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ABSTRACT
Compression schemes for EEG signals are developed based
on matrix and tensor decomposition. Various ways to arrange
EEG signals into matrices and tensors are explored, and sev-
eral matrix and tensor decomposition schemes are applied,
including SVD, CUR, PARAFAC, the Tucker decomposition,
and recent random fiber selection approaches. Rate-distortion
curves for the proposed matrix and tensor-based EEG com-
pression schemes are computed. It shown that PARAFAC has
the best compression performance in this context.

Index Terms— tensor decomposition, EEG, Tucker,
PARAFAC, SVD

1. INTRODUCTION

Electroencephalograms (EEG) are electrical signals recorded
along the scalp or brain surface, generated by firing of neu-
rons within the brain [1]. In various clinical applications,
EEG signals are sometimes continuously recorded over ex-
tended periods of time (several days, weeks, or potentially
even months):

• in neurology intensive care units (ICU), e.g., for stroke
patients,

• in telemedicine for neurological patients, where EEG is
continuously recorded outside the hospital.

Long-term EEG recordings result in massive EEG data sets.
Therefore, it is required to compress the EEG signals before
storage or transmission. The main challenges for EEG com-
pression are as follows:

• the number of EEG channels can be large (e.g., 256),
especially if accurate inverse modeling is needed,

• high sampling rate may be required (several kHz in
the case of cortical EEG; several hundred Hz for scalp
EEG), to capture spikes and high-frequency oscilla-
tions in the EEG

A variety of techniques have been developed for com-
pressing EEG signals; we refer to [2] for an excellent re-
view on lossless EEG compression. In the following, we will
briefly outline the state-of-the-art in EEG compression.

EEG signals are often modeled as auto-regressive (AR)
processes, similarly as speech signals. Various AR predic-
tors have been developed: linear AR predictor [2], least
squares [2] and adaptive neural network predictors [3]. Fur-
ther refinements include context-based bias cancelation [4]
and detailed prediction residual modeling [3], which improve
compression performance at the expense of computational
complexity.

Before compressing signals, it may be fruitful to first
transform them in an other domain. Various common trans-
formations have been used for EEG compression, including
discrete cosine transform [2], subband transform, wavelet
transform, wavelet-packet transform, and integer lifting
wavelet transform [2,5].

The emerging field of compressed sensing allows to ac-
quire sparse signals with very few random measurements,
well below the Nyquist rate. Compressed sensing of EEG has
been explored in a few recent studies [6,7].

A large number of studies have been devoted to the com-
pression of EEG. However, most of them consider the com-
pression of single EEG signals; multi-channel compressionof
EEG is less intensively studied. Multi-channel data can natu-
rally be represented as tensors (“multi-way representation”).
Multi-way analysis has been applied to EEG signals (espe-
cially non-negative decompositions of time-frequency maps),
mostly for extracting features (see, e.g., [8, 9]); those studies
seem to suggest that multi-way analysis may be effective for
EEG compression as well, however, many issues still need to
be systematically explored. In this paper, we present results
from such systematic study.

In this study, we utilize a variety of matrix and tensor
decomposition methods to approximate EEG signals. We
explore several ways to arrange EEG signals in the form of
matrix and tensor, and we evaluate several matrix and tensor
decomposition schemes [10]. Such decomposition schemes
include the singular value decomposition (SVD), column-
row decomposition for matrices (CUR), PARAFAC, Tucker
decomposition, and fiber-sampling tensor decomposition for
tensors. We compute rate-distortion curves for our proposed
tensor-based schemes for EEG compression.



First we review the matrix and tensor decomposition
methods that we consider in this paper (Section 2), and we
explain how we arrange EEG data into matrix and tensor form
(Section 3). We describe the EEG data analyzed in this study
(Section 4), and present results for our matrix and tensor de-
composition based compression schemes (Section 5). At the
end of the paper, we describe ongoing and future work.

2. MATRIX AND TENSOR DECOMPOSITIONS

Tensors or multi-way arrays provide a natural representation
for multi-dimensional data. Tensor decomposition models are
important tools for feature extraction and classification since
they capture the dependencies in higher-order data-sets. They
have found application in many areas, e.g., psychometrics,
chemometrics, and signal processing [10, 11]. In this paper,
we investigate two matrix factorization methods (SVD and
CUR) and four tensor decomposition techniques (PARAFAC,
Tucker, Fiber-sampling tensor decomposition, and compact
tensor decomposition); in the following, we will briefly re-
view those schemes. (We refer to [10] for an excellent re-
view of tensor decompositions. We use the same notation as
in [10]).

2.1. Singular value decomposition (SVD)
A Singular Value Decomposition of a matrixX ∈ R

M×N is
of the form

X = UΣV
T , (1)

whereU ∈ R
M×M , V ∈ R

N×N are the left and right singu-
lar vectors respectively. The matrixΣ ∈ R

M×N is diagonal:
Σ = [diag{σ1, σ2, . . . , σR}; 0], whereσi are the singular val-
ues ofX with σ1 ≥ σ2 ≥ . . . ≥ σR andR := min(M, N).
The matrixX can be approximated byr-singular vectors with
r < R:

X̂ ≈

r
∑

i=1

uiσiv
T
i . (2)

2.2. Column-Row decomposition (CUR)
CUR decomposition (“pseudo-skeleton decomposition”) de-
composes a matrix in terms of rows and columns of the orig-
inal matrix [12]:

X ≈ CUR (3)

whereC andR consists of selected columns and columns re-
spectively ofX, and the matrixU is constructed such that the
productCUR is as close as possible toX. This method has
been widely used in data analysis tasks, where the interpre-
tation via SVD decomposition is difficult due to the orthogo-
nality of the singular vectors.

2.3. Parallel factor decomposition (PARAFAC)
PARAFAC decomposes a tensorX into rank-one tensors (vec-
tors):

X ≈

r
∑

i=1

ai ◦ bi ◦ ci (4)

wherea, b andc represent the factors along the three modes,
whereas◦ stands for the outer-product along the particular
mode. Whenr equals the rank of the tensor, the PARAFAC
decomposition is exact. For the purpose of compression, we
setr < R.

2.4. Tucker decomposition
The Tucker method decomposes a tensorX into a core tensor
G ∈ R

P×Q×R and factor matrices (“basis matrices”)A ∈
R

N×P , B ∈ R
N×Q andC ∈ R

M×R:

X ≈ G ×1 A ×2 B ×3 C. (5)

The factor matrices capture the variation along the three
modes and the core tensor captures the interaction between
them.

2.5. Fiber-sampling tensor decomposition (FSTD)
The FSTD method is an extension of the CUR matrix decom-
position to tensors; a tensor is represented by a subset fibers
selected along each mode [13]:

X ≈ U ×1 C1 ×2 C2 ×3 C3 (6)

whereC1, C2 andC3 are matrices formed by fibers along
the mode indicated in the subscripts. The core tensorU is
expressed in terms of intersection subtensorW formed by the
intersection of the selected fibers along the three modes:

U = W ×1 W
†

(1) ×2 W
†

(2) ×3 W
†

(3), (7)

whereW
†

(i) represents the pseudo-inverse of the intersec-
tion sub-tensor matriced along the mode-i. The tensor is
expressed in terms of a subset of elements from the original
tensor; this concept is similar to compressed sensing.

2.6. Compact tensor decomposition (TT)
The compact tensor decomposition method (“TT decomposi-
tion”) approximates anyd-dimensional tensor into two ma-
trices along mode-1 and mode-d, andd − 2 three-way ten-
sors [14]. In particular, a three-way arrayX ∈ R

N×N×M is
decomposed as:

X ≈ U ×1 G1 ×3 G3 (8)

whereU ∈ R
R1×N×R2 , G1 ∈ R

N×R1 andG3 ∈ R
N×R3

are the tensor and matrices formed of decomposition. This
method is numerically well behaved and considered as an
alternative to PARAFAC. Note that the TT decomposition (8)
only tries to capture dependencies along two of the three
modes (1 and 3), in contrast to PARAFAC, which models
relations among all three modes.

3. MATRIX AND TENSOR FORMATION FROM EEG

Multi-channel EEG signals (M signals of lengthL = N2)
can naturally be arranged in the form of a matrixX ∈ R

M×L

or tensorX ∈ R
N×N×M . Such arrangement will allow us

to explore compact representations of EEG signals. We have
considered the following constructions so far:



• Matrix : The EEG signals from each of theM channels
are arranged as rows of the matrix:

X(k, :) = EEG(k)(1 : L) ∀ k = 1, . . . , M (9)

• Time tensor : Single-channel EEG signals are ar-
ranged to form a matrix [5]. This matrix is then stacked
to form a three-way tensorX ∈ R

N×N×M , whose
frontal slices represents signal from a particular chan-
nel. It can be expressed by the following relationship:

X::k = matrix(EEG(k)(1 : N2)) (10)

whereN × N is the dimension of the frontal slice,M

the number of channels,EEG(k) the EEG from chan-
nelk and matrix() is function that arranges EEG in the
form of a matrix; the entries are filled starting at the top
left-hand side, from left to right on the odd rows, and
from right to left on the even rows.

• Wavelet tensor : Wavelet tensor is derived from the
time tensorX , by subjecting each frontal slice to 2-D
discrete wavelet transform:

X
w
::k = 2D-DWT(X::k) ∀ k = 1, . . . , M. (11)

In the matrix construction, neighboring entries in the rows
represent adjacent time-samples from the same EEG channel,
whereas neighboring entries in the columns represent sam-
ples from adjacent channels at the same time instance. In
the time-tensor construction, the mode-1 (column) fibres rep-
resents samples from the same channel displaced byN sam-
ples. Mode-2 (row) fibres represent adjacent samples from the
same channel, whereas entries along the mode-3 fibres (tubes)
represent the samples from adjacent channels at the same time
instance.

4. EEG DATA SETS
We describe here the two data EEG sets that we have consid-
ered in this study.

4.1. Dataset-1 : MCI Vs Control

The first EEG data set comprises two study groups. The first
group consists of 22 patients who had complained of mem-
ory problems. These subjects were diagnosed as suffering
from mild cognitive impairment (MCI) and subsequently de-
veloped mild AD (MiAD). The EEG recordings were con-
ducted while all patients were in the MCI stage. The criteria
for inclusion into the MCI group were a mini mental state
exam (MMSE) score = 24, though the average score in the
MCI group was 26 (SD of 1.8). The other group is a control
set consisting of 38 age-matched, healthy subjects who had no
memory or other cognitive impairments. The average MMSE
of this control group is 28.5 (SD of 1.6).

Ag/AgCl electrodes (disks of diameter 8mm) were placed
on 21 sites according to 1020 international system, with the
reference electrode on the right ear-lobe. EEG was recorded

with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a sampling
rate of 200Hz, with analog bandpass filtering in the frequency
range 0.5-250Hz and online digital bandpass filtering between
4 and 30Hz, using a third-order Butterworth filter (forward
and reverse filtering).

This data set has been analyzed in various studies (e.g.,
[16]), and we refer to the latter for more detailed information.

4.2. Dataset-2: EEG-MMI database

The second EEG data set consists of three 64-channel record-
ings chosen from the EEG-Motor Mental Imagery datasets of
physiobank database [15]. The EEG is recorded from healthy
subjects at 80Hz sampling rate and with 12 bit resolution.

5. RESULTS
We arranged the EEG data described in Section 4 as matri-
ces and tensors, as described in Section 3. Next we applied
the matrix/tensor decomposition schemes of Section 2 to the
resulting matrices and tensors, resulting in various compres-
sion schemes. We assess the performance of the latter by
the compression ratio (CR), defined as the ratio of samples
in the original EEG data to the number of elements in the ma-
trix/tensor decomposition. The quality of the reconstructed
signal is measured as the percent-root mean square distortion
(PRD):

PRD(%) =

√

√

√

√

∑N2

i (x(i) − x̃(i))2
∑N2

i x(i)2
× 100. (12)

The results are summarized in Fig. 1 and Fig. 2. Since
the results for time-tensor and wavelet-tensor construction
were about the same, we only show results for the time-
tensor construction. The results were obtained by varying
the dimensions in the matrix/tensor decomposition, includ-
ing number of singular values (cf.(2)) and rank-one tensors
(cf. (4)), columns/rows (cf. (3)) or fibers (cf. (6)). We com-
puted Tucker and TT decomposition for all possible sizes of
the core tensorG andU respectively. Next, for fixed compres-
sion ratios we chose the core tensor size that minimizes the
distortion. To avoid overfitting, we performed leave-one-out
crossvalidation to assess Tucker and TT decomposition. We
considered EEG segments that areL = 256 and 1024 samples
long, and hence the dimensionN in (10) equals 16 and 32
respectively.

As can be seen from Fig. 1 and Fig. 2, the tensor-based
compression schemes clearly outperform matrix-based com-
pression schemes, especially at large compression ratios.The
results are better for larger EEG segments (L = 1024 andN
= 32). The smallest reconstruction error was obtained with
PARAFAC, followed by Tucker decomposition, and then TT
decomposition. In this context, CUR and FSTD yield the
largest approximation error. However, they do not require
the entire matrixX or tensorX to be given, in contrast to
the other methods; as a result, CUR and FSTD may be use-
ful for compressive sensing, where the EEG is sampled far
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Fig. 1. Percent-root-mean-square distortion variation with
compression ratio for the dataset-1 (MCI), forL = 256 (right)
andL = 1024 (left).
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Fig. 2. Percent-root-mean-square distortion variation with
compression ratio for the dataset-2 (EEG-MMI database), for
L = 256 (right) andL = 1024 (left).

below Nyquist rate. Most likely, for such methods to be ef-
fective though, we will need to explore alternative ways to
arrange EEG data in matrix and tensor form, for example,
using continuous wavelet transforms. Interestingly, the com-
pression error was significantly smaller for MCI patients than
for age-matched control subjects (dataset-1). In future work,
we will explore the use of compression schemes in the realm
of diagnosing MCI and AD.

6. CONCLUSION

Conventional multi-channel compression schemes usually ex-
ploit the intra-channel and inter-channel correlation in sep-
arate stages; matrix and tensor-based compression schemes
capture intra-channel and inter-channel correlations simulta-
neously, which is a more elegant approach that seems to yield
good compression performance.

We are currently exploring various extensions. For ex-
ample, the matrix and tensor decompositions may be applied
recursively, by applying them to the residual matrix/tensor.
Alternatively, the matrices and tensors in the decompositions
(e.g., core tensorG in (5)) may be further compressed, e.g.,
using arithmetic coding.

We are also considering unequal error protection; it is
well-known that the high frequency components in EEG sig-
nals are the most contaminated, since they are usually the
weakest. Therefore, we can allow higher approximation error
for the entries in the wavelet tensor corresponding to high-
frequency EEG components. At the same time, we would
like to keep the approximation errors for the low-frequency
entries as small as possible.
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