Header menu link for other important links
Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes
Sourav Ghosh, Ghosh S, Santhosh R, Jeniffer S, Jacob G, Nanaji K, Kollu P, Jeong S.K, Nirmala Grace A
Published in Nature Publishing Group
PMID: 31704953
Volume: 9
Issue: 1
With every moving day, the aspect that is going to be the most important for modern science and technology is the means to supply sufficient energy for all the scientific applications. As the resource of fossil fuel is draining out fast, an alternative is always required to satisfy the needs of the future world. Limited resources also force to innovate something that can utilise the resource more efficiently. This work is based on a simple synthesis route of biomass derived hard carbon and to exploring the possibility of using it as electrochemical supercapacitors. A cheap, eco-friendly and easily synthesized carbon material is utilized as electrode for electrochemical energy-storage. Four different hard carbons were synthesized from KOH activated banana stem (KHC), phosphoric acid treated banana stem derived carbons (PHC), corn-cob derived hard carbon (CHC) and potato starch derived hard carbons (SHC) and tested as supercapacitor electrodes. KOH-activated hard carbon has provided 479.23 F/g specific capacitance as calculated from its cycle voltammograms. A detailed analysis is done to correlate the results obtained with the material property. Overall, this work provides an in depth analysis of the science behind the components of an electrochemical energy-storage system as well as why the different characterization techniques are required to assess the quality and reliability of the material for electrochemical supercapacitor applications. © 2019, The Author(s).
About the journal
JournalScientific Reports
PublisherNature Publishing Group
Open AccessYes