax11; i) := Colstrut0(Ax1; i);end3.6 Experimental Results and Performane AnalysisTo evaluate the performane of the entire bidiretional sheme presented in this work,we implemented a hyperube simulator in C language and ompared the speedupsobtained from the bidiretional sheme with those obtained from the regular sheme.We used SPARC Classi mahine to arry out our simulations.In the bidiretional sheme, we implemented eah of the four phases as follows.� Ordering : The bidiretional nested dissetion ordering desribed in setion 3.4.� Symboli fatorization : The sequential bidiretional symboli fatorization al-gorithm desribed in setion 3.5.� Numerial fatorization : The parallel BSCF algorithm desribed in setion 3.2.� Substitution :The parallel BS algorithm desribed in setion 3.3.73



In the regular sheme, we implemented eah of the four phases as follows.� Ordering : The regular nested dissetion algorithm for ordering a k � k grid.� Symboli fatorization : The sequential symboli fatorization algorithm pre-sented in [16℄.� Numerial fatorization : The parallel fan-in algorithm given in [4℄.� Substitution :The elimination tree based forward and bak substitution algo-rithms given in [29℄.Mapping of olumns onto proessors is an important issue. For the bidiretionalsheme, we have used the blok wrap around mapping using gray ode whereas forthe regular algorithm we have used the subtree-to-proessor mapping [17℄ based onelimination tree.The parameters that were varied were the grid size k(16 and 32), the numberof proessors p(1 to 1024), the number of b-vetors for whih solution vetor x wasobtained, and the C=E ratio i.e., the ratio of time for ommuniating a oating pointdata between two neighbouring proessors to the time for a oating point operation(50and 100). Figures 3.12, 3.13, 3.14, and 3.15 show the omparison of the measuredspeedups of the two shemes for various values of the above parameters.As mentioned earlier in setion 3.1, the �rst three phases, namely ordering, sym-boli fatorization, and numerial fatorization, are exeuted only one and the substi-tution phase is repeatedly exeuted for eah one of the di�erent b-vetors.The outputof the fatorization phase of the bidiretional algorithm is a series of trapezoidal fatormatries whereas the output of the regular fatorization algorithm is the pair of lowerand upper triangular fator matries. As a result, the inputs to the substitution phaseof bidiretional and regular algorithms also di�er. For separate omparison of the twophases of bidiretional and regular algorithms, we have onsidered a pseudo-speedupratio for the bidiretional algorithm. This is a ratio of the time taken by the best se-quential regular algorithm for the fatorization (substitution) phase to the time takenby the parallel bidiretional algorithm for the fatorization (substitution) phase.Therefore �gures 3.12(a), 3.13(a), 3.14(a), and 3.15(a) ompare the pseudo-speedupof the bidiretional algorithm with the speedup of the regular algorithm for the �rst74



0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fatorization

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution
1.5

2

2.5

3

10 20 30 40 50 60 70

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

() solving multiple b-vetors with 8 proessorsFigure 3.12: Speedups obtained for bidiretional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 50 75



0

.2

.4

.6

.8

1

1.2

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fatorization

0

.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

20 30 40 50 60 70 80 90 100

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

() solving multiple b-vetors with 8 proessorsFigure 3.13: Speedups obtained for bidiretional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 10076



0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fatorization
2

4

6

8

10

12

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

() solving multiple b-vetors with 8 proessorsFigure 3.14: Speedups obtained for bidiretional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 5077



0

.2

.4

.6

.8

1

1.2

1.4

1.6

1.8

2

1 4 16 64 256 1024

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fatorization

1

2

3

4

5

6

7

8

9

1 4 16 64 256 1024

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1

1.5

2

2.5

3

3.5

4

4.5

5

20 40 60 80 100 120 140 160 180

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

() solving multiple b-vetors with 16 proessorsFigure 3.15: Speedups obtained for bidiretional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 10078



three phases put together. The �gures 3.12(b), 3.13(b), 3.14(b), and 3.15(b) omparethe pseudo-speedup of the bidiretional algorithm with the speedup of the regularalgorithm for the substitution phase alone. Figures 3.12(), 3.13(), 3.14(), and 3.15()plot the atual speedups of bidiretional and regular algorithms for all the four phasesput together versus the number of b-vetors for whih substitution phase is repeatedlyexeuted. In �gure 3.12(), this omparison has been shown for the ase when p = 8and k = 16 (or N = 256) sine, for k = 16, bidiretional fatorization phase givesmaximum speedup at p = 8. Similarly, in �gure 3.13() p = 8 and k = 16, in �gure3.14() p = 32 and k = 32, and in �gure 3.15() p = 16 and k = 32 (or N = 1024).These �gures learly indiate that with inreasing number of b-vetors, the speedupobtained from our bidiretional sheme beomes higher than that obtained from theregular sheme. On inreasing the problem size from k = 16 to 32, we observe thatthe magnitude of speedup obtained also inreases. Inreasing the C=E ratio auses aderease in the magnitude of speedup obtained.3.7 ConlusionsIn this hapter, we have proposed a new bidiretional algorithm for diret solutionof sparse symmetri system of linear equations. This sheme generates a series oftrapezoidal fator matries during the fatorization phase due to whih the substi-tution phase has only one forward substitution omponent and, unlike the regularsubstitution algorithms, it does not possess a bak substitution omponent. Thus thebidiretional algorithm is well suited for situations where the system of equations hasto be solved for multiple b-vetors. We have demonstrated the e�etiveness of thebidiretional algorithm by omparing it with the regular methods for solving sparsesymmetri systems. Further work is possible in the diretion of inreasing the amountof parallelism in the fatorization and substitution phases of the bidiretional algorith-m. In this work, we have onsidered a situation where omputations on a partiularolumn, say i, for both forward and bakward fatorizations are handled by the sameproessor. However, the omputations for forward and bakward fatorizations areindependent of eah other (i.e., onurrent) at every stage s. Same is the ase withthe omputations on a olumn i in substitution phase. This onurreny has not been79



suÆiently exploited in the present work. In plae of using p proessors, we an use 2pproessors, suh that two proessors are responsible for omputations on eah olumn- one handling omputations related to forward fatorization and the other related tobakward fatorization. Developing suh a sheme is an open problem.
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Chapter 4
A New Algorithm for Diret Solution ofGeneral Sparse Linear Systems4.1 IntrodutionIn this hapter, we onsider the problem of solving general sparse system of linearequations of the form Ax = b, where the oeÆient matrix A has a general struture(i.e., A an be either symmetri or non-symmetri in nature), and is of dimensionN � N , and x and b are N -vetors. Suh equations arise in various appliationssuh as strutural engineering, hemial engineering, uid ow problems and nulearphysis. As with the sparse symmetri oeÆient matrix ase, the traditional proessfor obtaining diret solution of a general sparse system of linear equations, Ax = b,involves the following four distint phases.� Ordering : Apply an appropriate symmetri permutation matrix P suh thatthe new system is of the form (PAP T )(Px) = (Pb).� Symboli fatorization : Set up the appropriate data strutures for the numerialfatorization phase.� Numerial fatorization : Fatorize the oeÆient matrix A to the form A = LU ,where L is a lower triangular matrix and U is an upper triangular matrix.� Substitution : Determine the solution vetor x by �rst solving the forward trian-gular system Ly = b and then solving the bakward triangular system Ux = y.For solution of multiple b-vetors, the �rst three phases are arried out only onefollowing whih the substitution phase is repeated for eah b-vetor in order to obtaina di�erent solution vetor x in eah ase. Thus, in problems whih involve solution of81



multiple b-vetors, the time taken by repeated exeution of substitution phase dom-inates the overall solution time. Although eÆient parallel algorithms exist for thenumerial fatorization phase [5, 2, 44, 14, 11, 20, 30℄, not muh progress has beenmade in the ase of substitution phase [14, 22, 29℄ due to the limited amount of paral-lelism inherent in this phase.In this hapter we present a new bidiretional algorithm, based on LU fatorization,for the solution of general sparse system of linear equations. As in the sparse sym-metri ase, the numerial fatorization phase is arried out in suh a manner that theentire bak substitution omponent of the substitution phase is replaed by a singlestep division. However, due to absene of symmetry, important di�erenes arise inthe ordering tehnique, the symboli fatorization phase, and message passing duringnumerial fatorization phase. The bidiretional substitution phase for solving generalsparse systems is the same as that for sparse symmetri systems (see setion 3.3).It is known that for sparse non-symmetri problems, pivoting is neessary to en-sure numerial stability during numerial fatorization phase. In this work, however,we onsider the ase where bidiretional fatorization is done without pivoting so as tomaintain larity and onentrate more on other basi issues suh as exploiting parallelis-m and reduing ommuniation overheads. Existing work on bidiretional fatorizationalgorithm based on LU fatorization with partial pivoting for dense linear systems anbe found in [42℄.The rest of the hapter is organized as follows. In setion 4.2, we present thebidiretional sparse fatorization algorithm based on LU fatorization for general sparsematries. In setion 4.3, we develop a bidiretional heuristi algorithm whih produesa reordered oeÆient matrix suitable for numerial fatorization phase. In setion 4.4,we look at a symboli fatorization algorithm whih sets up data strutures required bythe numerial fatorization phase. In setion 4.5, we evaluate the performane of thebidiretional algorithm on hyperube multiproessors and present omparison of ouralgorithm with the existing sheme based on sparse LU fatorization. In setion 4.6,we onlude the work with some observations about possible future improvements tothe bidiretional sheme.
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4.2 The Bidiretional Sparse Fatorization (BSF) AlgorithmUnlike the regular LU fatorization algorithm whih fatorizes A to the form A = LU ,the BSF algorithm fatorizes A into a series of trapezoidal matries of multipliers. Thisseries of trapezoidal matries remove the need for the bak substitution omponent inthe substitution phase.In this setion, we �rst present an overall view of the onept of bidiretionalfatorization. We then proeed to desribe the manner in whih the sparsity of theoeÆient matrix an be exploited to obtain higher degree of parallelism. Followingthis we present the details of implementing BSF algorithm on multiproessor systems.4.2.1 Bidiretional Fatorization - The ConeptThe basi onept behind the bidiretional fatorization algorithm is the same as thatpresented in setion 3.2.1. For logN stages, we repeatedly halve the size of sub-matries through simultaneous fatorizations in both forward and bakward diretions(generating lower and upper trapezoidal fator matries in the proess) and double thenumber of sub-matries through opying at eah stage. Finally, we end up with Nsub-matries of order 1 � 1 (see �gure 3.1). Eah pivot olumn operation during theforward and bakward fatorization is the same as in LU fatorization. The substitutionphase (desribed earlier in setion 3.3) onsists of moving the b-vetor down the treeof trapezoids to produe N equations with one variable eah, whih are then solved bya single step division to produe the solution vetor x (see �gure 3.4).4.2.2 Exploiting the Sparsity of the CoeÆient Matrix AIn this setion we look at the notion of elimination tree and onsider as to how thisnotion abstrats the level of onurreny available during fatorization proess.In regular sparse LU fatorization, let F be the �lled matrix obtained after fator-izing the oeÆient matrix A. An elimination tree ontains a node orresponding toeah olumn of the oeÆient matrix. The parent of a node i is de�ned asparent(i) = min fj j j > i and F [i; j℄ 6= 0g :83



The elimination tree de�nes a partially ordered preedene relation whih determineswhen a ertain olumn an be used as pivot.Similarly, in BSF algorithm, we an de�ne the notions of forward elimination treeand bakward elimination tree. At some stage s 2 f1 � � � logNg, let Ax0 be a sub-matrixbeing fatorized in the forward diretion and Ax1 be a sub-matrix being fatorized inthe bakward diretion (x being a possibly empty string of 0's and 1's). Let Fx0 andFx1 be the respetive �lled sub-matries generated at the end this fatorization step.The forward parent of node i, is de�ned asfparent(i; Ax0) = min fj j j > i and Fx0[i; j℄ 6= 0g :Similarly, the bakward parent of node i, is de�ned asbparent(i; Ax1) = max fj j j < i and Fx1[i; j℄ 6= 0g :For ahieving a high degree of parallelism during fatorization phase, both theforward and the bakward elimination trees should be as short and wide as possible.This is the funtion of the ordering phase (desribed in setion 4.3).In the next subsetion, we examine the parallel implementation of BSF algorithmon multiproessors.4.2.3 Implementing the BSF Algorithm on MultiproessorsFor our present study, we onsider themedium grain model of parallelism in whih tasksperform oating point operations over nonzero elements of entire olumns of oeÆientmatrix. The following elementary tasks are onsidered for the BSF algorithm.� fdivide(i,s) divides by Ax0[i; i℄, every nonzero element of the sub-diagonal partof the ith olumn of sub-matrix Ax0.� bdivide(i,s) divides by Ax1[i; i℄, every nonzero element of the super-diagonal partof the ith olumn of sub-matrix Ax1.� fmodify(i,vetorj,s) subtrats an appropriate multiple of vetorj from the itholumn of a sub-matrix Ax0, at stage s 2 f1 � � � logNg. vetorj ontains the84



ontents of some olumn j of Ax0, whih modi�es olumn i diretly in forwarddiretion at stage s.� bmodify(i,vetorj,s) subtrats an appropriate multiple of vetorj from the itholumn of a sub-matrix Ax1, at stage s 2 f1 � � � logNg. vetorj ontains theontents of some olumn j of Ax1, whih modi�es olumn i diretly in bakwarddiretion at stage s.To keep trak of the olumns that eah pivot should modify at eah of the logNstages, we maintain the following data strutures.� F (s)i denotes the set of all olumns with indies smaller than i that modify theith olumn in the forward diretion at stage s.� B(s)i denotes the set of all olumns with indies greater than i that modify theith olumn in the bakward diretion at stage s.These data strutures are generated during the symboli fatorization phase. Thisphase is desribed in setion 4.4. In the remaining part of this setion, we desribethe implementation of BSF algorithm on a message passing multiproessor for the asewhere the number of proessors p is less than or equal to the order N of the oeÆientmatrix.In parallel fan-in BSCF algorithm (desribed in setion 3.2), the symmetri natureof oeÆient matrix is exploited to redue the ommuniation overheads. Multiplesof various olumns loated in the same proessor, whih modify a partiular olumn jloated in some other proessor, are added into a single message vetor whih is thensent over to the destination proessor. In parallel BSF algorithm, on the other hand,the absene of symmetry in the oeÆient matrix does not permit suh an optimization.Thus for every olumn i, whih modi�es olumn j in the forward (bakward) diretion(i.e., i belongs to the set F (s)j (B(s)j )), a separate message vetor ontaining olumn iis sent to the proessor storing olumn j.In algorithm 1 below, we inorporate the above idea in the BSF algorithm andpresent the fan-out BSF algorithm. The set Listmyid is the set of olumns stored inproessor Pmyid. If olumn i is to modify olumn j in forward diretion at stage s then,85



after performing fdivide(i; s) operation, the proessor whih stores the olumn i, sendsa message ontaining the ontents of olumn i to the proessor storing the olumn j.Similar mehanism operates for fatorization in bakward diretion.Algorithm 1 (*The parallel fan-out BSF algorithm for ase p � N*)beginfor s := 1 to logN doparbeginForward fatorize(Listmyid,s);Bakward fatorize(Listmyid,s);parendendproedure Forward fatorize(List,s)beginwhile List 6= � doif 9i 2 List suh that fvetorj has been reeived for all j 2 F (s)i thenLet olumn i belong to the forward sub-matrix Ax0 at stage s;for k := 0 to i� 1 doif k 2 F (s)i then fmodify(i; fvetorj; s);if olumn i belongs to the �rst half of sub-matrix Ax0 thenfdivide(i; s);for all j suh that i 2 F (s)j dofvetori := Ax0[�; i℄;send a message of the form (j,fvetori,s)to proessor storing olumn j;else if s < logN then(*opy olumn i of Ax0 to olumn i of Ax00 and Ax01*)Ax00[�; i℄ := Ax0[�; i℄;Ax01[�; i℄ := Ax0[�; i℄;List := List� i;if there is an inoming message then reeive and store the message;86



endproedure Bakward fatorize(List,s)beginwhile List 6= � doif 9i 2 List suh that bvetorj has been reeived for all j 2 B(s)i thenLet olumn i belong to the bakward sub-matrix Ax1 at stage s;for k := N � 1 downto i+ 1 doif k 2 B(s)i then bmodify(i; bvetorj; s);if olumn i belongs to the seond half of sub-matrix Ax1 thenbdivide(i; s);for all j suh that i 2 B(s)j dobvetori := Ax1[�; i℄;send a message of the form (j,bvetori,s)to proessor storing olumn j;else if s < logN then(*opy olumn i of Ax1 to olumn i of Ax10 and Ax11*)Ax10[�; i℄ := Ax1[�; i℄;Ax11[�; i℄ := Ax1[�; i℄;List := List� i;if there is an inoming message then reeive and store the message;endAs noted in setion 3.2.3, a speial situation arises when the number of proessorsp = 2d (as in hyperube multiproessors) and N = 2n (n; d 2 N ). Assume that wemap the equations on the proessors in a blok wrap manner (as shown in �gure 3.3).Thus eah proessor holds Np = 2n�d onseutive equations. At the end of d = log pstages of the fan-out BSF algorithm, eah proessor ontains an independent systemof Np equations. This independent system an be fatorized within a single proessorwithout any ommuniation with any other proessor. Sine, on a single proessor,regular sequential sparse LU fatorization performs more eÆiently than the fan-out87



BSF algorithm, we an swith over to this regular sequential version after log p stagesand fatorize the oeÆient matrix (say Aind) of this independent system into theform Aind = LindUind. This results in enhaning the performane of the fan-out BSFalgorithm.4.3 Ordering the General Sparse Matrix for Bidiretional FatorizationAs noted earlier, the basi aim of the ordering phase is to reorder the olumns of theoeÆient matrix in suh a manner that during the fatorization phase, the amount of�ll-in is minimized and the degree of parallelism is maximized. The prinipal orderingtehnique used for reordering the general sparse matries for regular LU fatorizationalgorithms involves two stages. In the �rst stage, a �ll reduing ordering, suh asminimum degree ordering [12℄, is applied to the oeÆient matrix A. This is followedby appliation of Liu's sheme of elimination tree rotation [38, 39℄ whih auses aredution in the height of the elimination tree without a�eting the amount of �ll-inin the upper triangular fator U . The resulting elimination tree is more appropriatefor parallel LU fatorization.The ordering resulting from the above sheme is, however, not suited for the BSFalgorithm due to reasons given below. Reall that in setion 4.2.2 we de�ned the on-epts of forward elimination tree and bakward elimination tree for the BSF algorithm.The degree of parallelism while fatorizing in forward diretion depends on the shape ofthe forward elimination tree and that for fatorizing in bakward diretion depends onthe shape of the bakward elimination tree. An ideal ordering for the BSF algorithm isone in whih both the elimination trees are as short and wide as possible. The forwardelimination tree obtained from the above sheme is short and wide and hene desirablefor parallel fatorization. On the other hand the bakward elimination tree obtainedfrom the above sheme is lean and tall and hene undesirable for parallel fatorization.In the remaining part of this setion we desribe how the above sheme an beextended to yield ordering suitable for the BSF algorithm. We all the new heuristias the alternate stripe reordering method and it proeeds as follows. First we apply a�ll reduing ordering, suh as the minimum degree ordering, followed by Liu's heightreduing elimination tree rotation sheme to obtain a reordered matrix whose forward88
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stripe 1 stripe 2 stripe 3 stripe 41 2 3 4 5 6 7 8 9123456789 (b) 9 x 9 alternate stripe reordered matrix(a) 9 x 9 striped sparse matrixFigure 4.1: Ordering of a 9� 9 matrix using alternate stripe reordering.elimination tree has low height. Let the reordered matrix be A0. The following stepsof alternate stripe reordering method are applied to the matrix A0.� Step 1 : Stripe the matrix A0 into groups of olumns as shown in �gure 4.1.The grouping of olumns into stripes is done aording to the following riteria.Column i and olumn i+1 belong to the same stripe if A0[i; i+1℄ 6= 0. Otherwise,olumn i and olumn i + 1 belong to onseutive stripes.� Step 2 : Initialize upCount to 1 and downCount to N . Maintain an arraynewOrder of size N to store the new ordering.� Step 3 :For eah suessive olumn i of stripe 1 do{ newOrder[i℄ := upCount;{ upCount = upCount+ 1;For eah suessive olumn i0 of stripe 2 do89



{ newOrder[i0℄ := downCount;{ downCount = downCount� 1;� Step 3 : The above numbering method is repeated for eah suessive pair ofstripes i.e., olumns belonging to odd stripes are numbered by inrementingupCount and olumns belonging to even stripes are numbered by derementingdownCount.� Step 4 : The row i and olumn i of matrix A0 are numbered as row newOrder[i℄and olumn newOrder[i℄ in the �nal reordered matrix.A little thought reveals that the alternate stripe reordering method is a gener-alization of the bidiretional nested dissetion method desribed in setion 3.4. Thelatter method an be alternatively viewed as onsisting of two stages - (i) applying theregular nested dissetion method to the k � k grid followed by (ii) applying alternatestripe reordering to the matrix obtained from the �rst stage. It will be shown throughexperimental results at the end of this hapter that the new reordering sheme doesindeed yield reorderings better suited to parallel bidiretional fatorization than thesheme based on �ll-redution and elimination tree rotations alone.In the next setion we look at the bidiretional symboli fatorization algorithmwhih alloates memory and sets up the appropriate data strutures prior to the BSFalgorithm.4.4 The Bidiretional Symboli Fatorization AlgorithmThe bidiretional symboli fatorization algorithm, whih preedes the BSF phase, doesthe following.� It determines apriori, the struture of eah one of the �lled sub-matries, Fx, ateah of the logN stages and� It initializes the data strutures for the sets F (s)i and B(s)i whih are requiredduring the BSF algorithm.
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We de�ne Colstrut(Ax0; i) to denote the set of row indies of nonzeros in theolumn i of forward matrix Ax0.Colstrut(Ax0; i) = fj j Ax0[j; i℄ 6= 0g :In a similar fashion, we de�ne Colstrut0(Ax1; i) to denote the set of row indies ofnonzeros in the olumn i of the bakward matrix Ax1.Colstrut0(Ax1; i) = fj j Ax1[j; i℄ 6= 0g :We now desribe the bidiretional symboli fatorization algorithm.Algorithm 2 (*The bidiretional symboli fatorization algorithm*)beginfor s := 1 to logN dofor ol := 1 to N doF (s)ol := �;B(s)ol := �;for s := 1 to logN dofor ol := 1 to N doForward SF(ol,s);for ol := N downto 1 doBakward SF(ol,s);endproedure Forward SF(ol,s)beginLet Ax0 be the forward sub-matrix that ontains olumn ol at stage s;if ol belongs to the �rst half of Ax0 thenCalulate fparent(ol; Ax0) using de�nition given in setion 4.2.2;if fparent(ol; Ax0) belongs to the �rst half of Ax0 thenColstrut(Ax0; fparent(ol; Ax0)) :=Colstrut(Ax0; fparent(ol; Ax0) [ Colstrut(Ax0; ol);for all j suh that j belongs to seond half of Ax0 and Ax0[ol; j℄ 6= 0 doColstrut(Ax0; j) := Colstrut(Ax0; j) [ Colstrut(Ax0; ol);for all j suh that j 2 Colstrut(Ax0; ol) and j < ol do91



F (s)ol := F (s)ol [ fig;elseColstrut(Ax00; ol) := Colstrut(Ax0; ol);Colstrut0(Ax01; ol) := Colstrut(Ax0; ol);endproedure Bakward SF(ol,s)beginLet Ax1 be the bakward sub-matrix that ontains olumn ol at stage s;if ol belongs to the seond half of Ax1 thenCalulate bparent(ol; Ax1) using de�nition given in setion 4.2.2;if bparent(ol; Ax1) belongs to the seond half of Ax1 thenColstrut0(Ax1; fparent(ol; Ax1)) :=Colstrut0(Ax1; fparent(ol; Ax1) [ Colstrut0(Ax1; ol);for all j suh that j belongs to �rst half of Ax1 and Ax1[ol; j℄ 6= 0 doColstrut0(Ax1; j) := Colstrut0(Ax1; j) [ Colstrut0(Ax1; ol);for all j suh that j 2 Colstrut0(Ax1; ol) and j > ol doB(s)j := B(s)j [ folg;elseColstrut(Ax10; ol) := Colstrut0(Ax1; ol);Colstrut0(Ax11; ol) := Colstrut0(Ax1; ol);endThe bidiretional symboli fatorization algorithm desribed above has time om-plexity proportional to the number of nonzero elements stored in trapezoids at eahstage.4.5 Experimental Results and Performane AnalysisTo evaluate the performane of the entire bidiretional sheme presented in this work,we implemented a hyperube simulator in C language and ompared the speedups92



obtained from the bidiretional sheme with those obtained from the regular sheme.We used the SPARC Classi mahine to arry out our simulations.In the bidiretional sheme, we implemented eah of the four phases as follows.� Ordering : The alternate stripe reordering method desribed in setion 4.3.� Symboli fatorization : The sequential bidiretional symboli fatorization al-gorithm desribed in setion 4.4.� Numerial fatorization : The parallel fan-out BSF algorithm desribed in se-tion 4.2.� Substitution :The parallel BS algorithm desribed in setion 3.3.In the regular sheme, we implemented eah of the four phases as follows.� Ordering : The �ll reduing minimum degree ordering [12℄ followed by Liu'selimination tree rotation sheme [38℄.� Symboli fatorization : The sequential symboli fatorization algorithm pre-sented in [16℄.� Numerial fatorization : The parallel fan-out algorithm given in [4, 30℄.� Substitution :The elimination tree based forward and bak substitution algo-rithms given in [29℄.Mapping of olumns onto proessors is an important issue. For the bidiretionalsheme, we have used the blok wrap around mapping using gray ode whereas forthe regular algorithm we have used the subtree-to-proessor mapping [17℄ based onelimination tree.For the purpose of simulation we used three test matries, desribed in table 4.1,from the Harwell-Boeing Colletion. Due to memory onstraints, the maximum di-mension of the test matrix onsidered was 343� 343. The parameters that were variedwere the number of proessors p (1 to 128), the number of b-vetors for whih solutionvetor x was obtained, and the C=E ratio i.e., the ratio of time for ommuniatinga oating point data between two neighbouring proessors to the time for a oating93



Table 4.1: Matries from Harwell-Boeing olletionNumber of Number ofequations nonzeros in A Desription199 701 WILL199 : pattern of stress analysis matrix.216 876 GRE216A : unsymmetri matrix from Grenoble.343 1435 GRE343 : unsymmetri matrix from Grenoble.point operation (50 and 100). Figures 4.2, 4.3, and 4.4 show the omparison of themeasured speedups of the two shemes for various values of the above parameters.As mentioned earlier in setion 4.1, the �rst three phases, namely ordering, sym-boli fatorization, and numerial fatorization, are exeuted only one and the substi-tution phase is repeatedly exeuted for eah one of the di�erent b-vetors. The outputof the fatorization phase of the bidiretional algorithm is a series of trapezoidal fatormatries whereas the output of the regular fatorization algorithm is the pair of lowerand upper triangular fator matries. As a result, the inputs to the substitution phaseof bidiretional and regular algorithms also di�er. For separate omparison of the twophases of bidiretional and regular algorithms, we have onsidered a pseudo-speedupratio for the bidiretional algorithm. This is a ratio of the time taken by the best se-quential regular algorithm for the fatorization (substitution) phase to the time takenby the parallel bidiretional algorithm for the fatorization (substitution) phase.Therefore �gures 4.2(a), 4.2(d), 4.3(a), 4.3(d), 4.4(a), and 4.4(d) ompare thepseudo-speedup of the bidiretional algorithm with the speedup of the regular algo-rithm for the �rst three phases put together. The �gures 4.2(b), 4.2(e), 4.3(b), 4.3(e),4.4(b), and 4.4(e) ompare the pseudo-speedup of the bidiretional algorithm with thespeedup of the regular algorithm for the substitution phase alone. The �gures 4.2(),4.2(f), 4.3(), 4.3(f), 4.4(), and 4.4(f) plot the atual speedups of bidiretional andregular algorithms for all the four phases put together versus the number of b-vetorsfor whih substitution phase is repeatedly exeuted. In �gure 4.2(), this omparisonhas been shown for the ase when p = 16, N = 199, and C=E = 50 sine, for thisombination of parameters, bidiretional fatorization phase gives maximum speedupat p = 16. Same logi holds for �gures 4.2(f), 4.3(), 4.3(f), 4.4(), and 4.4(f). These94
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�gures learly indiate that with inreasing number of b-vetors, the speedup obtainedfrom our bidiretional sheme steadily beomes higher than that obtained from the reg-ular sheme. Inreasing the C=E ratio auses a derease in the magnitude of speedupobtained.Figures 4.5(a), (b), and () ompare the pseudo-speedup of the bidiretional fa-torization phase with two di�erent reorderings of eah of the oeÆient matries - oneobtained using the ASR heuristi proposed in setion 4.3 and the other obtained usingLiu's sheme [38℄. The graphs learly indiate that BSF algorithm gives higher speedupwhen the oeÆient matrix is reordered using the ASR heuristi rather than with Liu'ssheme.4.6 ConlusionsIn this hapter, we have proposed a new bidiretional algorithm for diret solution ofgeneral sparse system of linear equations. This sheme generates a series of trapezoidalfator matries during the fatorization phase due to whih the substitution phase hasonly one forward substitution omponent. Unlike the regular substitution algorithms,it does not possess a bak substitution omponent in the substitution phase. Thus thebidiretional algorithm is well suited for situations where the system of equations hasto be solved for multiple b-vetors. We have demonstrated the e�etiveness of the bidi-retional algorithm by omparing it with the regular methods for solving general sparsesystems. Further work is possible in the diretion of inorporating partial pivoting inthe present parallel bidiretional sheme. This will all for modi�ation of the bidire-tional symboli fatorization method sine, the struture of the �lled sub-matries ateah stage of fatorization will depend not only on the struture of oeÆient matrixA, but also on the row interhanges that our due to partial pivoting. Also, as inthe sparse symmetri ase, the amount of parallelism an be inreased by using 2pproessors, instead of p proessors, for handling the forward and bakward operationson separate proessors.
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Chapter 5
ConlusionsIn this thesis, we have addressed the problem of solving three important lasses ofsparse linear systems - (i) blok tridiagonal linear systems, (ii) sparse symmetri linearsystems, and (iii) general sparse linear systems. In the �rst lass, we have proposedan improved mapping of yli elimination (CE) algorithm onto hyperube multipro-essors whih ahieves desirable mapping through judiious use of the onept of datarepliation. For the seond and third lasses of problems, we have proposed new bidi-retional algorithms whih, due to the absene of bak-substitution omponent in thesubstitution phase, are very well suited for solving multiple b-vetor systems. Most ofthe existing parallel algorithms for solving sparse linear systems attempt to parallelizetheir good sequential ounterparts. This approah has not borne fruit, sine the basigoal of a good sequential algorithm i.e., minimizing the total operation ount, onitswith the basi goal of a good parallel algorithm, whih is maximizing the number ofonurrent sub-problems. By exploiting the higher degree of parallelism available inthe problem itself, the new algorithms proposed in our work ahieve better performanethan the traditional algorithms.5.1 SummaryIn hapter 2, we have proposed an improved mapping of the yli elimination algorithmfor the solution of the blok-tridiagonal linear systems onto hyperube multiproessors.Unlike the previous mapping shemes, our improved mapping uses the onept of datarepliation to ahieve only neighbouring proessor ommuniation at all stages of pro-essing. Our improved mapping sheme is shown to be e�etive by omparing it withthe existing mapping of the yli redution (CR) algorithm onto hyperubes usingboth analytial and simulation methods. The omparison shows that as the number of100



proessors inreases, our improved mapping steadily overtakes the existing mapping ofthe CR algorithm in terms of speedup. Two signi�ant features of our algorithm arethat, the omputational load is balaned among all proessors at all stages of the algo-rithm and seondly, muh of the ommuniation gets overlapped with the omputationgiving an overall better performane.In hapter 3, we have proposed a new bidiretional algorithm for the diret solu-tion of sparse symmetri system of linear equations. This sheme generates a series oftrapezoidal fator matries during the fatorization phase due to whih the substitutionphase has only one forward substitution omponent and, unlike the regular substitu-tion algorithms, it does not possess a bak-substitution omponent. For the numerialfatorization phase, we have proposed a fan-in bidiretional sparse Cholesky fatoriza-tion (BSCF) algorithm. For the substitution phase, we have proposed a bidiretionalsubstitution algorithm in whih the b-vetor gets modi�ed by the tree of trapezoidsprodued during the fatorization phase. For the ordering phase, we have proposeda bidiretional nested dissetion algorithm whih produes orderings suited to parallelfatorization using BSCF algorithm. Further, we have developed bidiretional symbolifatorization algorithm whih sets up the appropriate data strutures required duringthe BSCF algorithm.In hapter 4, we have addressed the problem of solving general sparse linear sys-tems using the bidiretional sheme. For the fatorization phase, we have developed afan-out bidiretional sparse fatorization (BSF) algorithm based on LU fatorization.The bidiretional algorithm for the substitution phase is the same as that for the s-parse symmetri ase. In the ordering phase, we have proposed an alternate stripesreordering algorithm whih produes orderings suited to parallel fatorization using B-SF algorithm. We have also developed a bidiretional symboli fatorization algorithmfor setting up the appropriate data strutures required during the BSF algorithm.In order to demonstrate the e�etiveness of the two bidiretional shemes presentedin hapters 3 and 4, we have onduted extensive simulation studies on the performaneof these algorithms on hyperube multiproessors. We have ompared the speedupsobtained from the entire bidiretional sheme for solving the sparse symmetri linearsystems with those obtained from the regular Cholesky fatorization based shemes.101



Similarly, we have ompared the speedups obtained from the entire bidiretional shemefor solving the general sparse linear systems with those obtained from the regular LUfatorization based shemes. The results indiate that, when solving for multiple b-vetors, the speedups obtained from the bidiretional shemes steadily overtake thoseobtained from the regular shemes, as the number of b-vetors for whih the system issolved inreases.5.2 Suggestions for Future WorkFurther work an be done in the following diretions.� In hapter 1, the degree of parallelism in the improved mapping of yli elimi-nation algorithm onto hyperube multiproessors an be ontrolled by swithingover to the sequential algorithm for solving blok-tridiagonal systems at a stageearlier than logN . Determining the optimal stage k, at whih this swithingshould our is an open problem.� In the bidiretional algorithms for solving sparse linear systems in hapters 3 and4, further onurreny an be exploited by assigning the omputation of forwardand bakward fatorization phases to separate proessors. This will mean usingtwie the number of proessors urrently being onsidered.� In hapter 4, the bidiretional algorithms presented for solving general sparselinear systems an be modi�ed to inlude pivoting whih is widely onsidered tobe ruial for ensuring the stability.
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