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Abstract

Wind tunnel tests on a NACA 0012 airfoil has been carried out to study the tran-
sition in aeroelastic response from an initial state characterised by low-amplitude
aperiodic fluctuations to aeroelastic flutter when the system exhibits limit cycle os-
cillations. An analysis of the aeroelastic measurements reveals multifractal charac-
teristics in the pre-flutter regime. This has not been studied in the literature. As the
flow velocity approaches the flutter velocity from below, a gradual loss in multifrac-
tality is observed. Measures based on the generalised Hurst exponents are developed
and are shown to be effective precursors to warn against impending aeroelastic flut-
ter. The results in this study would be useful for health monitoring in aeroelastic
structures.
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1 Introduction

The dynamical behaviour of slender flexible structures in flows can be phenomenologically1

very rich due to the mutual interaction effects where the forces exerted by the fluid in the2

structure become dependent on the dynamics of the structure. In certain flow regimes, the3

coupling between the forces exerted by the fluid and the structure result in zero damping in4

the combined fluid-structure system leading to self-sustained oscillations termed as aeroe-5

lastic flutter. In the parlance of nonlinear dynamics, these oscillations represent limit cycle6

oscillations (LCO) which appear when the flow velocity exceeds a critical value - termed as7

the flutter velocity. As the flow velocity is increased further, the amplitude of the response8
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oscillations increase. At flow velocities below the flutter velocity, the structural damping9

dominates leading to the structure oscillations to eventually die down. The flutter velocity10

represents a Hopf bifurcation point [1].11

Aero-elastic flutter is an undesirable phenomenon as the sustained oscillations post flutter12

could lead to structural damage due to fatigue in metals and debonding or delamination13

in composites - either of which eventually leads to structural degradation and failure. From14

the perspective of health monitoring of aeroelastic structures, it is important to ensure15

the operating conditions of the structure lie within the stable regime characterised by the16

pre-flutter domain. Identification of the stability boundaries for such aeroelastic structures17

therefore constitute a very important step in design and health monitoring. This has led to18

studies being devoted in the literature on methods for analyzing the stability boundaries19

of such fluid-structure interaction problems. Analytical studies carried out in the literature20

are based on developing suitable mathematical models for the slender structure and the21

forces that arise due to the presence of the flow [2, 3, 4, 5, 6, 7]. Here, the challenges lie in22

modelling the nonlinearities in the stiffness and damping properties of the structure [8, 9]23

and developing expressions that approximate the fluid forces that act on the structure.24

Alternative methods for identification of the stability boundaries are based on analysis of25

the time histories of the aeroleastic response. For example, methods based on monitoring26

the damping levels in fluid-structure interaction system [6, 10],has been one of the early-27

methods used to estimate flutter boundary. However, this method becomes unsuitable in the28

presence of nonlinearity. An alternative methodology for identification of flutter boundary is29

the Zimmermann-Weissenburger Methodology (ZWM)[11]. This methodology derives a flut-30

ter margin based on Routh’s stability criterion and was applied to a two degree of freedom31

system with quasi-steady aerodynamics. Subsequently, the ZWM was applied to systems32

with higher degrees of freedom as well [12]. Using an analytical model, an online flutter33

prediction tool called flutterometer was developed [13]. For the sake of modelling errors and34

uncertainties, parts of the model were updated through a nonlinear iterative algorithm that35

generates a “worst case flutter boundary”. Despite the technique being robust, the proposed36

stability margins were found to be conservative [14]. In order to predict nonlinear aeroelastic37

behaviors like LCO, an expert system (ES) was developed [15] and tested on short dura-38

tion transient data acquired from both experiments and numerics. It was observed that ES39

could successfully predict behaviors like LCO’s, diverging oscillations etc. However, these40

methods were developed in the presence of freeplay nonlinearity in pitch degree of freedom41

and is suggested that the effectiveness of the ES depends upon an acurate estimation of the42

freeplay parameters. Further, the suitablity of this technique in the presence of other types43

of nonlinearities and wind gusts has not been explored.44

Indeed, most studies on aeroelastic stability analysis were carried out under the assumptions45

of steady uniform flow. However, in real life conditions, the flow is seldom steady and are46

usually accompanied by fluctuations. These fluctuations could be either due to gust effects in47

the flows or due to turbulence, generated by the local flow conditions around the structure.48

The effect of fluctuations on the flow have significant influence on the structure response.49

For example, even in pre-flutter regimes, it has been shown that an impulsive gust loading50

in the flow can lead to transient growth in the structure response due to the transition of51

the system to higher stable branches in sub-critical bifurcating regimes [16]. Additionally,52

it has been observed that the dynamical system experiences sporadic bursts of oscillations53
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prior to the setting of LCOs in the presence of fluctuating flows. These oscillations - termed54

as intermittent oscillations - have been reported in [17, 18, 19, 20, 21], but have not been55

investigated in details. In a recent study [22], similar intermittent oscillations in airfoils have56

been observed in wind tunnel experiments. Detailed experimental studies carried out revealed57

that the sporadic bursts of oscillations that began to appear at pre-flutter flow speeds become58

more frequent and of longer durations as the flow speed approached the flutter velocity.59

The repeating patterns of these intermittent oscillations were visualised using recurrence60

plots and precursors were developed that enabled predicting the onset of flutter. It must61

be remarked here that the existing studies in the literature on methods for identifying the62

stability boundaries of an aeroelastic system could identify the instability regimes only after63

the system has already lost stability, and therefore are not precursors in the strict sense.64

Development of precursors to instability in dynamical systems - that range from engineer-65

ing applications to geophysical systems as well as biological processes - have been studied66

extensively in the literature. Approaches that involve analyzing the response of dynamical67

systems in the frequency domain to estimate precursors have been carried out in [23, 24].68

The bandwidth of the dominant frequency of the filtered response of a dynamical system69

subjected to broad band noise was used as a measure of the instability in [23]. A similar70

approach was used in [24] where the width of the hysteresis zone obtained from the filtered71

response of a nonlinear geophysical system was used as a measure to quantify the instability.72

However, exciting the dynamical system with an external stochastic excitation can qualita-73

tively change the dynamics of the system and may not lead to accurate precursors; this has74

been demonstrated with reference to an acoustic system in [25] and highlights the drawback75

of these frequency domain approaches.76

The focus of this paper is to investigate the small aperiodic oscillations that appear in the77

response of a NACA 0012 airfoil when subjected to flows in a low speed wind tunnel and to78

study the transition in the response dynamics from low amplitude aperiodic fluctuations to79

flutter as the mean flow speed is gradually increased. It is shown that the time histories of the80

response possess multifractal characteristics and displays scale invariance at flow speeds much81

lower than the flutter velocity. As the flow speed approaches the flutter velocity from below,82

the multifractality in the airfoil response gradually diminishes and eventually disappears83

with the onset of LCO. Measures that are based on quantifying the multifractality of time84

histories are developed that serve as precursors to forewarn impending flutter.85

This paper is organized as follows. A brief description on fractals and multifractality in time86

histories, and measures of quantifying the multifractality is presented in Section 2. Section87

3 provides details of the wind tunnel experiments and the set-up. Investigations on the88

multifractality of the measured response are discussed in details in Section 4. Section 5 details89

the development of suitable measures that serve as precursors to flutter. The salient features90

of this study are summarized in section 6. For the sake of completion, an appendix is provided91

which gives a brief description of the algorithm used for quantifying the multifractality in92

the measured time histories.93

3



2 Multifractality94

Fractal sets, which could represent infinitely complex patterns, a curve or a time history,
exhibit self-similarity across different scales [26]. The dimension of a fractal set is a statistical
measure that describes how densely the set occupies the embedding metric space and is
measured as a ratio of how the details in the complexity of a pattern changes with the
measurement resolution scale. The fractal dimension D is independent of the scale size but
depends only on the scaling under changes in the measurement resolution and is a global
invariant. In general, the fractal dimension of a fractal set is always larger than its topological
dimension but smaller than the dimension of the space in which it is embedded. Thus, for
a curve that exhibits fractal characteristics, D is greater than unity but less than 2. This
implies that in general D is non-integer. Mathematically, D is defined as *

D =
lim

ǫ → 0

lnN(ǫ)

ln 1/ǫ
, (1)

where, ǫ is the size of the subdomain of the entire set and represents the resolution scale95

of the measurements, and N(ǫ) represents the total number of subdomains that the entire96

domain of the set can be divided following the resolution scale of the measurements. Sets that97

exhibit fractal characteristics could also include processes in time. Similar to a fractal curve,98

a fractal time series also has its dimensions between one and two and possess scale invariance99

characteristics. It means that a fractal time series comprises of self similar patterns when100

examined under different scales i.e., the structure of a signal measured for a duration of T101

units is similar when the same signal is observed for a duration of t units, where t << T .102

For processes in time that exhibit fluctuations across a wide range of time scales, a single
fractal dimension D may not be enough to sufficiently describe the dynamical behaviour.
Such processes exhibit structures that vary from one scale to another - segments of the
time histories at different scales look alike but are not exactly similar. These time histories
are usually characterised by a different fractal dimension depending on the resolution scales
of the measurements and are defined as multifractal signals. In characterizing multifractal
signals, the focus is not on seeking similarity of the data sets, but the similarity in probability
measures associated with these data sets at different scales. This can be explained by dividing
the spatial domain of the trajectory into subdomains, and defining a probability measure µi

associated with each of these subdomains with a singularity index ai, i.e., µi ≡ ǫai , where, ǫ
is the size of the subdomain. Here, the singularity index refers to the power-law divergence
behaviour and the probability measure refers to the fraction of time the trajectory spends
in the ith subdomain. For a continuous data set x, the point measure µ at x is defined as

Dp(x) =
lim

ǫ → 0

lnµ(Nǫ(x))

ln 1/ǫ
(2)

and is indicative of the fractal dimension given by ai. Here, Nǫ(x) represents a spatial domain
with length scale ǫ centred at x and µ(Nǫ(x)) represents the probability measure expressed
as the fractional time spent by the trajectory in Nǫ(x). In the limit when ǫ → 0, one can
invoke the continuum assumptions and it can be shown that the scaling exponents ai are
local and continuously distributed in an interval. Further, it can be shown that the number
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of subdomains N(ǫ) with singularity index in the range [a, a+ da] is given by [27]

dN(ǫ) = dµ(a)ǫ−f(a), (3)

where, µ(a) is the probability measure of the fractional time spent by the trajectory in103

a subdomain and f(a) characterises the scaling properties of the local exponent a and is104

referred in the literature as the singularity spectrum [28, 29, 30].105

Since the fractal dimension is indicative of the power law behaviour of the fractal set (or a
fractal signal), a quantitative measure of the fractal dimension can be obtained in terms of
the moments, whose general expression is given by

χq(ǫ) ∼
∫

dµ(a)ǫaq−f(a), (4)

where, χq(ǫ) is the q-th moment. Further, it can be shown via the asymptotic scaling be-
haviour of moments [31]

χq(ǫ) ∼ ǫ(q−1)Dq , (5)

where, Dq is the generalised fractal dimension. Since the integral in Eq.(4) is valid for small
ǫ, the integral is dominated by those values of a which minimises the exponent [aq − f(a)].
The integral can therefore be evaluated using the saddle-point approximation [32], leading
to

Dq =
1

(q − 1)
[āq − f(ā)], (6)

where,

a = ā,
d

da
[aq − f(a)] = 0,

d2

da2
[aq − f(a)]|a=ā > 0. (7)

It follows that df/da|a=ā = q(ā) and d2f/da2|a=ā < 0. This implies that the f(a) has a106

convex variation with respect to a, with a maxima at q = 0 and an infinite slope at q = ±∞.107

Also, Eq.(6) implies that (q − 1)Dq and f(a) are Legendre transforms of each other.108

For a mono fractal signal, f(a) = a. Thus, from Eq.(6) one gets that Dq = f(a) = D0 for
all q. On the other hand, for multifractal signals, the generalised multifractal dimension, for
a given value of q, is approximated by a uniform fractal whose dimension is f(a(q)). Thus,
if f(a) is available, one can estimate Dq. Conversely, for a specified Dq, one can find a from
the relation

ā =
d

dq
[(q − 1)Dq]. (8)

For mono-fractal signals, the scaling power law is shown to be related to the Hurst exponent109

[33]. The Hurst exponent, H , is related to the expected size of changes as a function of the lag110

τ between observations, and measured by E[|X(t+τ)−X(t)|2], where E[·] is the expectation111

operator. The fractal dimension D of a time series is shown to be related as D = 2 − H112

[34]. The Hurst exponent is related to the scaling properties of a signal. For instance, if x(t)113

is some fractal signal with Hurst exponent H , then x(ct) = x(t)/cH is also a fractal signal114

with the same statistics [35]. A simple approach to provide fractal description of a signal by115

a technique known as Detrended Fluctuation Analysis (DFA) has been proposed in [36].116

For multifractal signals, this concept is generalised [37, 38] through structure functions,117

which are used to explore the scaling relationships between the variations in the moment118
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of a measured fluctuation and the time interval of measurement [39]. The corresponding119

generalised Hurst exponents that are estimated describe the scaling in the central moments120

of the signal that have been appropriately scaled for different positive and negative orders q.121

Thus, for a multifractal signal, the generalized Hurst exponents vary for different values of122

q. By carrying out a Legendre transform, the variation in generalized Hurst exponents can123

be represented by a spectrum of singular peaks f(a).124

Early studies on multifractality in measurements have been carried out in the context of125

turbulence [40, 41, 42]. Subsequently, multifractality of the signals have been investigated in126

a host of studies involving different engineering disciplines and applications. For example,127

multifractality of measurements have been used to identify the presence of cracks in rotor128

systems [43], for fault diagnosis in rotating systems [44], predicting hazardous conditions129

in complex chemical reactions [45], describing the bifurcation mechanisms in high TC su-130

perconducting levitation systems [46], health monitoring of a road bridge [47], short term131

predictions of atmospheric wind speeds [48], feature extraction from radio transmitter signals132

[49] and in combustion systems [50, 51, 52, 53]. The present study investigates the multi-133

fractality in the aeroelastic response measurements of an airfoil subjected to wind tunnel134

tests.135

3 Wind tunnel experiments136

Wind tunnel experiments are carried out in an Eiffel type wind tunnel, at the Bio-mimetic137

and Dynamics Laboratory, in the Department of Aerospace Engineering, Indian Institute of138

Technology Madras. The wind tunnel achieves a maximum flow velocity of 25 m/s. A flutter139

set-up comprising of a pitch and plunge mechanism has been developed for the tests. An140

explanation of the set-up is provided through the schematic diagram in Fig. 1.141

Fig. 1. Schematic of the pitch and plunge apparatus.

A NACA 0012 airfoil having a chord of 100 mm and a span of 500 mm is used for the wind142

tunnel experiments. The airfoil is horizontally mounted into the flutter setup; see Fig. 2. The143
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Fig. 2. Photograph of the pitch and plunge apparatus inside the wind tunnel test section.

pitch and plunge mechanism is based on the design in [54] with some modifications. Two144

identical translation carriages of dimensions 700×750 mm are provided on either side of the145

test section for plunging. The distance between the two ends is 700 mm. To prevent out-of-146

plane motions, on each side, the translation carriage has two hardened ground shafts that147

go through a spring suspended aluminum profile via linear ball bushing-guide ways. Rigidity148

of the shafts are ensured by fixing the top and bottom ends of the shaft to the support149

frame using adjustable M4-threaded screws. The pitching motion is enabled through circular150

a Nylon disc of diameter 50 mm, which is connected to the aluminum profile via linear ball151

bearings. An industrial Nylon belt is enveloped over the disc and fixed with an M3 screw152

to the bottom of the disc. The belt has provision for spring suspension and thus the spring153

suspended disc is used for obtaining rotary motion. A slot is provided in the disc to attach a154

steel gripper, of length 100 mm. The gripper consists of an adjustable steel bar with a hollow155

pocket to attach the airfoil into it. Grub screws are used to fix the airfoil firmly into the156

pocket. The position of the elastic axis is identified by changing the location of the pocket157

over the adjustable steel bar and tightening the grub screw.158

The entire set-up is placed inside the wind tunnel; see Fig. 2. All the experiments were159

conducted under blowing conditions of the wind tunnel fan so as to create realistic environ-160

mental conditions as opposed to sterile flow conditions when the tunnel is operated under161

suction mode. A pitot tube manometer is placed on the upstream of the test section to162

measure the flow speeds. Measurements of the airfoil displacements are obtained by using163

a pair of Wenglor Opto NCDT type laser sensors, each having measurement range of 300164

mm. Signals from the laser sensors are acquired using a 4-channel ATALON data acquisition165

system having an input voltage of ± 5 V and 24-bit resolution. The measured response was166

acquired with a sampling rate of 5024. The airfoil response measurements are acquired for a167

duration of 120 seconds corresponding to different flow speeds. The flow speeds were varied168

in the range of 4−8 m/s in steps of 0.4 m/s. A Delta HD 4V3 TS3 air velocity sensor is used169

to measure the flow velocity inside the test section. It measures the instantaneous changes170

in the air velocity at a specified location and has a measurement range of 0-40 m/s. The171

ATALON data acquisition system is used for measuring the flow velocity also. The initial172
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angle of attack of the airfoil is set to zero degrees. Tests were carried out to identify the173

physical parameters associated with the experimental set-up and these are listed in Table 1.174

m1 m2 m3 my mα Iα ky kα S cy cα

1.1 0.9 0.4 2.4 1.3 0.007 1800 6.29 0.006 6.758 0.012

Kg Kg Kg Kg Kg Kg-m2 N/m Nm/rad Kg-m Kg/s Kg-m2/s

Table 1
Physical parameters of the experimental setup.

Here, m1 is mass of plunging frame , m2 is mass of pitching mechanism, m3 is mass of airfoil,175

my is total mass in plunge, mα is total pitching mass, c is the airfoil chord length, Iα is the176

pitch moment of inertia, Ky is the stiffness in plunge, Kα is stiffness in pitch, cy is the viscous177

damping coefficient in plunge, cα is viscous damping coefficient in pitch and S is the static178

unbalance. The heaving motion in the setup is controlled by the four plunge springs, while179

the pitching motion is controlled by the four pitch springs along with the circular cam. The180

nonlinearity in the pitch can be controlled by changing the geometry of the cam. A force181

deflection curve obtained from a controlled pitching motion alone revealed that the pitching182

stiffness remained linear. However, the force deflection curve revealed the heaving stiffness183

can be approximated as a cubic nonlinearity. The damping associated with the system is184

modelled to be viscous and the coefficients of viscous damping along the pitch and plunge185

directions were estimated from measuring the free vibration response and using the standard186

logarithmic decay technique.187

4 Results and discussion188

Wind tunnel tests were carried out by gradually increasing the flow speed in the test section189

and monitoring the airfoil response for each wind speed. Figure 3 shows segments of the190

response measurements along the plunge and the pitch degrees of freedom for flow speed191

U = 4 m/s (left column) and U = 8 m/s (right column). At U = 4 m/s, the time histories192

of the response for both plunge and pitching degrees of freedom are observed to comprise193

of low amplitude aperiodic segments; see Figs. 3a and 3c. This is confirmed from the broad194

band nature of the spectrum for the respective time histories; see Figs. 3e and Fig. 3e195

for plunge and pitch respectively. On the other hand, when U is increased to 8 m/s, the196

response measurements are observed to comprise of large amplitude periodic oscillations197

indicating the onset of aeroelastic flutter; see Figs. 3b and 3d for the time histories for198

plunge and pitch. The corresponding spectrum representation are respectively shown in199

Figs. 3f and Fig. 3h. These figures reveal a dominant frequency confirming a predominant200

oscillatory mation and characteristics of post-flutter hevaior. The variations of plunge and201

pitch dominant frequencies with wind speed are shown in Fig. 3i and Fig. 3j. As the wind202

speed is continuously increased there is a linear rise in these frequencies.203

A closer inspection of the time histories at U = 4 m/s, and confirmed by the spectrum shown204

in Figure 3e reveals the aperiodic oscillations to be similar to a broad banded noise. Studies in205

the literature have dismissed these type of measurements to be noisy. However, these “noisy”206

measurements are now investigated for multi-fracatal characteristics. The generalised Hurst207
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Fig. 3. Measured airfoil responses in plunge and pitch degrees of freedom along with the spectral
representation for a flow speed U = 4 m/s (first column) and for U = 8 m/s (second column).
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exponents are now estimated for the time history measurements corresponding to U = 4 m/s208

and U = 8 m/s and are shown in Figure 4. The algorithm for computing the generalised Hurst
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Fig. 4. The variation of structure function Fq with time intervals w, at different orders q; (a) U = 4
m/s, (b) U = 8 m/s.

209

exponents are adopted from the study carried out in [53] and is detailed in the appendix for210

the sake of completion. By varying the order exponent q, high and low amplitude fluctuations211

in different time intervals w are preferentially selected. While positive values of q amplified212

the effects of high amplitude fluctuations, negative values of q amplifies the low amplitude213

fluctuations.214

Figure 4a shows the variation of the structure functions Fq for U = 4 m/s for q equal to215

−3, 0 and 3. Here, the slopes of these lines give the generalised Hurst exponent of order q216

and denoted by H . Structure function gives the scaling properties between the variations217

in the moments of measured time series and the time interval of the measurement [38, 39].218

The intervals w are chosen based on identifying the regimes in which the Hurst exponent is219

almost zero. In a recent study [55], it has been shown that in 2-4 cycles of the time history220

the Hurst exponent remains close to zero and hence the intervals w were chosen accordingly.221

It is observed that the slopes for the variation of the structure functions Fq for various values222

of q are different, indicating the multi fractal natter of the measurements [38]. If the signal223

was mono-fractal, the generalized Hurst exponents would have been identical for different224

values of q, the slopes of the lines in Figure 4a would have been identical and the lines would225

have been parallel. Figure 4b shows the variation of Fq as a function of w, computed for the226

measurements obtained when U = 8 m/s. It is observed that there is almost zero variation227

of the structure functions with respect to w indicating the slopes to be almost zero. Also,228

changing q does not lead to different estimates because the existence of LCOs indicate just229

a single time scale being associated with these measurements. Thus, post flutter, the fractal230
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nature of the measurements is almost lost.231

Figure 5 presents the multifractal spectrum of the measured aeroelastic responses at U = 4232

m/s and U = 8 m/s. The singularity spectrum obtained for response measurements taken233

at U = 4 m/s and shown in Figure 5a reveals a broad band profile implying the presence of234

several exponents and thus, the multifractal nature of the response. On the other hand, the235

corresponding singularity spectrum obtained from response measurements once LCO has set236

in and shown in Figure 5b reveals a clustering around zero. This indicates a lack of scale237

invariance post flutter when the response is characterised by LCO.238
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Fig. 5. Variation of singularity spectrum f(a) with singularity strength a, which is equivalent to
the Hurst exponent, for, a) the multifractality present in the response at U = 4 m/s and b) its
collapse post flutter at U = 8 m/s.

5 Precursor to aeroelastic flutter239

Loss of multifractal signature at the onset of flutter instability can be used to successfully
predict the onset of impending instability. The gradual drop in Hurst exponent H as flutter is
approached can be used as a precursor to an impending flutter. Traditionally, characterisation
of measurement signals is carried out in terms of the root mean square (r.m.s.) values and
are computed as

yrms =
{

1

N

N
∑

i=1

y2i

}1/2

. (9)

Here, yi indicates the measured response y(t) at t = ti, corresponding to a particular flow240

speed U , and N is the total number of measurements. The variation of the r.m.s. values241

computed from the measured time histories corresponding to different flow velocities U is242

11



shown in Figure 6a. It is observed that yrms is almost steady in the range of U from 4− 6.5243

m/s and shows a sharp increase for flow speeds beyond 7.5 m/s. This seems to indicate that244

the growth in yrms values corresponds to the onset of LCO. Note that an inspection of the245

time histories of the response at U = 8 m/s indicates that LCO has already set in at this246

flow speed. Thus, yrms can only convey the manifestation of an oscillatory instability, that247

has already begun, rather than forewarning an impending instability.248

4 5 6 7 8
0

0.5

1

1.5

2

2.5

U (m/s)

y r
m
s

a)

4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.2

0.4

0.6

0.8

U (m/s)

H

b)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

a

f
(a
)

 

 

flutter response

aperiodic response

c)

Fig. 6. Variation of r.m.s value of airfoil response and Hurst exponent with flow speed are shown
in a) and b) respectively. The loss in multifractality is shown in figure c).

Figure 6b shows the variation of the Hurst exponent computed from the response measure-249

ments corresponding to various flow speeds U . A visual inspection of the variation reveals250

that a smooth drop in the magnitude of Hurst exponent H is observed from U ≈ 5 m/s.251

It is to be noted that large amplitude oscillations in the airfoil is encountered only after252

U > 7.5 m/s, whereas the developed precursor shows a gradual drop in its magnitude right253

from regimes of stable operating conditions. Moreover, it is clear that the Hurst exponent is254

close to zero in the presence of LCO. Therefore, by choosing an appropriate threshold for H ,255
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away from but close to zero, an operator working with large ordered aeroelastic structures256

can adopt suitable control measures, so as to prevent the system from transgressing into the257

regimes of instability.258

The loss of multifractal signature at flutter onset can be seen in the singularity spectrum259

shown in Figure 6c. The spectrum f(a) diminishes to a point at the onset of flutter instability.260

This loss in multifractal characteristic could be due to the presence of a single dominant261

time scale that dictates the dynamics post flutter. Such a loss in the variability in scales262

is known as “loss of spectral reserve”[56]. In the aeroelastic problem considered here, the263

loss of spectral reserve takes place in a smooth and gradual manner when the flow speed is264

gradually increased to the regimes of instability.265

It is worth emphasising here that the approach to develop precursor in this study is based on266

experimental measurements only. Existing studies in the aeroelastic literature involving the267

development of precursors are based on developing mathematical models for the system and268

carrying out an analysis. This is not a trivial problem as developing a mathematical model269

for a highly complex fluid-elastic problem is fraught with difficulties and require solving an270

inverse problem first to ensure correct identification of the various parameters that enter271

the mathematical model. Moreover, structural systems under operating conditions undergo272

material and structural degradation that alters the model parameters with time, which in273

turn changes the stability boundaries. This implies that a model updating exercise needs274

to be carried out at regular time intervals. On the other hand, the present approach is275

based on investigating the multifractal characteristics of the response measurements and276

bypasses the need for developing mathematical models for the system. Moreover, even if the277

stability boundaries undergo changes with time due to the gradual structural degradation,278

the proposed approach would still be able to identify the stability boundaries by studying279

the signatures of the response measurements. Thus, the proposed approach is suitable for280

online health monitoring for a number of aeroelastic applications, such as, aircraft wings,281

blades of wind turbines, rotor blades, helicopter blades and other similar applications.282

6 Model independence283

It must be reemphasized here that the precursors developed here are model independent.284

A model free method to predict instabilities has distinct practical advantages over a model285

dependent approach. A primary difficulty with model based approaches to predicting the286

stability boundary lies in developing an accurate mathematical model for the system. Any287

uncertainties in developing the model propagate through the analysis and leads to predic-288

tions of the stability boundaries, which are itself uncertain. Additionally, due to the effect289

of ageing, the structural parameters usually degrade with time. This leads to changing of290

the stability boundaries with time. Unfortunately, mathematical models for ageing of struc-291

tural components are not as well developed and hence significant epistemic uncertainties are292

introduced into the formulation when ageing effects are incorporated into the mathemati-293

cal model. In real life applications, it is expected that both these uncertainties exist. For294

assessment of the stability boundaries using model dependent techniques, therefore, require295

accurate identification of the system parameters of the mathematical model. Hence, solving296
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expressed as325

326

myÿ +m3bxαα̈ + kyy + L=0, (10)

m3bxαÿ + Iαα̈ + kαα− L(0.5 + ah)b=0. (11)

Here, for steady flow conditions,
L = 2πρU2bα, (12)

and for quasi-steady flow conditions,

L = 2πρbU2
(

α +
ẏ

U
+ (0.5− ah)

bα̇

U

)

. (13)

Note that in accordance with the thin airfoil theory, the lift slope is taken to be 2π. Using
the notation for the uncoupled natural frequencies as ωy = ky/my and ωα = kα/Iα, and a
nondimensional frequency parameter p = νb/U with ν as the flutter frequency, an eigenvalue
form can be obtained. The other nondimensional parameters are: radius of gyration r =
√

Iα/mαb2, ratio of plunge and pitch natural frequencies ̟ = ωy/ωα, non-dimensional mass

µ = my/πρb
2, non-dimensional wind speed V = U/bωα, non-dimensional distance between

elastic axis and centre of mass xα = S/mαb, non-dimensional distance between mid chord
of airfoil to elastic axis ah, viscous damping ratio in plunge ζy and viscous damping ratio in
pitch ζα. Here, y = ȳ exp(νt) and α = ᾱ exp(νt). The eigenvalue problem for the steady flow
conditions can be expressed as







p2 + ̟2

V 2

m3

my
xαp

2 + 2
µ

m3

my
xαp

2 mα

my
r2p2 + mα

my

r2

V 2 −
2
µ
(ah + 0.5)

















ȳ
b

ᾱ











=











0

0











. (14)

The corresponding eigenvalue problem for the quasi-steady flow conditions is expressed as

[A]











ȳ
b

ᾱ











=











0

0











. (15)

where the matrix [A] is a 2× 2 matrix of the form







p2 + 2p
µ
+ ̟2

V 2

m3

my
xαp

2 + 2p
µ
(0.5− ah) +

2
µ

m3

my
xαp

2 − 2p
µ
(a + 0.5) mα

my
r2p2 − 2p

µ
(ah + 0.5)(0.5− ah) +

mα

my

r2

V 2 −
2
µ
(ah + 0.5)





 . (16)

The eigenvalues obtained from Eqs.(14-15) typically constitute a complex conjugate pair of
roots of the form

p1=Γ1 ± iΩ1,

p2=Γ2 ± iΩ2. (17)

The behaviour of these complex roots with wind speed (U) can be used to verify the onset327

of flutter instability [59]. Figure 8 shows the variation of the real and imaginary components328

of these eigenvalues, for both the steady and the quasi-steady cases.329
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Fig. 8. a) Variation of real (modal damping) and imaginary parts (modal frequency) of solution of
Eqs. 14 and 15 with airspeed. The dashed lines correspond to steady aerodynamics and the solid
ones correspond to quasi steady aerodynamics and b) Zoomed view of figure a). The dashed blue line
correspond to imaginary part of solution from steady state aerodynamics and the dashed red line
represent the corresponding real part. The solid blue line represent the imaginary part of solution
obtained using quasi-steady aerodynamics and the red solid lines represents the corresponding real
part.

In steady flow condition, the onset of flutter is identified by the coalescence of the imaginary330

components of the eigenvalues (dashed lines without markers) and is seen to occur at U =331

8.85 m/s. When the flow is quasi-steady, the onset of flutter is characterized as when the332

modal damping, denoted by the real part of the eigenvalues, changes from zero to a positive333

value indicating divergence and is seen to occur at U = 8.5 m/s; see the full line with markers.334

More details on the theory behind this is available in [59] and is not repeated here.335

In the case of unsteady aerodynamic modelling, the loads are expressed in terms of the336

following intego-differential form [1],337

L(t) = 2πρbU2[α(0) +
ẏ(0)

U
+

b

U
(0.5− ah)α̇(0)]φ(t)

+2πρbU2
∫ t

0
φ(t− t0)[α̇(t) +

ÿ(t)

U
+

b

U
(0.5− ah)α̈(t)]dt0. (18)

The time function φ(τ) is the Wagner’s function which can be approximated as [60]

φ(τ) = 1− 0.165 exp(−0.0455τ)− 0.335 exp(−0.3τ). (19)

The integro-differential equations are numerically integrated following the procedure adopted338

in [57]. From the bifurcation diagram obtained numerically and shown in Fig. 9, it can be339

seen that the onset of LCO occurs at U = 8.35 m/s via a supercritical Hopf bifurcation.340

The physical parameters estimated from the experimental set-up were given in Table 1; the341

corresponding nondimensional values used here for the numerical analysis are listed in Table342

2. Note that fully developed LCO’s were observed in the experiments at approximately U = 8343

m/s. However, as has been mentioned earlier in Section 3, the flow in the wind tunnel was344

not uniform but was accompanied by fluctuations.345
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Fig. 9. Bifurcation diagram of the response as a function of U .

r µ xα ah ζα ζy ̟

0.707 660 0.3 -0.5 0.03 0.05 0.91

Table 2
Non-dimensional parameters of the experimental setup

So far in the numerical calculations, the flow has been assumed to be uniform and without346

any fluctuations. In such sterile conditions, the multifractal signature that has been observed347

in the experiments cannot be seen. In real life scenario, the flow is usually accompanied by348

fluctuations arising due to various causes. These fluctuations need to be incorporated into349

the mathematical model for further analysis.350

As no quantitative measurements of the fluctuations in the flow were available due to lack
of appropriate hardware such as Laser Doppler Velocimetry (LDV) or Particle Image Ve-
locimetry (PIV). it was decided to use a simple canonical model that captures the inherent
characteristics of turbulent flows. Studies have shown that [40, 61] turbulent flows involve
multiple time scales. Thus, in this study a canonical model of the form (see Eq. 20)

V =
Um

bωα
(1 + σ(sin(ωr1t) + sin(ωr2t) + sin(ωr3t))), (20)

was considered for the flow fluctuations. Here, Um is the dimensional mean wind speed in m/s,351

σ indicates the amplitude of the fluctuating component and bωα has the same meanings as352

mentioned in the manuscript. The frequency of the sinusoids are expressed as ωri = ωi+κRi,353

(i = 1, 2, 3), where, Ri, are uniformly distributed random numbers lying between [0, 1] and354

κ is a constant having a small value. The three frequencies ω1, ω2 and ω3 have been taken to355

be arbitrary but incommensurate with each other to avoid periodicity in both short or long356

time scales. The small fluctuations κRi, (i = 1, 2, 3), have been added to the frequency of the357

sinusoids at each time increment to mimic the random nature of the fluctuations in the flow.358

Note that the spectral representation of a random process involves the linear superposition359

of a large number of sinusoids [62] and the use of random process models for fluctuating wind360

flows have been used in aeroelastic literature [17]. However, this requires the knowledge of361

the power spectral density function as well as the probability density function of the process,362

neither of which is available in the present case. The use of the simple canonical model363

shown in Eq. (20) however serves the necessary purpose of introducing additional time scale364

that arise due to turbulence in the flow. A similar canonical form for modelling the flow365

fluctuations has been used recently in [22].366
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The time histories of the plunge response non-dimensionalized by semi-chord, for various367

wind speeds are obtained by numerical integration and are shown in Fig. 10. As Um is368

gradually increased, low amplitude aperiodic fluctuations are observed; see Fig. 10(a). This369

behaviour is qualitatively similar to the observations from wind tunnel experiments. Finally,370

well developed LCO are obtained on further increasing Um; see Fig. 10(b).
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Fig. 10. Non-dimensionalized plunge response from numerical model; a) Um = 4 m/s and b) Um = 8
m/s.

371

The multifractal spectrum for the numerically generated time series is shown in Figure 11.372

In the case when Um = 4 m/s, the singularity spectrum is broad band and indicates the
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Fig. 11. Variation of singularity spectrum with strength a for the numerical data at; a) Um = 4
m/s and b)Um = 8 m/s.

373

presence of a range of exponents, thus revealing the multifractal signature present in the374

data. As flutter is approached, the spectrum collapses into a small region clustered around375

zero, indicating that the fluctuations happen only at a single time scale, indicating a loss376

of multifractal behaviour. In the presence of fluctuations in the flow, the system response377

never attains complete rest even in regions to the left of the bifurcation point shown in378
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Fig. 10. The multifractal nature of the response is due to the overwhelming effect of the379

turbulence in the flow, leading to a higher Hurst exponent. For the region to the right of380

the bifurcation point, the system in sterile flow exhibits periodic oscillations; in the presence381

of fluctuating flows, these oscillations are superimposed with fluctuations. The amplitudes382

of the noisy response therefore have significant contributions from the oscillations which are383

superimposed by small fluctuations due to the fluctuations in the flow. Thus, the dynamic384

behavior is more regular in this region leading to low Hurst exponent value but not equal to385

zero. Note that the Hurst exponent of a regular periodic signal is zero.386

To check the robustness of the precursor proposed in this paper, these synthetically generated387

time histories are next used to forecast an impending aeroelastic flutter using the proposed388

fractal analysis. Figure 12(b) show the variation of Hurst exponent with mean wind speed389

Um. The non-dimensional r.m.s. value of response is plotted in Figure 12(a). An inspection of
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Fig. 12. a)The rms of the numerically generated response with wind speed and b) Gradual drop in
magnitude of H as the wind speed is increased towards flutter conditions.

390

Fig. 12(b) reveals that the Hurst exponent has an almost constant value for Um < 4 m/s and391

there is a distinct change in the slope of the variation of the Hurst exponent from Um = 4392

m/s. The Hurst exponent gradually decreases till about Um = 7.8 m/s and beyond that393

attains a constant value of about 0.03. Further increasing Um does not lead to a lower value394

of the Hurst exponent. As Fig. 10(b) reveals, the oscillations are already well developed at395

Um = 8 m/s. In the presence of fluctuating flows, unlike in the case of sterile flows, one cannot396

define a sharp boundary between the two stability regimes. Instead, the boundary is now more397

diffused and the response in these regions is characterized by intermittent behavior. The time398

histories of the response are characterised by irregular bursts of small and high amplitude399

oscillations. The presence of irregular bursts of large amplitude oscillations imply that the400

Hurst exponent would be now lower than in regimes where the response is characterized by401
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small but noisy fluctuations. Thus, the onset of the instability regime can be identified when402

the Hurst exponent starts decreasing from a more or less constant value, as the bifurcation403

parameter is gradually changed.404

Figure 12(b) clearly shows that the Hurst exponent starts decreasing prior to the onset of405

LCO and can be used as a precursor. This is in contrast to the variation of yrms shown in406

Fig. 12(a), where there is an appreciable change only after the onset of oscillatory motion.407

In usual engineering applications, the safe operating principles associated with the system408

demands that the system does not venture into the LCO regime. The online monitoring of409

the response measurements and calculation of the Hurst exponent provides an important410

metric which will enable the engineer in charge of the safety of the system to take decisions411

when to take remedial measures; the choice of the threshold numerical value of H depends412

on the desired safety margin and is usually a policy decision.413

The figures obtained from analysis of the experimental observations also reveal a similar drop414

in the Hurst exponent from a value of about 0.5 to values close to zero as U is increased; see415

Fig. 6(b). Experimental measurements are not available for U < 4 m/s and hence the behav-416

ior of the Hurst exponent at U < 4 m/s could not be investigated. However, a qualitatively417

similar variation in the Hurst exponent is observed from both experimental and numerical418

measurements. Quantitatively the Hurst exponent is higher in experimental measurements;419

this can be attributed to a wider spectrum bandwidth for the fluctuations in the flow.420

Thus the numerical investigations presented in this section provides a qualitative validation421

to the observations obtained from the wind tunnel experiments. Importantly, the numerical422

investigations confirm that the precursor proposed in this study are effective in providing423

an early warning to the onset of aero-elastic flutter in the presence of flows with small424

fluctuating components. The necessity for the flow to have fluctuations is not unrealistic425

as in field conditions, the flow will not be sterile and be usually accompanied by small426

fluctuations due to the interactions with the structure and its various components.427

8 Concluding remarks428

The transition from low-amplitude, aperiodic fluctuations to fully developed flutter instabil-429

ity in an airfoil has been investigated experimentally through wind tunnel tests. The irregular430

fluctuations observed in the response in pre-flutter regimes is shown to posses multifractal431

characteristics. As the flow speed is gradually increased and the system approaches flutter432

instability, the fractal characteristics in the flow are observed to weaken and are finally de-433

stroyed once limit cycle oscillations set in. This loss of spectral reserve can be used as a434

precursor to an impending flutter instability.435

The possible reasons for the existence of multifractal characteristics in the response is possibly436

due to the small scale turbulent effects due to the operation of the wind tunnel under blowing437

conditions. Though, quantifying the turbulence is out of scope in this present study, it can438

be qualitatively said that the turbulent fluctuations could have given rise to multiple time439

scales in the airfoil response In flow regimes far away from flutter, these small scale local440

fluctuations affect the response leading to the multifractal characteristics. As the system441
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approaches the instability boundaries, the effect of these local fluctuations become weaker442

as the structure and fluid damping approach closer. The onset of flutter is characterised by443

the system losing stability leading to large amplitude periodic oscillations and the effects444

of the small scale fluctuations in the flow become negligible. This can be easily observed445

from an inspection of the scales in the y-axis of the time histories shown in Figure 12.446

An impending flutter instability is forewarned by a smooth drop in the magnitude of Hurst447

exponent (H). A suitable user specific threshold forH can defined so as to track the proximity448

of the aeroelastic system to flutter and take necessary control measures. The presence of449

fluctuations in the flow is however, of practical significance as in reality, not only wind flows450

are naturally accompanied with fluctuations, the presence of various adjoining structural451

components additionally induces small scale fluctuations in the flow.452

A Evaluation of generalised Hurst exponents and the multi fractal spectrum

The steps involved in the computation of the generalised Hurst exponents using DFA are
summarised as follows:

(1) First, the time history of the measured response y(t) of length N is mean adjusted and
a cumulative deviate series yk is obtained as

yk =
k
∑

i=1

(y(t)−m), (A.1)

where, m is the temporal average given by

m =
1

N

N
∑

i=1

y(t). (A.2)

(2) The deviate series is further subdivide into nw non-overlapping segments of equal span
w. For removing the trends in the segments, a local linear fit ȳi is made to the deviate
series yi and the fluctuations are obtained by subtracting the linear fit from the deviate
series.

(3) The structure function of order q and denoted by Fq is computed from the detrended
fluctuations as

Fq =





1

nw

nw
∑

i=1

√

√

√

√

1

w

w
∑

j=1

(yi − ȳi)2)

q



1/q

. (A.3)

For q = 0, the structure function is defined as

F0 = exp[
1

2nw

nw
∑

i=1

log
(

1

w

w
∑

j=1

(yi − ȳi)
2
)

]. (A.4)

(4) The Hurst exponent H is the slope of the linear regime on a logarithmic plot of F2 for
various span sizes w. Similarly, the generalised Hurst exponent Hq are the slopes of the
linear regime of logFq of various orders of q versus logw.
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The singularity spectrum f(a) can be obtained from Hq through a Legendre transform,
through the following set of equations:

τq = qHq − 1 (A.5)

a=
∂τq
∂q

(A.6)

f(a) = aq − τq. (A.7)

The plot of f(a) versus a is known as the multi fractal spectrum or the singularity spectrum.
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