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Abstract: A multiobjective optimization framework for optimal waste load allocation in rivers is proposed, considering �1� the total
treatment cost, �2� the equity among the waste dischargers, and �3� a comprehensive performance measure that reflects the dissolved
oxygen �DO� violation characteristics. This framework consists of an embedded river water quality simulator that has a gradually varied
flow module and a pollutant transport module, which simulates the transport process including reaction kinetics �in terms of biochemical
oxygen demand-DO�. The outer shell of the framework consists of the two nonseasonal, deterministic, multiobjective waste load alloca-
tion planning models, namely, cost-performance model and cost-equity-performance model. These models are solved using a powerful
and recently developed multiobjective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II. The
practical utility of the multiobjective framework in decision-making is illustrated through a realistic example of the Willamette River in
the state of Oregon.
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Introduction

Water quality protection along rivers involves water quality moni-
toring and assessment, establishing water quality goals, and con-
trolling pollutant discharges, so that an acceptable level of water
quality is maintained. The control of water quality in any river/
stream at various locations, requires the determination of the op-
timal pollutant removal levels at a number of point and nonpoint
source locations along the river �that would yield a satisfactory
water quality response� in a cost-effective, equitable, and efficient
manner �Burn 1987; Burn and Yulianti 2001�. This is known as
“optimal waste load allocation.”

Typical multiobjective optimal waste load allocation problems
address minimization of the total treatment cost and minimization
of the inequity among the pollutant dischargers, subject to con-
straints on satisfaction of a specified dissolved oxygen �DO� stan-
dard at all the check points located along the river �Brill et al.
1984; Srigiriraju 2000; Burn and Yulianti 2001�. Performance
measures such as number of DO violations, magnitude of maxi-
mum DO violation, and total magnitude of DO violations at the
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checkpoints can be expressed either as additional objectives or as
constraints in the optimization model. Burn and Lence �1992�
proposed four different optimization formulations of a general
waste load allocation model to evaluate efficient management
solutions. Two of these formulations were based on maximum
deviations from a specified DO standard and the other two on
total deviations from the same. Cardwell and Ellis �1993� pro-
posed a series of optimization models with the aim to minimize
the control cost and either the number of water quality standard
violations or some measure of the magnitude of violations. These
multiobjective models can be used to generate trade-offs between
cost and either frequency or magnitude of water quality standard
violations. Recently Burn and Yulianti �2001� have formulated
two planning models with treatment cost as one of the objectives,
and either total magnitude of DO violations or equity as the other
objective.

The number of objective functions to be handled will increase
to five if all three previously mentioned performance measures
are to be included in the cost-equity based optimal waste load
allocation model as separate objective functions, in order to en-
sure complete representation of the system. Obtaining the Pareto-
optimal solutions would become very difficult in such a case.
Also, analysis of the trade-off relationships among the various
objectives would become complicated. Therefore, it is useful to
derive a comprehensive performance measure that would include
�1� the number of DO violations, �2� the magnitude of maximum
DO violation, and �3� the total magnitude of DO violations. Also,
cost-equity formulations do not offer flexibility to the decision
maker in terms of allowing some prespecified violations if strict
adherence to a DO standard is included as a constraint in the
formulation. At times, the decision maker may wish to find out if
there are reasonable cost-equity trade-off solutions for a given
system, for a desired performance level that may be less than
100%. To the writers’ knowledge, no studies addressing the
above-mentioned issues have been reported in the literature.

The classical constraint method of multiobjective program-

ming �Cohon 1978� is used to solve the optimal waste load allo-
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cation problem in most of the earlier studies. This method has a
number of limitations �Deb 1995�. The optimization of a single
weighted objective function may guarantee a Pareto-optimal so-
lution but results in a single point solution. A new optimization
run has to be made each time the decision maker changes the
combinations of weightages. Also, these methods may not work
effectively if some of the objectives are noisy or have discontinu-
ous variable space. The most significant drawback of these algo-
rithms is their sensitivity toward weights.

The optimal treatment levels for a given set of pollutant
sources are affected by the assimilative capacity of the receiving
water body. Finding the optimal waste load allocation strategy
requires a simulation model for the prediction of the steady-state
water quality response in terms of DO at specified receptor loca-
tions along a river, for various possible combinations of waste
loadings. One of the most commonly used water quality simula-
tion models in waste load allocation planning studies is the
Streeter-Phelps equation �Streeter and Phelps 1925; Burn and
McBean 1985; Vasquez et al. 2000�. However, this model does
not consider the varying nature of flows and the effects due to
dispersive transport. In recent times, Carmichael and Strzepek
�2000�, Burn and Yulianti �2001�, and Maier et al. �2001� have
used the Enhanced Stream Water Quality Model, QUAL2E
�Brown and Barnwell 1987�. This model accounts for dispersive
transport, and seems to predict biochemical oxygen demand
�BOD�-DO response reasonably well in case of long uninter-
rupted river reaches. However, this model assumes the river flows
to be steady and quasi-uniform. Therefore, the backwater effects
caused due to tributary flows or due to the presence of a down-
stream control structure are not appropriately accounted for in this
model. This may lead to plausible differences in the waste load
allocation decision making.

In this work, a multiobjective optimization framework for op-
timal waste load allocation in rivers/streams is proposed. This
includes two waste load allocation optimization models: a cost-
performance model and a cost-equity-performance model. An
overall performance measure is proposed with regard to satisfying
a prespecified DO standard along the river. These waste load al-
location models use a water quality simulation model, which con-
siders the flow to be steady, but nonuniform. The simulation
model considers the advective, dispersive, and reactive transports
for BOD and DO. A powerful and recently developed multiobjec-
tive genetic algorithm technique known as Nondominated Sorting
Genetic Algorithm-II �NSGA-II� �Deb et al. 2000� is used for
solving the multiobjective optimization models. This algorithm
uses the crowding technique to ensure diversity among nondomi-
nated solutions. This method is computationally efficient and is
capable of finding a good spread of Pareto-optimal solutions �Deb
et al. 2000�. From the trade-off surfaces generated, the decision
maker can select the appropriate treatment strategy for the river
system under consideration.

Overall Performance Measure

An alternative overall performance measure for the water quality
of the system is proposed in this study. The proposed performance
measure is expressed as a weighted sum of the individual perfor-
mance measures with regard to the number of DO standard vio-
lations, magnitude of maximum DO standard violation and
magnitude of total DO standard violations, with respect to a
specified water quality standard, over all the checkpoints consid-

ered within the system. This overall performance measure can be
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computed for a given waste load allocation policy to be followed
in the river system. The three individual performance measures
are expressed as follows.
1. The performance measure in terms of number of violations,

EN is expressed as the ratio of the “difference between num-
ber of DO standard violations corresponding to no treatment,
N0 and that corresponding to actual treatment, Na” to the
“number of DO standard violations corresponding to no
treatment, N0.” That is

EN =
N0 − Na

N0
�1�

N0 = f1��Oj�0,Ostd� �2�

Na = f4��Oj�a,Ostd� �3�

where

Na = �
j=1

NC

�yj�a �4�

in which

�yj�a = �1 if Ostd � �Oj�a

0 if Ostd � �Oj�a
� " j �5�

and NC=number of checkpoints. The index �yj�a keeps the
count of DO standard violation at a checkpoint j �zero-one
integer variable�. Oj =dissolved oxygen concentration at the
checkpoint j, and subscripts 0 and a indicate the level of
treatment corresponding to no treatment and actual treat-
ment, respectively. Ostd=specified dissolved oxygen standard
for the river.

2. The performance measure in terms of magnitude of maxi-
mum violation, EV is expressed as the ratio of the “difference
between the magnitude of maximum DO standard violation
corresponding to no treatment and that corresponding to ac-
tual treatment” to the “magnitude of maximum DO standard
violation corresponding to no treatment.” That is

EV =
V0 − Va

V0
�6�

V0 = f2��Oj�0,Ostd� �7�

Va = f5��Oj�a,Ostd� �8�

where

Va = max
j

��S1�a,�S2�a, . . . ,�Sj�a� �9�

in which

�Sj�a = ��Ostd − �Oj�a� if Ostd � �Oj�a

0 if Ostd � �Oj�a
� " j �10�

In Eqs. �7�–�10�, V=magnitude of maximum DO standard
violation, with subscripts 0 and a, having the same meaning
as defined earlier.

3. The performance measure in terms of total magnitude of vio-
lations, ETS is expressed as the ratio of the “difference be-
tween magnitude of total DO standard violations correspond-
ing to no treatment and that corresponding to actual
treatment” to the “magnitude of total DO standard violations

corresponding to no treatment.” That is
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ETS =
TS0 − TSa

TS0
�11�

TS0 = f3��Oj�0,Ostd� �12�

TSa = f6��Oj�a,Ostd� �13�

TSa = �
j=1

NC

�Sj�a �14�

In Eqs. �11�–�14�, TS=magnitude of total DO standard vio-
lations, with subscripts j, 0, and a having the same meaning
as defined earlier.

The overall performance measure of a waste load allocation
policy �EWLA� is expressed as a weighted sum of the three indi-
vidual performance measures, EN, EV, and ETS, already defined.
That is

EWLA = �wNEN + wVEV + wTSETS� �15�

where wN, wV, and wTS=weights associated with the performance
measures corresponding to the number of violations of the DO
standard, the magnitude of maximum violation of the DO stan-
dard, and the magnitude of total violations of the DO standard,
respectively. These weights are to be assessed by the decision
maker for the particular case being studied.

Model Formulation

Two nonseasonal, deterministic, multiobjective waste load alloca-
tion planning models are formulated in this study, namely, a cost-
performance model and a cost-equity-performance model.

Cost-Performance Model

The proposed cost-performance optimal waste load allocation
model considers minimization of the total waste treatment cost
and maximization of the overall performance �given by Eq. �15��
of the water quality system. It will be appropriate to express the
performance of a water quality system for a given waste load
allocation policy in terms of the resulting water quality violation
characteristics against the specified water quality standards in that
system. Quite often, it may not be an economically worthwhile
proposition to implement a waste load allocation policy that
would strictly adhere to the DO standard at all checkpoints along
a river. This is relevant especially in stretches of rivers with lim-
ited assimilative capacity. In such cases, permitting a few viola-
tions may bring down the cost of treatment significantly. In such
situations, it is useful for the decision maker to find out effective
trade-offs between cost of treatment and overall performance.

The formulation of the proposed cost-performance optimiza-
tion model is as follows:

min Z1 = �
i=1

NS

ci�xi� �16�

max Z2 = EWLA �17�

subject to

xi � xsi " i �18�
EWLA = �wNEN + wVEV + wTSETS� �19�
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�Oj�a = f�xa,W,Q,T,K� " j �20�

in which xa=vector of waste removal levels corresponding to an
arbitrary treatment; ci�xi�=cost of the waste treatment at source i;
xi=waste removal fraction at source i; NS=number of point
source locations; xsi=set of all waste treatment options for source
i. In Eq. �20�, f�·� expresses the water quality as a function of the
waste inputs and stream conditions; W=vector of waste inputs to
the point sources; Q=vector of flow rates for main stream and
tributaries within the river system; T=water temperature; and
K=vector of reaction rate coefficients describing the pollutant
transport process.

In this model, the values of N0, V0, and TS0 have to be found
in advance by simulating the DO response corresponding to no
treatment level. The same should be used in the model while
evaluating the individual performance measures. However, it is to
be noted that the values of Na, Va, and TSa are determined
for a particular arbitrary treatment level during the process of
optimization.

Cost-Equity-Performance Model

In waste load allocation models, it is important to consider the
performance of the water quality system as an objective or a
constraint in the model formulation along with the two objectives
of minimization of total treatment cost and minimization of ineq-
uity among the waste dischargers. Ideally, generating the trade-off
surface between total treatment cost and inequity measure, subject
to a specified performance level, is of interest to decision makers
in the optimal waste load allocation problem. The decision-maker
may wish to find out if there are reasonable cost-equity trade-off
solutions for a given system, for a desired performance level that
may be less than 100%. This performance level can be prespeci-
fied as a lower limit through a constraint in the optimization
model. Therefore, the model formulation is as follows:

min Z1 = �
i=1

NS

ci�xi� �21�

min Z2 = �
i=1

NS � xi

x̄
−

Wi

W̄
� �22�

subject to

xi � xsi " i �23�

EWLA � ES �24�

�Oj�a = f�xa,W,Q,T,K� " j �25�

where EWLA=overall performance measure of a waste load allo-
cation policy given by Eq. �19�; x̄=average waste removal level
for the collection of NS number of point sources; Wi=waste input

for source i; W̄=average waste input over NS number of point
sources; and ES=water quality system performance specified by
the decision maker. f�·� in Eq. �25� defines the water quality as a
function of the waste inputs and stream conditions.

Framework for Multiobjective Optimization

The proposed optimal waste load allocation model framework is

shown in Fig. 1. It consists of the multiobjective optimization
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model, with the water quality simulation model embedded into it.
This framework can accommodate any one of the two optimiza-
tion model formulations proposed in this study.

The multiobjective evolutionary algorithm, “Nondominated
Sorting Genetic Algorithm-II �NSGA-II�” of Deb et al. �2000� is
used to generate the optimal trade-offs between the objectives.
Each of the alternative waste load allocation solutions generated
from the NSGA-II module is sent to the water quality simulator
�Fig. 1� and the predicted DO responses at all the checkpoint
locations are evaluated �against the DO standard specified�. Fol-
lowing this, the waste load allocation solution is sent to the
NSGA-II module for fitness function evaluation. After this, these
solutions are sorted according to the fast nondominated approach
to identify different levels of nondominated fronts. Subsequently
new populations are created using the Tournament selection op-
erator and crowded comparison operator. This process is repeated
until the specified stopping criterion is achieved and the final set

Fig. 1. Optimal waste lo
of nondominated solutions is stored in an output file.
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Nondominated Sorting Genetic Algorithm „NSGA-II…

As mentioned earlier, classical optimization techniques have cer-
tain drawbacks �Deb 1995�. In contrast, multiobjective evolution-
ary algorithms �MOEAs� are suitable for multiobjective optimi-
zation due to their ability to handle complex problems, involving
features such as discontinuities, multimodality, disjoint feasible
spaces and noisy function evaluations �Fonseca and Fleming
1995�. Genetic algorithms deal with a population of points and
hence multiple Pareto-optimal solutions can be captured from the
population in a single run. Moreover, the MOEA search proce-
dure is also algorithmically efficient �Deb et al. 2003�. Deb et al.
�2000� proposed a computationally fast elitist Nondominated
Sorting Genetic Algorithm-II �NSGA-II� to overcome the draw-
backs �such as high computational complexity of nondominated
sorting, lack of elitism and the need for specifying a sharing pa-
rameter� of the earlier nondominated sorting based MOEAs. This
algorithm uses: �1� a crowding approach for diversity preserva-

cation model framework
ad allo
tion, in which N� �as large as 2N, where N=population size�
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solutions are processed objective-wise; �2� an elitism operator
that helps in significantly speeding up the performance of the
genetic algorithm, and in preserving good nondominated solu-
tions; and �3� an objective-wise distance computation.

The steps of this algorithm are as follows �Deb et al. 2000�:
1. Create a random parent population �P0� of size N, initially.
2. Sort the random parent population based on nondomination.
3. For each nondominated solution, assign a fitness �rank� equal

to its nondomination level �1 is the best level, 2 is the next-
best level, and so on�.

4. Create a child population �Q0� of size N using binary tour-
nament selection, recombination, and mutation operators.

5. From the first generation onwards, creation of each new gen-
eration constitutes the following steps:
• Create the mating pool �Rt� of size 2N by combining the

parent population �Pt� and the child population �Qt�.
• Sort the combined population �Rt� according to the fast

nondominated sorting procedure �Deb et al. 2000� to
identify all nondominated fronts �F1 ,F2 , . . . ,Fl�.

• Generate the new parent population �Pt+1� of size N by
adding nondominated solutions starting from the first
ranked nondominated front �F1� and proceeding with the
subsequently ranked nondominated fronts �F2 ,F3 , . . . ,Fl�,
till the size exceeds N �Fig. 2�. This means that the total
count of the nondominated solutions from the fronts
F1 ,F2 , . . . ,Fl, exceeds the population size N. Now, in
order to make the total count of the nondominated solu-
tions equal to N, it is required to reject some of the lower
ranked nondominated solutions from the last �Flth� front.
This is achieved through a sorting done according to the
crowded comparison operator ��n� based on the crowd-
ing distance assigned to each solution contained in the
Flth nondominated front. Thus, the new parent population
�Pt+1� of size N is constructed.

• Perform the selection, crossover and mutation operations
on the newly generated parent population �Pt+1� to create
the new child population �Qt+1� of size N �Fig. 2�.

6. Repeat Step 5 until the maximum number of generations is
reached.

Water Quality Simulation Model

The water quality simulation model is used to model the physical
and biochemical processes that describe the transport of BOD and
DO in the river. This water quality simulation model consists of
two modules, namely, a flow module and a transport module. The
flow module is used to determine the gradually varied water sur-

Fig. 2. Schematic of NSGA-II algorithm
face profile, flow cross-sectional area and mean velocity at vari-
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ous nodes in the river domain, given: �1� The flow rates in the
main river and the tributaries; �2� the bed profile of the river; �3�
the geometric characteristics of the river cross sections; �4� the
Manning’s roughness coefficient; and �5� the control depth at the
downstream end. The classical standard step method �Chaudhry
1993� is used for this purpose.

The transport module uses the flow area and mean velocity
obtained from the flow module while solving the BOD and DO
transport equations, which are given as follows �Dresnack and
Dobbins 1968�:

��AB�
�t

=

�	AD
�B

�x



�x
−

��AUB�
�x

− KBBA +
SB

�x
+ LBA �26�

��AO�
�t

=

�	AD
�O

�x



�x
−

��AUO�
�x

− KDBA + KR�OSAT − O�A

+
SO

�x
+ RDA �27�

where A=flow cross-sectional area �m2�; U=cross-sectional aver-
age velocity �m/s�; x=distance along the river �m�; t=time �s�;
SB/O=point source for BOD/DO loading �mg/s�; B=biochemical
oxygen demand �BOD� concentration �mg/L�; O=dissolved oxy-
gen �DO� concentration �mg/L�; OSAT=saturation DO concentra-
tion �mg/L�; D=dispersion coefficient for BOD/DO transport
�m2/s�; KB=BOD decay rate �1/day�; KD=BOD deoxygenation
rate �1/day�; LB=BOD distributed source �mg/L/s�;
KR=re-aeration rate �1/day�; and RD=DO distributed source
�mg/L/s�.

In Eqs. �26� and �27�, the spatial variation of dispersion coef-
ficient D is determined using the Seo and Cheong �1998�
equation:

D = 5.915�hU*�	W

h

0.620	 U

U*

1.428

�28�

where h=flow depth �m�; W=channel width �m�; and U*=shear
velocity �m/s�. The re-aeration coefficient �KR� values are deter-
mined using O’Connor and Dobbins �1958� formula, given by

KR =
3.90U0.5

h1.5 �29�

The transport simulation model solves Eqs. �26� and �27� to de-
termine the BOD and DO variation with time and distance, given:
�1� Initial variation �at t=0� of BOD and DO along the stream; �2�
the time variation of BOD and DO at the upstream end �x=0�; �3�
dispersive coefficient, D; �4� reaction rates KB, KD, and KR; �5�
point and nonpoint source loading, SB, SO, LB, and RD; and �6� the
spatial variation of flow velocity, U, and the flow area, A. A
standard partial implicit finite-difference method, with spatial de-
rivative terms approximated by backward finite differences, is
used for numerically solving the transport equations. The pre-
dicted DO concentration values at all checkpoints are stored for
further use in the optimization model. The simulation model has
been validated using the experimental and analytical solutions
available in the literature �Hann and Young 1972; Adrian and
Alshawabkeh 1997; Ahmad et al. 1999�. Details of validation are
available in Murty �2003�, and are not presented here, for the sake

of brevity.
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Data for Example River System

In this study, the usefulness of the proposed multiobjective opti-
mal waste load allocation framework is illustrated through an
example application to the realistic case of Willamette river sys-
tem in the state of Oregon. Three of the state’s largest cities,
Portland, Salem, and Eugene, are located within this basin. The
line diagram shown in Fig. 3 indicates the locations of the seven-
teen waste discharge sites �D1,D2, . . . ,D17� and three tributaries
�T1, T2, and T3� along the Willamette river, considered in this
study. The hydraulic and the geometric characteristics of the river
system are presented in Table 1, based on the data given in the
reports of Tetra Tech �1993, 1995a,b�. The cross section of the
river is assumed to be wide rectangular throughout. The effluent
flow data at the 17 point sources and the flow from the three
tributaries are given in Table 2, as extracted from Tolson �2000�
and Tetra Tech �1995a�. For modeling purpose, in this study, these
17 pollutant discharging sources are effectively reduced to 14 in
number, by clubbing the sources 2 and 3, sources 8 and 9, and

Table 1. Flow and Geometric Data for the Willamette River System

Reach
Reach
index

Length
�km�

Width
�m�

C–D1 R1 15 129.5 0.

D1–T1 R2 4 137 0.

T1–D2/3 R3 45 107 0.

D2/3–D4 R4 26 102 0.

D4–D5 R5 20 126 0.

D5–D6 R6 4 152 0.

D6–T2 R7 14 183 0.

T2–D7 R8 47 243 0.

D7–D8/9 R9 45 183 0.

D8/9–D10 R10 18 190.5 0.

D10–D11 R11 9 305 0.

D11–D12 R12 9 211 0.

D12–D13 R13 2 122 0.

D13–D14 R14 2 274 0.

D14–T3 R15 2 274 0.

T3–D15/16 R16 6 305 0.

D15/16–D17 R17 3 457 0.

D17–M R18 29 396 0.

Fig. 3. Locations of waste load discharge site
Note: D1,D2, . . . ,D17=pollutant discharge sites; T1 ,T2 ,T3=tributaries; and C, M
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sources 15 and 16. This is because the chainage and the loading at
the two sources within each of the three pairs mentioned, are
found to be identical �refer to Table 1�. The initial background
concentrations of BOD and DO in the main river and in the tribu-
taries are assumed to be 1.5 and 9.1 mg/L, respectively, based on
the report by Tetra Tech �1993�. For point sources, the DO is
assumed to be 2.0 mg/L. The deoxygenation coefficient is as-
sumed to be 0.30/day based on information from Tetra Tech re-
ports. The estimation of the reaeration coefficient is obtained
using the O’Connor and Dobbins �1958� equation, based on the
finding reported in Tetra Tech �1995a�. The dispersion coefficient
is calculated using Seo and Cheong �1998� equation. Sixty check-
points �C1,C2 , . . . ,C60� are considered along the 300 km length
of the river system in a well distributed manner. The wastewater
treatment plant cost data for the average influent flow rate for
different point sources are given in Table 3 �constructed based on
the data given in Lence et al. 1990�. For the numerical simulation
of the transport of pollutant, spatial step, �X=250 m and tempo-

Flow
�m3/s�

Flow
depth
�m�

Velocity
�m/s�

C/S area
�m2�

87.73 1.084 0.625 140.477

88.85 0.925 0.679 130.808

154.74 0.865 0.980 157.824

155.47 1.608 0.951 163.503

155.74 2.523 0.518 300.808

155.96 1.278 0.801 194.827

156.31 1.037 0.824 189.767

223.62 0.979 0.940 238.017

3 224.97 5.820 0.209 1,077.642

3 225.62 6.693 0.179 1,263.235

3 225.70 4.486 0.164 1,379.396

3 225.74 1.572 0.682 331.201

3 226.21 6.956 0.267 848.423

9 226.54 6.325 0.131 1,735.098

9 226.80 6.327 0.131 1,735.698

9 259.16 7.844 0.108 2,390.750

9 262.04 5.251 0.109 2,400.676

9 262.36 8.986 0.073 3,584.481

ributaries �Willamette River System, Oregon�
S0

00072

00072

00072

00072

00034

00034

00034

00034

00002

00002

00002

00002

00002

00001

00001

00001

00001

00001
s and t
=beginning and ending sections in the river system considered.
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ral step, �t=8,640 s. The total simulation time is taken to be
7 days.

MOGA parameters

The chromosome employed in the MOGA code consists of NS
genes �NS=number of point source loadings�, each gene repre-
senting a coding for the required pollutant removal level at the
respective point source. In this study, binary coding is used to
define the discrete pollutant removal levels, ranging between 35
and 98%, at increments of 1%. Thus each decision variable in a
chromosome has 64 �98–35%� possible values. The total chromo-
some length for any decision vector of pollutant removal levels
for this case example is 102 bits, with 6 bits allotted for each
binary coded decision variable.

The randomly generated initial population of size N should
provide sufficient sampling of the decision space, while limiting
the computational burden. Goldberg �1989� suggests the desirable
range of population size to be from 30 to 100. In this study, a
population size of 40 is used after making several runs within the
range mentioned. The NSGA-II algorithm adopted in this study
uses tournament selection for creating one or more off-springs
from a pair of individuals. A single point crossover is adopted for

Table 2. Effluent Data for the Willamette River System

Waste discharge
site/tributary

Point
source
index

Location
�km�

Effluent/
tributary
flow rate
�m3/s�

BODult
a

�mg/L�
DO

�mg/L�

Metropolitan Wastewater
Management Commission—
Eugene

D1 285 1.124 308 2.0

Pope & Talbot Inc. D2 236 0.552 180 2.0

James River Paper Co. Inc. D3 236 0.173 33 2.0

City of Corvallis D4 210 0.272 528 2.0

City of Albany D5 190 0.224 565 2.0

Willamette Industries Inc. D6 186 0.346 272 2.0

City of Salem D7 125 1.352 740 2.0

City of Newberg D8 80 0.07 523 2.0

Smurfit Newsprint Corp.
�Newberg�

D9 80 0.583 521 2.0

City of Wilsonville D10 62 0.075 700 2.0

City of Canby D11 53 0.044 475 2.0

Smurfit Newsprint Corp.
�Oregon City�

D12 44 0.465 757 2.0

Simpson Paper Company D13 42 0.328 231 2.0

Tri-City Service District D14 40 0.263 688 2.0

City of Portland D15 32 2.765 750 2.0

Oak Lodge Sanitary District D16 32 0.114 550 2.0

Clackamas Co. Service
District #1

D17 29 0.316 825 2.0

McKenzie River T1 281 65.89 1.5 9.1

Santiam River T2 172 67.31 1.5 9.1

Clackamas River T3 38 32.37 1.5 9.1

Note: D1,D2, . . . ,D17=pollutant discharge sites and T1,T2 ,
T3=tributaries.
aWastewater Treatment Plant �WWTP� BOD5 values are converted into
ultimate BOD values using a conversion factor of 2.5 and Pulp and Paper
Mill �PPM� BOD5 values are converted into ultimate BOD values using a
conversion factor of 4.1. �As used by the ODEQ while calibrating the
QUAL2E model �Tetra Tech 1993; 1995a��.
this purpose. The crossover operation is ruled by the probability
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of crossover �pc�, which normally ranges from 0.5 to 1.0 �Gold-
berg 1989�. The mutation operation is applied to maintain the
diversity in the population of chromosomes with a view to avoid
being trapped in local optima. The mutation mechanism has a low
probability �pm�, usually ranging between 0.005 and 0.020. The
parameter values used in this study, namely, pc=0.80 and
pm=0.009 have been arrived at, based on several sensitivity
analysis runs. For the selected parameters mentioned above,
NSGA-II has been run for a different number of generations
�from 25 onwards�, for the cost-equity multiobjective optimiza-
tion model. It is observed from these runs that the Pareto-optimal
fronts stabilize by 200 generations. Therefore, it has been decided
to adopt 200 as the number of generations for all the multiobjec-
tive GA runs in this study.

Results and Discussion

Selected results for the Willamette river, Oregon. are presented
herein to illustrate the application of the proposed optimal waste
load allocation models for realistic systems. The focus of the
discussion is on the usefulness of the multiobjective trade-off re-

Table 3. Treatment Cost Data

Point source
BOD
�mg/L�

$ million/year

35% 67% 90% 98%

D1 308 1.987 2.235 2.422 5.340

D2,3 145 0.695 0.870 1.523 3.456

D4 528 3.406 3.832 4.152 9.155

D5 565 3.645 4.101 4.443 9.796

D6 272 1.303 1.632 2.856 6.483

D7 740 4.774 5.371 5.819 12.831

D8,9 521 3.361 3.781 4.097 9.033

D10 700 4.516 5.081 5.504 12.137

D11 475 3.065 3.448 3.735 8.236

D12 757 3.627 4.542 7.949 18.042

D13 231 1.107 1.386 2.426 5.506

D14 688 4.439 4.994 5.410 11.929

D15,16 742 4.787 5.385 5.834 12.865

D17 825 5.323 5.988 6.487 14.304

Fig. 4. Cost-performance trade-off �DO Std=7.0 mg/L�
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lations obtained from the framework in waste load allocation de-
cision making.

Illustration for Cost-Performance Model

In order to illustrate the usefulness of the cost-performance
model, results from three runs corresponding to prespecified DO
standards of 6.0, 6.5, and 7.0 mg/L are presented in this section.
A normal depth of 8.986 m is used as the control depth at the
downstream boundary �Table 1� in the water quality simulation
model. It is to be noted that violations of DO standard are per-
mitted in this case. In each run, the number of violations, the
vulnerability �maximum violation at a single checkpoint� and the
magnitude of total violation are computed with respect to the DO
standard specified. However, those solutions with more number of
violations and/or a larger magnitude of violation are automatically
rejected by the NSGA-II algorithm during the search process.

The Pareto-optimal front describing the cost-performance
trade-off, for the prespecified DO standard of 7.0 mg/L, is pre-

Table 4. Cost-Performance Trade-Off-Cost-Performance Model

DOstd

�mg/L� Index
Solution point

�TC, OSP�

6.0 LC 46.035, 0.457

SC 46.400, 0.677

MP 46.861, 0.976

6.5 LC 46.052, 0.408

SC 46.580, 0.650

MP 47.197, 0.924

7.0 LC 46.047, 0.347

SC 47.056, 0.715

MP 50.312, 0.884

Note: TC=total cost �million $�; OSP=overall system performance; LC
performance solution.

Table 5. Violation Characteristics and Performance Measures of Pareto-

DOstd

�mg/L� Index

Violation characteristics

Na

Va

�mg/L�

6.0 LC 18 2.30

SC 14 1.26

MP 1 0.19

6.5 LC 21 2.75

SC 19 1.32

MP 3 0.69

7.0 LC 23 3.30

SC 20 1.19

MP 4 1.19

Note: LC=least cost solution; SC=selected compromise solution; MP=m

�1�, �6�, �11�, and �19�, respectively.
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sented in Fig. 4. In this trade-off curve, the two extreme points
represent the least cost �LC� pareto-optimal solution and the
maximum performance �MP� pareto-optimal solution. Results of
these two solutions are summarized in Table 4 along with the
selected compromise �SC� solution for all three runs considered.
It may be observed from Table 4 that the optimal treatment levels
and the corresponding treatment costs are significantly higher for
MP than LC, which is to be expected. The difference in treatment
costs between LC and MP solutions increases from $0.826�106

to $4.265�106 as the DO standard increases from
6.0 to 7.0 mg/L. Thus, it may be inferred that selection of the
compromise solution is critical, if a higher DO standard needs to
be maintained. The compromise solution �SC� for the DO stan-
dard 7.0 mg/L is shown in Fig. 4. This is selected such that there
is a distinct change in the slope of the trade-off curve at that point.
It can be seen from Table 4 that the total treatment cost for SC
solution �$47.056�106� is not significantly higher than that of
the LC solution �$46.047�106�, although there is a significant

Removal fraction levels �x1 ,x2 , . . . ,x14�
Inequity
measure

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35

4.738

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.56, 0.35, 0.35

5.357

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.82, 0.35, 0.35

6.989

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.35, 0.36, 0.35, 0.35

4.696

0.35, 0.35, 0.36, 0.35, 0.35, 0.35, 0.35,
0.35, 0.35, 0.35, 0.36, 0.65, 0.35, 0.35

5.904

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.51, 0.35, 0.35, 0.90, 0.35, 0.35

8.176

0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35,
0.35, 0.36, 0.35, 0.35, 0.35, 0.35, 0.35,

4.784

0.35, 0.35, 0.35, 0.35, 0.36, 0.36, 0.35,
0.35, 0.36, 0.35, 0.36, 0.90, 0.35, 0.35

7.548

0.35, 0.35, 0.35, 0.35, 0.36, 0.35, 0.37,
0.48, 0.90, 0.75, 0.66, 0.90, 0.35, 0.35

11.112

t cost solution; SC=selected compromise solution; and MP=maximum

l Solutions−Cost-Performance Model

Performance measures

� EN EV ETS EWLA

0.100 0.492 0.578 0.457

0.300 0.721 0.800 0.677

0.950 0.958 0.997 0.976

0.086 0.453 0.509 0.408

0.174 0.738 0.787 0.650

0.870 0.863 0.982 0.924

0.042 0.404 0.436 0.347

0.167 0.785 0.893 0.715

0.833 0.785 0.963 0.884

performance solution; and EN, EV, ETS, EWLA are computed as per Eqs.
=leas
Optima

TSa

�mg/L

23.85

11.30

0.19

32.95

14.00

1.21

44.47

8.46

2.90

aximum
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improvement �from 0.347 to 0.715� in the performance. On the
other hand, to improve the performance from 0.715 �for SC� to
0.884 �for MP�, an additional amount of $3.256�106 needs to be
spent. Table 4 also indicates that the maximum attainable perfor-
mance level decreases with increase in DO standard �from 0.976
to 0.884 for DO standard of 6.0–7.0 mg/L�.

The violation characteristics and the performance measures for
the three runs are presented in Table 5. It can be observed from
this table that the selected compromise solution allows less vio-
lations from the standard specified, compared to the least cost
solution, and that too with significantly less vulnerability and total
magnitude of violation, thus resulting in a considerably higher
overall performance. The predicted DO profiles corresponding to
the vector of optimal removal fraction levels for LC, SC, and MP
are presented in Fig. 5, along with the DO profile for “no treat-
ment” condition for the DO standard of 7.0 mg/L.

The cost-performance trade-off curves that are obtained from
the multiobjective model proposed here will be helpful to the
decision maker in choosing an appropriate waste load allocation
solution for the given system, depending on the budget con-
straints and the desired overall performance level. The multiob-
jective analysis also gives information to the decision maker
regarding the maximum attainable overall performance for a se-
lected DO standard. This can be useful in deciding the DO stan-
dard that can be maintained in the river.

Table 6. Cost-Equity Trade-Offs-Cost-Equity-Performance Model

EWLA

�%� Index
Solution point

�TC, IEM�
Removal fraction levels

�x1 ,x2 , . . . ,x14�

60 LC 46.895, 5.91 0.35, 0.35, 0.37, 0.41, 0.35, 0.36, 0.36,
0.35, 0.36, 0.35, 0.35, 0.71, 0.38, 0.36

LIE 50.559, 1.17 0.41, 0.37, 0.53, 0.57, 0.37, 0.63, 0.49,
0.62, 0.50, 0.64, 0.35, 0.67, 0.63, 0.65

70 LC 47.759, 6.78 0.35, 0.35, 0.38, 0.35, 0.35, 0.57, 0.36,
0.35, 0.45, 0.46, 0.35, 0.82, 0.35, 0.35

LIE 51.260, 1.56 0.45, 0.35, 0.58, 0.60, 0.41, 0.66, 0.58,
0.67, 0.48, 0.64, 0.36, 0.75, 0.67, 0.68

80 LC 49.281, 8.23 0.35, 0.36, 0.37, 0.35, 0.35, 0.67, 0.51,
0.43, 0.58, 0.67, 0.47, 0.90, 0.35, 0.35

LIE 52.282, 2.49 0.49, 0.36, 0.62, 0.63, 0.41, 0.69, 0.62,
0.64, 0.58, 0.69, 0.40, 0.90, 0.66, 0.70

Note: TC=total cost �million $�; IEM=inequity measure; LC=least cost

Fig. 5. DO profiles for no treatment �NT�, least cost solution �LCS�,
maximum performance solution �MPS�-DO Std=7.0 mg/L
solution; and LIE=least inequity solution.
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Illustration for Cost-Equity-Performance Model

It may be observed from the results of cost-performance studies
presented in Table 4 that the inequity in sharing the treatment
effort is quite high, especially when the maximum performance
solution is sought. This might be unacceptable to some of the
waste load dischargers. For example, the maximum performance
solution for DO standard of 6.5 mg/L �Table 4� indicates that the
seventh and the tenth dischargers �D7 and D10 in Fig. 3� have to
treat to minimum level �0.35�, whereas the ninth discharger has to
treat to a higher level �0.51�, although D7 and D10 dischargers
load the system to a greater extent �740 and 700 mg/L� than the
discharger D9 �521 mg/L�. In this context, it is desirable to con-
sider minimization of inequity as one of the objectives. In this
section, we discuss the results from the application of a cost-
equity-performance model. It should be noted that the perfor-
mance level is prespecified as a constraint, while minimization of
inequity and minimization of total treatment cost are considered
as objective functions.

Results of the cost-equity trade-off obtained for three overall
performance levels �60, 70, and 80%�, are presented in Table 6,
for a DO standard of 7.0 mg/L. A normal depth of 8.986 m is
used as the control depth at the d/s boundary. Figs. 6–8 show the
pareto-optimal fronts for 60, 70, and 80% overall system perfor-
mance, respectively. The violation characteristics and the perfor-
mance measures for the pareto-optimal solutions corresponding to
the least cost �LC�, and the least inequity �LIE� are presented in
Table 7. It is observed from Figs. 6–8 that the slope of the cost-
inequity pareto-optimal front does not change significantly be-
tween the two extreme points, unlike in the case of the
cost-performance trade-off. This means that the decision maker
may use his/her judgment to choose the compromise solution
within the range of implementation. A significant observation

Fig. 6. Cost-inequity trade-off �DO std=7 mg/L, EWLA�60%�

Fig. 7. Cost-inequity trade-off �DO std=7 mg/L, EWLA�70%�
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from Table 6 is that the least inequity pareto-optimal solution
demands more treatment effort and cost compared with that of the
least cost pareto-optimal solution, in order to achieve equity. For
example, for a specified performance level of 80%, eight out of
the fourteen dischargers are required to significantly increase their
treatment efforts, in order to bring down the inequity measure
from 8.23 to 2.49, resulting in an increase of $3 million in the
total treatment cost. This sort of detailed information obtained
from the multiobjective models proposed, helps the decision
maker in deciding whether the extra cost incurred in achieving the
incremental degree of equity is justified, at a specified perfor-
mance level. However, it may be noted that it would be easy to
pick a compromise solution in cases where there is a significant
change in slope in the cost-equity trade-off curve.

Summary and Conclusions

A multiobjective optimization framework for optimal waste load
allocation in rivers has been developed, considering the total
treatment cost, the inequity among the waste dischargers and a
new comprehensive performance measure that reflects the DO
violation characteristics. This framework consists of an embedded
river water quality simulator that has a flow module, which simu-
lates the gradually varied water surface profile, and a pollutant
transport module, which simulates the advection, dispersion pro-
cesses along with reaction kinetics for BOD and DO. The outer
shell of the framework consists of the multiobjective optimization
models formulated in this study. The optimization problems are

Table 7. Violation Characteristics and Performance Measures of
Pareto-Optimal Solutions−Cost-Equity-Performance Model

EWLA

�%� Index

Violation characteristics Performance measures

Na

Va

�mg/L�
TSa

�mg/L� EN EV ETS EWLA

60 LC 22 1.515 20.642 0.083 0.726 0.738 0.603

LIE 21 1.438 17.706 0.125 0.740 0.775 0.635

70 LC 19 1.190 10.975 0.208 0.785 0.861 0.708

LIE 18 1.190 12.578 0.250 0.785 0.840 0.706

80 LC 13 1.190 4.241 0.458 0.785 0.946 0.800

LIE 12 1.190 4.049 0.500 0.785 0.949 0.810

Note: Violations characteristics for “no treatment”: N0=24;
V0=5.53 mg/L; and TS0=78.84 mg/L. LC=least cost solution;
LIE=least inequity solution; EN, EV, ETS, EWLA are computed as per Eqs.

Fig. 8. Cost-inequity trade-off �DO std=7 mg/L, EWLA�80%�
�1�, �6�, �11�, and �19�, respectively.
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solved using the multiobjective evolutionary algorithm known as
“Non-Dominated Sorting Genetic Algorithm-II �NSGA-II�” of
Deb et al. �2000�.

The comprehensive performance measure proposed in this
study is expressed as a weighted measure of: �1� the number of
DO violations; �2� the magnitude of maximum DO violation; and
�3� the total magnitude of DO violations, with reference to a
specified DO standard, over all the checkpoints.

The proposed framework is used to obtain the cost-
performance trade-off relation for a pre-specified DO standard
and the cost-equity trade-off relation for a prespecified overall
system performance with respect to a given DO standard. Useful-
ness of these relationships in decision making is illustrated
through a realistic example of waste load allocation for Wil-
lamette river system in the United States.

The optimal treatment levels and the corresponding treatment
costs are found to be significantly higher for the MP solution than
the LC solution. The cost-performance trade-off relation devel-
oped for a prespecified DO standard is shown to be useful in
obtaining reasonable compromising solutions that yield signifi-
cantly higher performance at a reasonable additional cost, com-
pared to LC.

The cost-equity trade-off obtained from the cost-equity-
performance model for a specified performance level, indicates
that the least inequity pareto-optimal solution demands signifi-
cantly more treatment effort and cost compared with that of the
least cost pareto-optimal solution. The sort of detailed informa-
tion obtained from such multiobjective modeling helps the deci-
sion maker in deciding whether the extra cost to be incurred in
order to achieve the incremental degree of equity is justified.
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