
 Procedia Engineering   144  ( 2016 )  504 – 511 

1877-7058 © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICOVP 2015
doi: 10.1016/j.proeng.2016.05.033 

ScienceDirect
Available online at www.sciencedirect.com

12th International Conference on Vibration Problems, ICOVP 2015

Multivariate Extreme Value Distributions for Vector of

Non-stationary Gaussian Processes

Vighnesh Ambetkara,c, Ramakrishna Kuppab, Sayan Guptaa,∗
aDepartment of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India

bDepartment of Mechanical Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, 500 047, India
cDepartment of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

Abstract

The focus of this study is on estimating the multivariate extreme value distributions associated with a vector of mutually correlated

non-stationary Gaussian processes. This involves computing the joint crossing statistics of the vector processes by assuming the

crossings to be Poisson counting processes. A mathematical artifice is adopted to take into account the dependencies that exist

between the crossings of the processes. The crux in the formulation lies in the evaluation of a four-dimensional integral, which

can be computationally expensive. This difficulty is bypassed by using saddlepoint approximation to reduce the dimension of the

integral to be numerically computed to just two. The developments are illustrated through a numerical example and are validated

using Monte Carlo simulations.
c© 2016 The Authors. Published by Elsevier Ltd.
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1. Introduction

Time variant reliability analysis of structural systems is usually studied in the time invariant format by defining

the problem in terms of random variables that represent the extreme values of the response within a specified time

interval. The focus therefore is on estimating the extreme value distributions of the response. For structural systems

where the response constitutes a vector of correlated processes, estimates of the system reliability can be obtained

from the knowledge of the joint multivariate extreme value distributions of the vector processes.

The problem of extreme value distributions for a vector of stationary Gaussian processes was earlier studied in [1].

This involved approximating the multivariate counting process associated with the level crossings as a multivariate

Poisson random process. The successful development of the formulation required the evaluation of a six-dimensional

integral, which was shown to be reduced to a two dimensional one using simplifying operations. This double integral

was numerically evaluated and approximations for the multivariate extreme value distributions were obtained. Efforts

to extend this methodology for non-stationary vector Gaussian processes was not possible as the non-stationary nature
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of the processes did not afford reduction in the dimension of the integrals [2] and as a result, the analytical formulation

was not numerically viable. The present study byapsses these difficulties by taking advantage of the saddlepoint

approximation method [3] to bring about a reduction in the dimension of the integrals, making the analytical approach

for estimating the joint crossing statistics, computationally efficient even for non-stationary vector Gaussian processes.

2. Problem Statement

Consider {Xi(t)}ki=1
to be a vector of correlated non-stationary Gaussian random processes which are expressible in

the form,

Xi(t) = ei(t)Xis(t), (1)

where, Xis(t) is a stationary Gaussian random process and ei(t) is a deterministic envelope function, of the form

ei(t) = ai[exp(−bit) − exp(−cit)]. (2)

Here, the parameters bi and ci determine the shape of ei(t) and ai is a normalization factor such that max[ei(t)] = 1.0.

The components Xis(t) are assumed to be mutually correlated stationary Gaussian processes, whose spectral properties

are defined in terms of the power spectral density (PSD) matrix S(ω) or the covariance matrix R(τ). For each Xi(t), let

us define Ni(αi, 0, T ) to be the number of upcrossings of level αi in the time interval [0, T ] and Xmi = max0≤t≤T Xi(t) is

defined to be the maxima of Xi(t) in the time interval [0, T ]. For a given i, Ni(αi, 0, T ) and Xmi are random variables.

For scalar processes where Xi(t) are Gaussian, it has been shown that Xmi follows Gumbel distributions. The

problem of estimating the joint probability distribution function (PDF) of Xm = {Xmi}ki=1
, when {Xi(t)}ki=1

constitute

vector correlated stationary Gaussian processes has been discussed in [1]. For the sake of completion, the salient steps

of the formulation are explained in sections 3 and 4.

3. Level Upcrossings

As previously defined, {Ni(αi, 0, T )}ki=1
is assumed to be a vector of multivariate Poisson random variables. For

simplicity, let us consider the case of a bivariate process and define three mutually independent Poisson random vari-

ables U1,U2 and U3, and λ1, λ2 and λ3, respectively represent their respective parameters. Introducing the following

transformations,

N1(α1, 0, T ) = U1 + U3, (3)

N2(α2, 0, T ) = U2 + U3,

it can be shown that, N1(α1, 0, T ) and N2(α2, 0, T ) are Poisson random variables with parameters (λ1+λ3) and (λ2+λ3),

respectively. It can be further shown that λ3 is the covariance of N1(α1, 0, T ) and N2(α2, 0, T ). Based on this, we can

write

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1

0 1 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ1

λ2

λ3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈N1(α1, 0, T )〉
〈N2(α2, 0, T )〉

Cov [N1(α1, 0, T ),N2(α2, 0, T )]

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (4)

where, 〈·〉 denotes the mathematical expectation operator and Cov [·] denotes the covariance function. The expectation

of the counting process, 〈Ni(αi, 0, T )〉 can be computed by integrating the mean upcrossing intensity with respect to

time. The details of this can be found in section 5.

The covariance of N1 and N2 can be expressed as

Cov[N1,N2] = 〈N1(α1, 0, T )N2(α2, 0, T )〉 − 〈N1(α1, 0, T )〉〈N2(α2, 0, T )〉. (5)

The evaluation of joint expectation 〈N1(α1, 0, T )N2(α2, 0, T )〉 is central to this study since it involves evaluation of

four dimensional integration which can be computationally demanding. A detailed discussion about evaluation of

joint expectation is presented sections 6 and 7.
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4. Extreme value distribution

The bivariate PDF of level crossings can be derived using the corresponding characteristic function and is given by

[4]

P
[
(N1 = j)

⋂
(N2 = l)

]
= exp [−(λ1 + λ2 + λ3)]

min( j,l)∑
i=0

λ
( j−i)
1
λ(l−i)

2
λi

3

( j − i)!(l − i)!i!
. (6)

For the case of j = 0 and l = 0, we get

P
[
(N1 = 0)

⋂
(N2 = 0)

]
= exp [−(λ1 + λ2 + λ3)] . (7)

The above result can be generalized for the case of k > 2. The number of mutually independent Poisson random

variables required for any k is given by Ck
1
+Ck

2
, where Cn

r is the number of combinations of n random variables taken

r at a time. The joint distribution of the extreme values Xmi is related to the probability of the respective number of

level crossings of levels αi being zero and is given by the relation

P
[⋂

(Xmi ≤ αi)
]
= P

[⋂
{Ni(αi, 0, T ) = 0}

]
. (8)

Using Eqs. (7) and (8), the joint extreme value distribution can be given in terms of the parameters λi, i = (1, . . . , k) of

the independent Poisson random variables. Thus, for a k-dimensional vector of Gaussian random processes {Xi(t)}ki=1
,

the joint distribution is of the form

PXm (α1, . . . , αk) = exp

⎡⎢⎢⎢⎢⎢⎢⎣−
k(k+1)/2∑

i=1

λi

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

The marginal distribution of the extreme values can be derived from the joint distribution and is expressible as

PXm j
(α j) = PXm1

,...,Xmk
(∞, . . . , α j, . . . ,∞). (10)

The above formulation is applicable in general for any random processes irrespective of whether they are stationary

or Gaussian. The crux however lies in estimating the parameters λi, which from the property of Poisson random

variables are known to be equal to their mean. In the following section, we discuss how these parameters can be

estimated in general, and more specifically, when the processes are non-stationary and Gaussian.

5. Evaluation of mean upcrossings

As discussed in section 3, 〈N(α, 0, T )〉 represents the expected number of upcrossings for the given random process

corresponding to a level α in the interval [0, T ]. In general, for any non-stationary process, X(t), 〈N(α, 0, T )〉 is given

by,

〈N(α, 0, T )〉 =
T∫

0

ν+X(α, t)dt, (11)

where ν+X(α, t) is the upcrossing intensity corresponding to level α. ν+X(α, t) is evaluated by well-known Rice’s formula

[5, 6] as

ν+X(α, t) =

∞∫
0

ẋpX(t)Ẋ(t)(α, ẋ; t). dẋ (12)

The difficulty in estimating the upcrossing intensity using Eq. (12) is that the knowledge of the joint probability

density function (pdf) of the process and its instantaneous time derivative is in general not available. However, when

X(t) is Gaussian, X(t) and Ẋ(t) are independent and the joint pdf in Eq. (12) can be expressed as the product of
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their marginal pdf. This enables obtaining the closed form expressions for ν+X(α, t). For a zero mean non-stationary

Gaussian random process X(t) with variance σ2
X(t) and its time derivative Ẋ(t) with variance σ2

Ẋ
(t), the upcrossing

intensity for X(t) corresponding to level α is given by [7]

ν+X(α, t) =

√(
1 − ρ2

1
(t)

2π

)(σẊ(t)
σX(t)

)
exp

(
− α2

2σ2
X(t)

)[
φ(q(t)) + q(t)Φ(q(t))

]
, (13)

where,

ρ1(t)σX(t)σẊ(t) = 〈X(t)Ẋ(t)〉,

q(t) =
ρ1(t)√

1 − ρ2
1
(t)

(
α

σX(t)

)
.

and φ(·) and Φ(·) are the standard normal pdf and PDF respectively. ρ1(t) is the time-varying correlation coefficient

between the processes X(t) and Ẋ(t). Substituting Eq. (13) in Eq. (11), 〈N(α, 0, T )〉 can be obtained by numerical

integration.

6. Estimation of joint crossings

As discussed in section 3, the evaluation of the covariance term, and thus expectation of joint crossings is cen-

tral to the study of multivariate extreme value distributions. For the bivariate case, the joint expectation 〈N1N2〉,
corresponding to upcrossings of levels αi, is expressed as

〈N1N2〉 =
T∫

0

T∫
0

∞∫
0

∞∫
0

{
ẋ1 ẋ2 pX1X2 Ẋ1 Ẋ2

(α1, α2, ẋ1, ẋ2; t1, t2)

}
dẋ1dẋ2dt1dt2. (14)

Let the inner double integral in Eq. (14) be I(t1, t2). Assuming that the processes and their time derivatives are jointly

Gaussian and non-stationary, the joint pdf can be expressed as

pX1X2 Ẋ1 Ẋ2
(α1, α2, ẋ1, ẋ2; t1, t2) =

1

4π2
√

det(Δ)
exp

{
− 0.5

{
YTΔ−1Y

}}
, (15)

where, YT =
[
α1, α2, ẋ1, ẋ2

]T
and Δ(t1, t2) is the 4 × 4 covariance matrix. Here, det(·) denotes the determinant of

the square matrix Δ representing the covariance matrix and is a function of t1 and t2. Upon simplification, Eq. (15)

reduces to

pX1X2 Ẋ1 Ẋ2
(α1, α2, ẋ1, ẋ2; t1, t2) =

1

4π2
√

det(Δ)
exp

{
− 0.5

{
q1 + 2q2 ẋ1 + 2q3 ẋ2 + q4 ẋ2

1 + q5 ẋ2
2 + 2q6 ẋ1 ẋ2

}}
, (16)

where,

q1(t1, t2) = (J11α
2
1 + 2J12α1α2 + J22α

2
2),

q2(t1, t2) = (J13α1 + J23α2),

q3(t1, t2) = (J14α1 + J24α2),

q4(t1, t2) = J33,

q5(t1, t2) = J44,

q6(t1, t2) = J34.

Here, Ji j(t1, t2) are the elements of J(t1, t2) = Δ−1(t1, t2).
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7. Saddlepoint approximation

Analytical evaluation of the four dimensional integral in Eq. (14) is not possible and one needs to adopt approx-

imate numerical methods to evaluate 〈N1N2〉. One can use quadrature schemes and other related methods- however,

the computational costs associated can be quite high. The four dimensional integration required for computing 〈N1N2〉
can be partially simplified by using the symbolic manipulation discussed in [2]. However, this leads to I(t1, t2) being

expressed as a single integral, which implies that the four dimensional integral in Eq. (14) can now be written as a

triple integral. It turns out that the computational costs for this method are of the same order or more as that of Monte

Carlo simulations [2]. Instead, in this study, we adopt a multidimensional saddlepoint approximation to approximate

the inner double integral I(t1, t2) as follows [8, 9]:

I(t1, t2) =

∞∫
0

∞∫
0

{
ẋ1 ẋ2 pX1X2 Ẋ1 Ẋ2

(α1, α2, ẋ1, ẋ2; t1, t2)

}
dẋ1dẋ2

=
1

4π2
√

det(Δ)

∞∫
0

∞∫
0

f (ẋ1, ẋ2) exp[−λS (ẋ1, ẋ2)]dẋ1dẋ2

≈ 1

4π2
√

det(Δ)

(
2π

λ

) f (ẋ1
∗, ẋ2

∗)√
det(H(S )(ẋ1

∗, ẋ2
∗))

exp[−λS (ẋ1
∗, ẋ2

∗)],

(17)

where, (ẋ1
∗, ẋ2

∗) is the saddle point obtained as a solution of the equation, ∇S (ẋ1, ẋ2) = 0, where ∇ is the gradient

operator ∇ =
[
∂
∂ẋ1

∂
∂ẋ2

]T
; f (ẋ1, ẋ2) = ẋ1 ẋ2 ; λ = 0.5; S (ẋ1, ẋ2) = q1 + 2q2 ẋ1 + 2q3 ẋ2 + q4 ẋ1

2 + q5 ẋ2
2 + 2q6 ẋ1 ẋ2.

H(S )((ẋ1, ẋ2)) is the Hessian Matrix of S (ẋ1, ẋ2). This approximation is valid only when

det(H(S )(ẋ1
∗, ẋ2

∗)) > 0 (18)

where, det(H(S )(ẋ1, ẋ2)) = 4(q4q5 − q6
2). The outer double integral in Eq. (14) has to be carried out numerically.

Thus, using saddlepoint approximation, the four-dimensional integral in Eq. (14) can be simplified to a double integral

which can be numerically evaluated.

8. Numerical example

A numerical example is considered to illustrate the proposed analytical model. The effect of correlation of the

parent processes on the joint probability distribution function for the extremes is studied. The analytical results are

verified by comparing with those obtained from Monte Carlo simulations.

8.1. Problem description

Consider two zero mean, non-stationary Gaussian processes X1(t) and X2(t) defined by,

X1(t) = e1(t)X1s(t),

X2(t) = e2(t)X2s(t), (19)

where, ei(t) are the envelope functions, X1s(t) and X2s(t) are two zero mean, stationary Gaussian random processes.

The autocorrelation functions for the processes X1s(t) and X2s(t) are, respectively,

R11(τ) = S 1
2 exp

[
−ατ2

]
, (20)

R22(τ) = S 2
2 exp

[
−βτ2

]
, (21)

with α, β > 0. The corresponding auto-PSD functions are given by,

S11(ω) =
S 1

2

2
√
πα

exp

(
− ω

2

4α

)
, (22)

S22(ω) =
S 2

2

2
√
πβ

exp

(
− ω

2

4β

)
. (23)
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The cross-PSD S12(ω) is given by,

S12(ω) = c(ω)|S11(ω)S22(ω)|0.5 exp[iγ(ω)], (24)

where, γ(ω) is the phase spectrum and c(ω) is the coherence spectrum, which takes values in [0, 1]. In this example,

it is assumed that c(ω) has a constant value c for all ω and γ(ω) = ω/ψ, with ψ = 8, Clearly, if c = 0, X1(t) and

X2(t) are independent and if c = 1.0, they are fully coherent. Both S 1 and S 2 are assumed to be equal to
√

2. α and

β are taken to be 100 and 150 respectively. The envelope functions ei(t) is taken to be of the form given in Eq. (2).

For simplification, it is assumed that e1(t) = e2(t) = e(t). The parameters a, b and c, respectively, taken to be 2.0000,

0.0436 and 0.1918. The values for the parameters are selected such that the envelope function attains a maximum

value within the total duration. The total duration for both the processes X1(t) and X2(t) is assumed to be 40 seconds.

8.2. Results and Discussions

The spectral bandwidth parameters of the processes X1(t) and X2(t) are 0.6030 and 0.6032 respectively. The

threshold levels for the processes, α1 and α2 are normalized with respect to their standard deviations and are denoted

by x1 and x2 respectively.
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Fig. 1: Contours of PX1mX2m (x1, x2) for 1000 samples in MCS (a) c = 0.05; (b) c = 0.95 (the numbers on the figure

indicate probability levels).

The contour plots for bivariate extreme value distribution for c = 0.05 and c = 0.95 are shown in Fig. 1. The

analytical results are observed to show good agreement with those obtained from Monte Carlo Simulations, carried

out on 1000 samples, especially when the threshold levels are high. This can be explained by the fact that the

assumption of Poisson upcrossings is more accurate for high threshold levels.

A comparison of conditional distribution PX1m |X2m (x1|X2m = 3) with univariate probability distribution function

PX1m (x1), is shown in Fig. 2, three values of c. It can be concluded from this plot that the coherence between the

parent random processes is an important parameter in the conditional distribution function.

Using the knowledge of extreme value distribution, probability of failure can be evaluated as

Pf (x1, x2) = 1 − PX1mX2m (x1, x2). (25)

The contour plots of probability of failure for c = 0.50 obtained using MCS (dotted lines) and analytical method (solid

lines) are shown in Fig. 3. From these plots, it can be seen that lower the number of samples, less accurate are the

results for lower probability levels. For 1× 103 samples, results for probability levels less than 10−3 do not show good

agreement. Similarly for 1 × 104 samples, results show good agreement for the probability levels higher than 10−4.

Importantly, the limitation of this method pertains to the spectral bandwidth of the processes. As discussed in [2],

this formulation leads to better results when the bandwidth parameters of the processes lie in the interval [0.3, 0.7].
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Fig. 2: Comparison of conditional PDF PX1m |X2m (x1|X2 = 3) with univariate PDF PX1m (x1).
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(b) 1 × 104 samples in MCS
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Fig. 3: Contours of Pf (x1, x2) (the numbers on the figure indicate log10(Pf )).

9. Conclusions

An analytical method based on saddlepoint approximation has been developed for estimating the joint extreme

value distribution of a vector of correlated non-stationary Gaussian random processes. For lower threshold levels,

probability of failure estimated by analytical method is close to that using MCS. However for higher threshold levels,

more number of samples are required in MCS to accurately estimate the failure probability. Hence it can be concluded

that the proposed analytical method is computationally efficient and can be used to estimate the failure probability to

the desired order of accuracy by choosing appropriate number of levels.
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