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ABSTRACT 

Most engineering designs involve evaluation of several performance criteria. 
Usually these criteria conflict with each other and identifying good compromise 
solutions is difficult. While multi-criteria optimization approaches such as Pareto 
filtering have been applied to this task, not much attention has been paid to the 
selection of a single best solution. A new algorithm for selecting the best compromise 
solution that closely corresponds to the human decision making process is presented 
in this paper. This algorithm called RR-PARETO3 iteratively eliminates worst 
solutions according to multiple criteria from a population of possible solutions. A 
facade design example is selected for illustration and to evaluate the performance of 
the algorithm. It is shown that the algorithm is capable of identifying good 
compromise solutions that achieve reasonable trade-offs among conflicting criteria.  

INTRODUCTION 

Building facade design has to satisfy multiple criteria such as energy 
efficiency, indoor environment quality and aesthetics. When designs are optimized 
with respect to these criteria individually, the solutions are usually not acceptable 
with respect to other criteria. Nevertheless, single objective optimizations of building 
systems have been performed by a number of researchers. For example, Bouchlaghen 
(2000) used a simplified building thermal model for the optimization of building 
envelopes. Wang et al (2006) presents an approach to optimizing the shape of a 
building for energy efficiency. Energy consumed by electrical and mechanical 
building systems was minimized using a genetic algorithm by Wright et al. (2002). 
Many other examples can be found in the literature. Today researchers are 
increasingly adopting the multi-criteria optimization approach. In multi-criteria 
optimization, several objectives are considered simultaneously and these usually 
conflict with each other. For example, minimizing the lighting energy might require 
increasing the window area which would increase the radiant heat entering into the 
building. Therefore, in multi-objective optimization the emphasis is on identifying 
solutions that achieve the best trade-offs among multiple objectives. An early 
application of this concept can be found in Radford and Gero (1987) where they 
applied dynamic programming in the multi-criteria design optimization with four 
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performance criteria namely, thermal load, daylight availability, construction cost and 
usable area. 

A popular approach to multi-objective optimization is the generation of a 
Pareto Front. In this approach, a population of solutions known as the Pareto set is 
generated in which all the solutions are Pareto optimal or non-dominated. By 
definition, there is no solution better than a Pareto optimal solution with respect to all 
the criteria simultaneously. Several applications of this concept are found in the 
literature (Horn 1997, Deb 2001, Grierson and Khajehpour, 2002). El-Rayes and 
Kandil (2005) generated Pareto surfaces in order to extend traditional two-
dimensional time-cost trade-off analysis to three-dimensional time-cost-quality trade-
off analysis. Some of these techniques have already been used in the optimization of 
building systems. Caldas (2008) studied the trade-off between the initial cost of a 
building and the energy performance of the building using a multi-objective 
optimization approach. In another experiment described in this paper, the trade-offs 
were analyzed in terms of environmental impacts: the system considered both the 
energy saved locally in the building by using better construction terms, and the 
embodied energy of materials, that is, the energy spent to manufacture them. In these 
experiments, Pareto genetic algorithms were used as the optimization technique.   

While the Pareto approach is useful for design tasks in helping engineers 
make decisions, it does not support the selection of a single best solution. Automatic 
selection of solutions is needed in tasks such as control where decisions have to be 
taken several times a minute or second. The issue of selecting a single solution from 
the Pareto set has been largely ignored by previous researchers. This paper presents a 
new algorithm called RR-PARETO3 for selecting the best solution that makes 
reasonable trade-offs among conflicting objectives.  

RR-PARETO3 ALGORITHM 

RR-PARETO3 algorithm is the third generation of the multi-criteria decision 
making algorithm presented in Raphael (2010). In this algorithm, the solution with 
the best trade-offs among all the objectives is chosen using two pieces of information: 

• Order of the objectives according to their importance 
• The sensitivity of each objective  

The sensitivity of an objective specifies what level of increase in its value is 
acceptable to the user. For example, consider the objective of minimizing the power 
consumption. If increasing the power consumption above 10% is not acceptable to 
the user, the sensitivity of this objective is defined as 10%. In this case, the algorithm 
attempts to select solutions that are within 10% of the best solution. The sensitivity 
may also be specified in absolute terms as the maximum increase instead of as a 
percentage. The sensitivity value is an important piece of domain knowledge which 
can only be provided by the design consultants who are specialists in the domain. It 
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reflects the experiential knowledge, priorities and preferences of the designers. In the 
following discussion, the term solution point or point is used to denote a set of values 
of all the objectives as well as the decision variables (optimization variables). 

The RR-PARETO3 algorithm works by iteratively eliminating the worst 
points according to maximum number of criteria. This filtering is done in two stages. 
In the first stage, the solution point with the best value for the current objective is 
chosen from among all the points. All the points that lie outside the sensitivity band 
of the chosen point are eliminated from the set. If the sensitivity is not specified for 
any objective, no filtering is done for this objective and all the solutions are retained. 
At the end of Stage 1, one or more points might remain in the solution set. If a unique 
solution is not identified, Stage 2 filtering is performed. 

In Stage 2 filtering, the hypercube containing all the remaining solutions is 
trimmed. This is done by dividing the hypercube volume into half by bisecting each 
objective axis one by one according to their order of importance. Let ymini and ymaxi 
be the minimum and maximum values of the i-th objective among all the solutions in 
the current set. The threshold is computed as (ymini + ymaxi)/2. In the minimization 
problem, the region containing values greater than this threshold is considered as the 
bad half with respect to this objective. Worst solutions are eliminated using the 
algorithm described below: 

• Stage 2.1: Points that lie within the bad half of most objectives are eliminated, 
taking combinations of k most important objectives at a time (repeated for k = N to 
2) 

• Stage 2.2: Points that lie in the bad half of individual objectives are eliminated 
according to the order of importance of objectives 

• Stage 2.3: Iteratively remove the worst point according to each objective based on 
the order of importance 

The process of bisection of hypercube helps to remove visibly obvious bad 
solutions. When there are still many points left, each objective is given a chance to 
remove the worst candidate in Stage 2.2. The most important objective is given the 
first chance. Stages 2.1 and 2.2 use values of objective function for elimination, while 
Stage 2.3 uses ranking of solutions. The process stops when a single solution remains 
in the set or all the remaining solutions have the same values for all the objective 
functions. By repeating Stage 2.2 for each objective, each criterion is given an 
opportunity to eliminate bad solutions and the final selection is a trade-off among all 
the objectives. It is emphasized that the process does not favor the best solution 
according to any objective. For example, if the best solution according to the first 
objective lies within the bad half of the second objective, this solution is eliminated. 
Since the process is driven by the order of importance of objectives, the users’ 
preferences in the selection process are also respected.  

The algorithm can be used to filter a set of solution points that are generated 
by any optimization algorithm or even pure random sampling procedures. The initial 
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set need not be Pareto optimal. In fact, it is recommended not to perform initial 
Pareto filtering since this might remove important solutions which are likely to 
become Pareto optimal when existing points are eliminated through the addition of 
new constraints.  
 

ILLUSTRATIVE EXAMPLE 
 

In order to illustrate the application of the algorithm an example of façade 
design is presented here. A simple layout of an office space of dimensions 8m by 6m 
is considered in this example. Only the first floor of the building is studied. This has a 
total height of 4.1m with the false ceiling at a height of 2.7m. There are windows on 
the east and west. The windows on the west are shaded by two horizontal overhangs 
at different elevations. The parameters related to the window and the shading on the 
west side are taken as design variables. The optimization variables and their ranges of 
values are given in Table 1. All dimensions are in meters.  

 
Table 1. Optimization variables 

Variable Description Min value Max value 
W1_H Sill height of the window 0.1 2 
W1_W  Width of the window 0.4 5 
SHADE1_Z Height of the first shade 1.8 2.3 
SHADE1_W Width of the first shade 0.01 1 
SHADE2_Z Height of the first shade 2.4 2.7 
SHADE2_W Width of the first shade 0.01 1 
1500 solutions were generated by pure random search. Each solution was evaluated 
for lighting and energy performance using EnergyPlus software version 8.1 
(EnergyPlus 2013). Yearly simulations were conducted using the weather data file of 
Chennai, India. The initial set of solutions obtained through random sampling is 
shown using parallel axis plot in Figure 1. A parallel axis plot is a method of 
visualizing multi-dimensional data. Each variable is represented by a vertical axis and 
a sequence of lines connecting these axes represent a point. For example, the point 
highlighted in Figure 1 using white dots has the following values of variables: 

Table 2. A solution point for illustration 
Lighting 
(WHr) 

Cooling 
(WHr) 

W1_H W1_W SHADE1_
Z 

SHADE1_
W 

SHADE2_
Z 

SHADE2_
W 

2172 13447 0.967 4.978 2.033 0.115 2.428 0.254
The effects of conflicting objectives are clearly seen in the plot. Inclined lines 

that start from low values of lighting load and touch upper regions of the cooling load 
axis indicate that minimizing one of these objectives would result in high values for 
the other objective. The compromise solution obtained through RR-PARETO3 
filtering is shown in Figure 2. In this filtering, the sensitivity of both objectives is 
specified as 5% and lighting is given higher priority over cooling. In order to show 
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how the compromise solution changes by modifying the sensitivity parameter, the 
design obtained using 1% sensitivity for both objectives is shown in Figure 3. Since 
in this case, large increase in the lighting load is not acceptable, the windows are 
larger and the shades are smaller.  

In order to illustrate the point that single objective optimization is 
inappropriate for the design of facades, the optimal solutions obtained using lighting 
and cooling as individual objectives are shown in Figures 4 and 5. Even though the 
solution in Figure 4 looks reasonable, the first shade has minimum width and the 
cooling load for this design has the maximum value which is 63% more than the 
minimum value. When the thermal load was minimized (Figure 5), the width of the 
window was reduced to the minimum value and the shades were made wider to 
further block solar radiation. A single objective optimization process moves towards 
larger shades even though the improvements in cooling load are marginal when the 
windows are small. Such nearly insignificant improvements in the value of a single 
objective are ignored by a multi-objective algorithm such as RR-PARETO3. 

  
DISCUSSION 

The illustrative example shows that reasonable trade-offs among conflicting 
objectives can be achieved through RR-PARETO3 filtering. The compromise 
solution obtained with a sensitivity of 5% had a lighting load 4.1% higher than the 
minimum and a cooling load 10.6% higher than the minimum. The cooling load is 
higher because the lighting objective was given higher priority and no solution having 
lighting load within the 5% threshold had a better performance with respect to 
cooling load. If the compromise solution is compared with the optimal solution 
according to the lighting load objective, 30.3% decrease in the cooling load was 
achieved by a mere 4.1% increase in the lighting load. This shows the quality of 
trade-off that has been achieved.  

Several papers have discussed the use of traditional trade-off analysis in value 
engineering. Feng et al. (1997) concluded that traditional techniques using heuristic 
and mathematical programming are not efficient or accurate enough to solve real-life 
construction projects. They state that many methods have limitations such as 
assuming linear relationships and cannot accommodate discrete variables. 
Researchers who have used multi-objective optimization for trade-off analysis 
usually stop at producing the trade-off curves and leave decision making to domain 
experts (El-Rayes and Kandl, 2005). RR-PARETO3 algorithm captures users' 
preferences for acceptable trade-offs indirectly using a sensitivity parameter which 
specifies the acceptable maximum increase in the value of objective function. This is 
easy to input compared to pair-wise ratios of benefit to cost. In general it is difficult 
to convert all the benefits into a single utility function having the same units. For 
example, the value of amount of daylight obtained through unit increase in material 
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cost cannot be compared with potential energy savings since they have different 
units. It easier to set constraints on the levels of acceptable increase (or decrease) in 
the values of light levels and energy. Within these constraints, the algorithm identifies 
best compromises through elimination of worst solutions iteratively.  

 
CONCLUSIONS 

A new algorithm for identifying the best compromise solution according to 
multiple criteria has been developed. This has been applied to a facade design task. 
The results show that reasonable trade-offs between conflicting objectives have been 
achieved through the application of this algorithm.  
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Figure 1. Parallel axis plot of the solution points 
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Figure 2. Compromise solution obtained 
by the RR-PARETO3 algorithm with 
sensitivity of 5% 

 
Figure 3. Compromise solution 
obtained by the RR-PARETO3 
algorithm with sensitivity of 1% 

 

Figure 4. Optimal solution with 
respect to lighting energy 

 
Figure 5. Optimal solution with respect 
to thermal load 
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