An efficiently parameterized and appropriately structured piecewise linear hedging rule is formulated and included within a multi-objective simulation-optimization (S-O) framework that seeks to obtain Pareto-optimal solutions for the long-term hedged operation of a single water supply reservoir. Two conflicting objectives, namely, “minimize the total shortage ratio” and “minimize the maximum shortage” are considered in the S-O framework, while explicit specification of constraints is avoided in the optimization module. Evolutionary search based non-dominated sorting genetic algorithm is used as the driver, which is linked to the simulation engine that invokes the piecewise linear hedging rule within the S-O framework. Preconditioning of the multi-objective stochastic search of the time-varying piecewise linear hedging model is effected by feeding initial feasible solutions sampled from the Pareto-optimal front of a simple constant hedging parameter model, which has resulted in significant improvement of the Pareto-optimality and the computational efficiency. © 2018, Springer Science+Business Media B.V., part of Springer Nature.