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Micro and nano structures of titanium dioxide (TiO2) are well-known for their photocatalytic appli-

cation. High surface area and high light scattering efficiency in such structures enhance their photo-

catalytic activity. The present work explores the possibility of enhancing photocatalytic activity

through mesoporous TiO2 spheres by exploiting the coexistence of high porosity and morphology

dependent resonance (MDR) modes. A controlled synthesis of TiO2 spheres with nano-crystalline

grains of anatase phase and high surface area of about 96 m2/g has been successfully accomplished

leading to mesoporous particles with uniformly distributed pores of small diameters much less than

the wavelength of incident light. Despite the high porosity, MDR modes are observed in the photo-

luminescence spectrum of a single sphere. As inclusion of pores may produce significant changes in

the refractive index (RI) of the resonator, and as the quality and density of the modes depend on the

RI of the resonator, it is important to have a procedure to determine the RI of the resonator as well

as to characterize the MDR modes. An iterative procedure that is quite general is presented for mode

identification and for the determination of the porosity-induced reduction in the RI and for ascertain-

ing the presence of chromatic dispersion. The presence of high surface area as well as of MDR

modes of reasonably high Q-factor makes these particles promising for photo electrochemical

applications. Published by AIP Publishing. https://doi.org/10.1063/1.5046488

I. INTRODUCTION

Morphology dependent resonance (MDR) modes are the

resonance modes of high quality (Q) factor in a micro-cavity

occurring due to the trapping of light caused by total internal

reflection at its boundary. These modes are also referred to in

the literature as whispering gallery modes (WGM).1 The

presence of such resonances enhances the interaction of light

with the intrinsic material mostly near the surface of the

sphere.1 Spectral positions of these modes are sensitive to the

morphology of the sphere and the difference between the

refractive indices of the resonator and surrounding medium.

MDR modes have been attracting interest due to their various

applications in fields like lasing, sensing, light trapping,

nonlinear photonics, etc.2–4

Microparticles of TiO2 in the form of disk,5 sphere,6 etc.

have been studied as micro cavity resonators due to their

various desirable properties like high ultraviolet (UV) light

absorption and high scattering of visible and near infrared

light, CMOS compatibility,5 thermal and chemical stability,

biocompatibility,7 etc. Spherical resonators are attractive

because of their simplicity of production and capability of

producing modes with highest quality factor as compared to

resonators with other shapes. TiO2 being a photocatalytic

material in the presence of MDR modes highly enhances the

light matter interaction and hence its photocatalytic activity.

Paunoiu et al.
6 have shown the presence of MDR modes in

TiO2 microspheres and suggested their usefulness in photo-

catalysis. Das et al.8 have shown that the presence of MDR

mode in mesoporous TiO2 enhances the efficiency of dye

sensitized solar cells.

TiO2 is well known for its photocatalytic applications.

During photocatalytic reaction, light induced charges of the

TiO2 particle take part in redox reaction with the molecules

or atoms adsorbed on its surface.9 The presence of high

surface area enhances the interaction of TiO2 with the exter-

nal molecules to be catalyzed. The presence of MDR modes

enhances its scattering efficiency and hence its light harvest-

ing capability. The presence of both high surface area and

MDR modes makes these particles more promising for photo

electro chemical applications. The quality of scattering by a

resonator is defined by its Q-factor and free spectral range

(FSR) which are dependent on the morphology and RI of the

resonator. A high Q-factor or low loss resonator requires a

homogeneous, non-absorbing medium with a smooth

surface.1 Introduction of pores as inclusion inside the sphere

may cause inhomogeneity, rough surface, and change in the

effective RI from its bulk RI.10 Size and distribution of the

pores need to be controlled to retain the MDR modes in a

resonator with high surface area, and a correct estimation of

RI is necessary to have an understanding and control over

the quality of light scattering by the particles. Direct methods

of the estimation of RI from an unknown material are non-

trivial. However, various approximation and iterative

methods have been proposed for the estimation of RI via

identification of the MDR modes. Paunoiu et al.6 have found

that RI from the MDR modes occurred in the photolumines-

cence (PL) spectrum of TiO2 microsphere considering it to

be constant in the range of observation. In their work, RI is

estimated by adjusting the size and RI simultaneously to min-

imize the difference between calculated and observed mode

positions. Ikari et al.11 have identified the modes of Eu3+

doped TiO2 by varying the estimation of size and RI and

matching the mode positions of experimental and simulateda)Email: kalyanimon1@gmail.com.
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spectrum. However, the dispersion of the RI was considered

to be linear in this case. This method is suitable over a small

range of wavelength (WL) where RI has linear and lesser dis-

persion. Moirangthem et al.
12 have also introduced a method

of finding RI of ZnO micro sphere where the dispersion char-

acteristics of bulk ZnO are assumed to be applicable for the

ZnO microsphere as well. However, the presence of pores or

impurities may cause higher order changes in the dispersion

of RI from its bulk value.

In most of the iterative methods, RI and size of the

sphere are varied iteratively to minimize the separations

between theoretical and experimental modes. An MDR mode

is defined by an integer number known as angular mode

number (l) which is dependent on the size parameter and RI

of the sphere. Estimation of the value of l iteratively involves

comparatively fewer steps.

In this work, mesoporous TiO2 microspheres with a very

high surface area of about 96 m2/g are synthesized. Such

high surface area was obtained due to the use of an organic

structure directing reagent. The sol-gel method was used to

obtain inorganic-organic hybrid amorphous spheres. When

solvothermally treated, amorphous hybrid TiO2 micro

spheres convert to mesoporous TiO2 microspheres of high

surface area consisting of nanocrystals and nanopores due to

the removal of the structure directing agent. Due to the

uniform distribution of the structure directing agent in the

amorphous sphere, pores generated during hydrothermal

process also remains uniformly distributed without disturbing

the spherical morphology of the sphere. X-ray diffraction

(XRD), Raman spectrum, and Brunauer–Emmett–Teller

(BET) surface area measurements have been done to confirm

the crystalline and porous nature of the synthesized particles.

Scanning electron microscope (SEM) images are obtained to

study the morphology of the material. MDR modes were

observed in the PL spectrum of a single sphere. MDR modes

observed could not be explained by the RI of bulk TiO2 as

its effective RI and its dispersion got changed from its bulk

value due to high porosity. An iterative procedure that is

quite general and easy to follow is presented for mode identi-

fication which leads to the extraction of RI. This method

does not require prior knowledge of RI of the medium in the

bulk. RI is extracted at each TE mode, and dispersion in RI

is obtained by fitting the Sellmeier equation to the extracted

data. By identifying the MDR modes in the PL spectrum of

the microspheres correctly, the real part of the RI of the

spheres is estimated and found to be much smaller than that

of bulk anatase.

II. EXPERIMENTAL INVESTIGATIONS

A. Sample preparation

Amorphous precursor microspheres were synthesized by

hydrolysis of titanium isopropoxide (TTIP) in n-butanol in

the presence of hexadecylamine (HDA) as structure directing

agent using the sol-gel process, as mentioned in the work of

Cao et al.13 TTIP (97%) and HDA (90%) were purchased

from Sigma-Aldrich. For the synthesis of amorphous precur-

sor microspheres, 1.987 g of HDA was dissolved in 100 mL

of n-butanol (Rankem) followed by the addition of 0.7 mL of

0.1M aqueous potassium chloride (AR, Merck) solution. 2.2

mL of TTIP was added to this solution and stirred at a tem-

perature around 20 °C. The solution became milky white

within 15 min. This white solution was kept static at room

temperature for 18 h to obtain precursor microspheres of size

in the range of 2–5 μm. The precursor spheres were collected

via centrifugation and cleaned with n-butanol once followed

by cleaning with ethanol for three times. The clean spheres

were dried at room temperature for a day in air. 1 g of the

dried powder was dispersed in a mixture of 20 mL ethanol

and 10 mL water and underwent solvothermal treatment at

160 °C for 20 h in a Teflon lined autoclave of 50 mL capacity.

During the sol-gel process, amino group of HDA is

hydrogen bonded to the amorphous TiO2 produced from

hydrolysis of TTIP to form an inorganic-organic hybrid com-

posite. With time, this composite condenses to a denser form

and takes a spherical shape to minimize surface free

energy.14 During the solvothermal process, amorphous TiO2

nanoparticles change their phase to anatase crystals and also

grow in size along with the HDA slowly getting removed

leaving pores in TiO2 domain. Solvothermal treatment for

smaller time intervals resulted in spheres with lesser porosity.

Longer time intervals appear to lead to loose packing of the

nano-crystallites.13

For the PL measurement, a low concentration dispersion

of the above particles in ethanol was obtained and drop-

casted on a silicon substrate and dried at room temperature

over a night. A heat treatment at 150 °C for 5 h was done on

these spheres to remove any remaining organic compound on

it. For XRD and porosity measurement, the solvothermally

treated spheres were dried for a day to obtain in powder form

and then underwent a heat treatment at 150 °C for 5 h, along

with the drop-casted spheres.

B. Sample characterization

Crystallinity of the material was analyzed from the XRD

pattern using a Bruker D8 Discover diffractometer (Cu-Kα

source). Raman spectrum and PL-spectrum of a single parti-

cle were obtained by exciting a single particle with a laser

light of WL 488 nm, using a HORIBA JOBIN VYON HR

800 UV Raman spectrometer. BET surface area and porosity

measurements were carried out using a Micromeritics

ASAP2020 analyzer. Energy dispersive x-ray (EDX) analysis

of the synthesized material was done with a scanning elec-

tron microscope (FEG Quanta 400 FESEM). Images of the

single spheres and their surfaces were studied with high reso-

lution SEM (Hitachi S4800 HR-SEM).

Peaks corresponding to anatase TiO2 appeared in the

XRD pattern of the sample as shown in Fig. 1(a). Average

crystal sizes of the particles calculated using Scherrer

formula is 7 nm. Figure 1(b) represents the Raman spectrum

obtained by focusing a laser beam of WL 488 nm on a single

sphere. Peaks at 143.9 (Eg), 198.3 (Eg), 399.3(B1g), 522.8

(A1g and B1g), and 642.1 (Eg) in the Raman spectrum

confirm its phase to be anatase.15 The SEM image of the

corresponding single sphere can be seen in the inset of

Fig. 1(b). However, EDX analysis on a single sphere (Fig. 2)

of the sample indicates the presence of carbon and nitrogen
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as well. The peak representing silicon in the EDX data is due

to the contribution from the substrate.

Mesoporosity of the spheres is confirmed by BET

surface area and porosity measurement using nitrogen

adsorption desorption isotherms at 77 K. BET surface area

was measured to be 96.0 m2/g. Adsorption and desorption

isotherms are shown in Fig. 3(a) by black solid curves and a

red dashed curve, respectively. Hysteresis observed in the

adsorption desorption isotherm indicates the material to be of

type IV according to the IUPAC classification.16 The corre-

sponding Barrett-Joyner-Halenda (BJH) calculation for pore

size distribution is shown in Fig. 3(b). In Fig. 3(b), differen-

tial adsorption volume as a function of pore width is plotted

for desorption isotherm. Sizes of the pores are found to be

around 7.6 nm. A mesoporous surface can be observed in the

high resolution SEM image in the inset of Fig. 3(b).

C. MDR modes in PL spectrum

PL of an isolated single microsphere is obtained by a

micro Raman spectrometer. Since excitation energy (2.54 eV)

is much below the band gap (3.2 eV) of pure anatase TiO2,

luminescence observed in the visible spectrum may be attrib-

uted to the inter-band transitions from the defect states due to

oxygen-vacancies6,17,18 or due to the presence of N and

C.19,20 PL is measured in a range of WL much away from

the Raman lines of anatase TiO2. MDR modes are observed

on the top of the wide PL spectrum.

It has been shown recently that spheres of birefringent

media lead to split modes.21 It has also been shown that

MDR modes of polycrystalline TiO2 (anatase phase) spheres

made of birefringent grains resemble those of an equivalent

isotropic Mie sphere, when the grain size is much small com-

pared to the WL of light responsible for the generation of the

modes.21 The mode features observed in the spectrum shown

in Fig. 4(a) do not indicate mode splitting, suggesting that

the mesoporous sphere may be effectively isotropic in nature.

However, the presence of high porosity is expected to lower

the RI and may lead to changes in the dispersion of RI influ-

encing the mode positions and Q-factors. As the observed

sizes of the grains (∼7 nm) and of the pores (∼7.6 nm) of the

mesoporous sphere are very small compared to the visible

WL, the mesoporous sphere has been considered to be an

effective homogeneous and isotropic sphere. Accordingly,

Mie theory has been employed for the identification of the

modes. Figure 4(a) shows the MDR modes observed in the

emission spectrum for the spheres with diameters 4.32 μm,

3.18 μm, and 2.91 μm, respectively. The corresponding SEM

images for the spheres with diameters 4.32 μm, 3.18 μm, and

2.91 μm are shown in Fig. 4(b). Experimental spectrum is

denoted by a black curve in Fig. 4(a), and the simulated effi-

ciency spectrum with the corrected RI is shown by the red

curve in the same figure. Mode identifications for 3.18 μm

FIG. 3. (a) Nitrogen adsorption and desorption isotherms are represented by

black (solid) and red (dashed) curves, respectively; (b) Differential pore

volume vs pore width from BJH calculation. A high resolution SEM image

of the surface of a sphere is shown in the inset of (b)

FIG. 1. (a) XRD of the powder sample; (b) Raman spectrum of a single

microsphere and corresponding SEM image in the inset.

FIG. 2. EDX spectrum of a single microsphere.
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and 2.91 μm particles are shown in Fig. 4(a). Due to its

bigger diameter, modes corresponding to 4.32 μm have

higher spectral density. Mode identification of 4.32 μm

sphere in Fig. 4(a) is shown in Fig. 7.

The method followed for the assignment of mode

numbers and extraction of RI is discussed in detail in the

Sec. III.

III. ANALYSIS OF THE MDR MODES

A. Mode identification and RI extraction procedure

1. Theory of MDR modes

When the circumference of a spherical particle is an inte-

gral multiple of the WL of light inside the sphere, the light

entering the sphere can get trapped inside the sphere due to

total internal reflection producing standing waves inside the

sphere mostly near its surface. This leads to MDR modes.

From a ray optics point of view, one can argue these modes

to appear in a dielectric sphere of refractive index (RI) n and

radius a, when light of particular WL, λl satisfies Eq. (1).

2πa

λl=n(λl)
¼ l, (1)

However, Eq. (1) is a geometrical optics aspect and is more

convincing when l ! 1. In general, the interaction of light

with spherical particles can be explained by Mie theory, by

solving vector wave equations in spherical polar coordinates,

applying boundary conditions. Scattering cross section (Csca)

and scattering efficiency [Qsca ¼ Csca=(πa
2)] for a homoge-

neous, isotropic, nonmagnetic, perfect sphere can be calcu-

lated from the Mie–Debye theory22 as given in Eq. (2):

Qsca ¼
2

x2

Xl¼1

l¼1
(2lþ 1)( jalj

2 þ jblj
2
), (2)

al ¼
n2jl(nx)[xjl(x)]

0 � jl(x)[nx jl(nx)]
0

n2jl(nx)[xh
1
l (x)]

0 � h1l (x)[nx jl(nx)]
0 , (3a)

bl ¼
jl(nx)[xjl(x)]

0 � jl(x)[nx jl(nx)]
0

jl(nx)[xh
1
l (x)]

0 � h1l (x)[nx jl(nx)]
0 , (3b)

where jl and h1l are spherical Bessel and spherical Hankel

function of first kind, respectively, x ¼ 2πa=λ. al and bl are

the scattering coefficients which are functions of a, λ, and n.

MDR modes appear in the scattering spectrum of a sphere

when the denominators of al and bl vanish. The line shape of

ja2l j and jb2l j in the vicinity of a resonance is characterized by

a Fano profile.23 For larger values of l, this line shape tends

to take a Lorentzian profile. When the denominator of bl (al)

vanishes, alignment of electric (magnetic) field becomes

transverse to the radial direction and modes are called TE

(TM) modes. In the domain of 1 << x < l, the function in the

denominator of bl in Eq. (3a), denoted by fl, can be simpli-

fied in terms of Bessel function ( jl) and Neumann function

(yl).
24 The modes are determined by the zeroes of fl as indi-

cated by Eq. (4).

fl(x, n) ¼ nyl(x) j
0

l(nx)� y
0

l(x) jl(nx) ¼ 0: (4)

MDR observed in the emission spectrum are analogous to

that observed in the scattering spectrum.1 MDR modes are

characterized by four parameters: polarization (TE/TM),

angular momentum mode number (l), radial mode number

(ρ), and azimuthal mode number (m). l and ρ characterize the

number of intensity maxima along the great perimeter of the

sphere and along the radial direction of the sphere, respec-

tively. For a particular value of l, there exists 2l + 1 number

of modes corresponding to different values of m in the range

of −l to +l. For a perfect homogeneous sphere, spectral posi-

tions of the modes are independent of m, and there exists 2l

+ 1 fold degeneracy for a particular value of l. However,

FIG. 4. (a) MDR modes on the micro

PL spectrum of a single sphere are

shown in black (upper plot), and the

corresponding scattering efficiency

spectrum obtained using Mie theory

with extracted RI is shown by the red

curve (lower plot) for spheres with

diameters 4.32 μm, 3.18 μm, and 2.91

μm. Identification of all the TE modes

observed is indicated over the corre-

sponding modes. TM modes alternate

with TE modes. Only one TM mode

corresponding to the smallest l is

shown to avoid cluttering. (b) SEM

images of the spheres corresponding to

the MDR spectra of spheres with diam-

eters 4.32 μm, 3.18 μm, and 2.91 μm.
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deviation from ideal conditions of a sphere due to deforma-

tion in the spherical shape,25 presence of inclusions,26 bire-

fringence of the constituting material,27 etc. may lead to

lifting of degeneracy.

When radius is considered to be constant, fl is a func-

tion of only λ and n alone. Equation (4) may have several

solutions for a fixed value of l when calculated as a function

of λ or n, as shown in Figs. 5(a) and 5(b) respectively. Each

solution is indicated by a radial mode number ρ. The first

three solutions of f(λ, n) ¼ 0 corresponds to ρ = 1, 2, and 3,

which can be seen in Figs. 5(a) and 5(b), indicated by green,

blue, and red colored points, respectively. In Fig. 5(a), fl(λ)

vs λ plot for l = 30 (indicated by the solid line) and l = 31

(indicated by the dashed line) are shown for a constant value

of a and n. Modes with higher values of l correspond to

lower WL (higher energy). For a particular value of l, the sol-

ution with the longest value of WL (lowest energy) corre-

sponds to the smallest value of radial mode number (ρ = 1).

It can also be observed that differences of the spectral posi-

tion of two neighboring modes corresponding to two l values

with different values of ρ are different. Figure 5(b) shows

fl(n) vs n plot for l = 30 (indicated by the solid line) and l =

31(indicated by the dashed line) for a fixed value of x. For a

fixed value of ρ, solutions of n corresponding to a higher

value of l are of greater value. For a fixed value of l, RI cor-

responding to higher values of ρ is higher. The calculation

has been done without considering the imaginary part of the

RI. Introduction of the imaginary part does not change the

mode positions but reduces the Q-factors of the modes.

Modes with different polarizations and radial mode

numbers can be distinguished from the separation between

two neighboring modes or FSR. Lam et al.24 have shown

analytically that the difference in the size parameters

(ΔxFSRl ¼ xl � xl�1) of two neighboring modes of same polar-

ization and same radial mode number is related to n by a

series of (lþ 0:5)�1=3. Zeroth order approximation of FSR in

WL domain implies that ΔλFSRl is proportional to λ2.

However, the slope of ΔλFSRl vs λ2 plot for modes belonging

to different values of ρ and different polarizations differs due

to corresponding multipliers of the higher orders of

(lþ 0:5)�1=3. ΔλFSRl vs λ2 plot for TE modes with ρ = 1 and

ρ = 2 are shown in Fig. 6.

The efficiency of the MDR modes to confine light inside

the cavity is quantified by its Q-factor. The Q-factor is

defined as Eq. (5).

Q ¼
ωo

ΔωFWHM

, (5)

where ωo is the angular frequency of the resonance and

ΔωFWHM is the full width at half maximum (FWHM) of the

resonance peak in angular frequency domain. ΔωFWHM is

dependent on l and ρ.

2. Method of assignment of the mode number to the
MDR modes

Mode identification is done from the relation of x, n, and

l as given in Eq. (4). x at the modes is obtained from the size

extracted from the SEM image, and the spectral positions of

the modes are obtained from the measured spectrum. RI of

the synthesized sphere differs from that of bulk RI28 due to

its porous nature. Other factors like nano crystalline sizes of

the grains29 and the presence of impure elements11 may con-

tribute to the change in RI as well. If the value of either l or

n is known, the other can be calculated using Eq. (4). In our

method, firstly modes of the same polarization and radial

mode number are grouped from the knowledge of their FSR.

An educative guess of l can be obtained from the first

FIG. 5. (a) fl as a function of λ for l = 30 (solid line) and l = 31 (dashed

line) for fixed n = 1.5 and a = 2.2 μm; (b) fl as a function of n for l = 30

(solid line) and l = 31 (dashed line), for a = 2.2 μm and λ = 0.5 μm. Green,

blue, and red spots indicate the modes corresponding to ρ = 1, 2, and 3,

respectively, which are also indicated by arrows. No solution exists in the

region n < 1.

FIG. 6. ΔλFSR as a function of λ2 for a Mie sphere with a = 2.2 μm and n =

1.5. Modes with ρ = 1 and ρ = 2 are denoted by black squares and red

spheres, respectively. Value of l is indicated near the mode position.
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approximation of RI (n1l ) obtained using Eq. (6), which can

be derived from Eq. (1).

n1l ¼ 1=Δxl: (6)

Only TE modes with ρ = 1 are used for the first approxima-

tion. TE modes are chosen as they appeared more distin-

guishable compared to TM modes in the experimental MDR

spectrum. For the first guess of l, RI is considered to be cons-

tant and equal to the average of n1l for the entire range of

consideration. With this RI and the radius of the sphere

obtained from SEM image, a set of [l1min ,ρ, l
1
max ,ρ] is obtained

in the spectral region of observation. l1min ,ρ and l1max ,ρ are the

minimum and maximum mode numbers corresponding to

mode positions with maximum and minimum WL value in

the range of observation, respectively. The ρ = 1 and ρ = 2

modes appearing in this region are grouped separately.

However, spectral position of the modes obtained with this

approximation do not match with that of experimental spec-

trum because (i) being obtained from zeroth order approxi-

mation, Eq. (6) is not suitable enough to define modes with

lower l and higher ρ, and (ii) Eq. (6) is obtained neglecting

RI dispersion. We proceed to assign l
exp
1,ρ ¼ l1min ,ρ and so on,

to calculate the set of RI, [n
exp
min ,ρ, n

exp
max ,ρ] corresponding to

each mode position using Eq. (4), from the size of the sphere

and the set of spectral mode positions [λ
exp
l1,ρ

, λ
exp
lN ,ρ

]. l
exp
1,ρ corre-

sponds to the mode number of the highest value of WL

(λ
exp
l1,ρ

), in the experimental MDR spectrum, for a particular

value of ρ. RI for ρ = 1 and ρ = 2 modes are the first and

second solutions of Eq. (4), respectively, obtained numeri-

cally using MATLAB codes. At the end of this step, we have

an estimate of RI and its dispersion. Estimation of the RI

would be correct when mode numbers are assigned correctly.

To deal with the dispersion produced by the mesoporous

sphere, we examine the chromatic dispersion of bulk anatase

TiO2. We find that the dispersion characteristics of the bulk

RI of anatase TiO2 in the region of interest28 follow the

Sellmeier equation with one resonance term as given in

Eq. (7).

n2 ¼ 1þ
p1λ

2

λ2 � p2
, (7)

FIG. 7. MDR modes on the micro PL spectrum of a single sphere (4.32 μm)

are shown by the black curve (upper plot). The corresponding scattering effi-

ciency spectrum obtained using Mie theory with the corrected RI is shown

by the red curve (lower plot), for a smaller range. Identification of the TE

modes with ρ = 1 and ρ = 2 is presented over the corresponding peak of the

Mie plot. To avoid cluttering, only two TM modes with the lowest value of l

corresponding to ρ = 1 and highest value of l corresponding to ρ = 2 are

included in the region of interest.

FIG. 8. RI as a function of WL for different assignment of mode numbers:

(a) for spheres with smaller diameters: 2.91 μm (indicated by black squares)

and 3.18 μm (indicated by green triangles); (b) with larger diameter 4.32 μm,

where calculations for ρ = 1 and ρ = 2 modes are indicated by blue circles

and red stars, respectively.

FIG. 9. (Δλl,ρ)
2 vs l plotted for 2.91 μm sphere when the smallest mode was

assigned the values: l
exp
1,ρ¼1 = 14 (green spheres), 15 (black squares), and 16

(red triangles) for (a) TM and (b) TE modes.
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where p1 and p2 are the Sellmeier coefficients. As it seems

reasonable to expect porous TiO2 spheres also to be defined

by similar dispersion relation, the sets of [n
exp
min ,ρ, n

exp
max ,ρ] and

[λ
exp
l1,ρ

, λ
exp
lN ,ρ

] for both ρ = 1 and ρ = 2 modes of the porous

TiO2 spheres have been fitted with the Sellmeier equation

using Eq. (7). It is not surprising to note that the presence of

high porosity leads to significant changes in the Sellmeier

coefficients.

Estimation of the RI and its associated dispersion would

be correct when mode numbers are assigned correctly.

Though only TE modes have been considered for this assign-

ment, it is found that the corrected RI and the associated dis-

persion leads to the observed TM mode positions as well,

indicating the consistency of the procedure adopted. We

further expect that the simulated scattering spectrum of the

effectively isotropic sphere, computed using MiePlot,30

matches the observed spectrum if the estimated RI and the

associated dispersion is correct. Therefore, we demand that

for the correct assignment of mode numbers, the mean

square difference between experimental and simulated mode

positions (h(Δλl,ρ)
2i) as given in Eq. (8) should be a

minimum for all distinguishable TE and TM modes.

h(Δλl,ρ)
2i ¼ h(λexpl,ρ � λMie

l,ρ )
2
i: (8)

λ
exp
l,ρ and λMie

l,ρ in Eq. (8) indicate mode positions of the experi-

mental PL spectrum and simulated Mie spectrum, respectively.

For the next step in the estimation of RI, the set

[l
exp
1,ρ , l

exp
N,ρ] is assigned to shifted values of the approximate set

[l1min ,ρ, l
1
max ,ρ], shifting by ±1 steps, with RI as a function of

WL calculated for each trial shift as shown in Fig. 11 of

Appendix A. In each trial, mode positions and hence

h(Δλl,ρ)
2i are calculated for all the distinguishable TE and TM

modes. Amongst all the assignments of mode numbers to the

set [l
exp
1,ρ , l

exp
N,ρ], the set of RI corresponding to the assignments

with minimum h(Δλl,ρ)
2i is considered to be the correct.

Geometric dispersion occurs due to the dependence of

ΔxFSRl on l, and it increases as the value of l decreases.

Chromatic dispersion occurs due to the dispersion in the RI

of the material. The proposed method is capable of extracting

the RI with or without chromatic dispersion up to the third

decimal place with numerical dispersion limiting the preci-

sion to the fourth decimal place. Details of the numerical dis-

persion entailed in the proposed scheme are in Appendix A.

B. Analysis of the experimentally obtained MDR
modes

1. Mode identification

The MDR modes are observed above the photolumines-

cence envelope of the emission spectrum in Fig. 4(a). Modes

are labeled as TEl,ρ (or TMl,ρ). Spectral densities of the modes

are observed to decrease as the size of the sphere decreases.

The efficiency spectrum simulated with Mie theory is modu-

lated by a slowly varying pattern caused by the interference of

the incident and forward scattered light.22 As this slowly

varying pattern is not relevant in the present context, it is not

considered further. Mode identification for the 4.32 μm sphere,

after removing the envelopes from the emission and scattering

efficiency spectra, can be seen in Fig. 7. Both ρ = 1 as well as

ρ = 2 modes seem to agree well with simulated scattering effi-

ciency spectrum. The ρ = 1 mode is observed to decay with

decreasing WL, while the ρ = 2 mode becomes more distin-

guishable in the region of lower WL. The mode positions of

the experimental and simulated MDR spectra for all the three

spheres are given in Tables III and IV of Appendix B.

2. Refractive index correction for porous TiO2 sphere

In the MDR spectrum of spheres with smaller diameters

(2.91 μm and 3.12 μm) shown in Fig. 4(a), the ρ = 2 mode is

not distinguishable enough. In this case, only the ρ = 1 mode

is considered for RI extraction. It is observed that h(Δλl,ρ)
2i

is minimum for the assignment of the largest values of l
exp
i,ρ

(i = 1, 2,…), for which calculated RI vs WL has a negative

slope and hence can be fitted with the Sellmeier equation

given in Eq. (7). As shown in Fig. 8(a), the dispersion

obtained for l
exp
1,ρ¼1 = 16 and 17 (or higher values) correspond-

ing to the spheres with diameter 2.91 μm (indicated in black)

and 3.18 μm (indicated in green), respectively, cannot be

fitted well with Eq. (7). However, it is found that for l
exp
1,ρ¼1 =

15 and 16, the dispersion can be fitted with Eq. (7), and

h(Δλl,ρ)
2i tends to a minimum for the spheres with diameters

2.91 μm and 3.18 μm, respectively. Figure 9 quantifies how

(Δλl,ρ)
2 responds to the choice of l for the sphere of diameter

2.91 μm. The values of (Δλl,ρ)
2 are larger for TM (TE), when

l
exp
1,ρ¼1 = 16 (14). However, it can be observed that when

l
exp
1,ρ¼1 = 15, the values of (Δλl,ρ)

2 remain nearly constant, and

h(Δλl,ρ)
2i is a minimum for both TE and TM modes.

In the case of the sphere with larger diameter (4.32 μm),

the ρ = 2 mode is more distinguishable in the lower WL

region. It can be observed in Fig. 8(b) that the dispersion

FIG. 10. The Sellmeier equation fitted for the data obtained from experimen-

tal emission spectrum for spheres with diameter 4.32 μm, 3.18 μm, and 2.91

μm indicated in black, red, and green, respectively. RI dispersion for bulk

anatase TiO2 (gray line) and that of the porous spheres are shown in the

inset.
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corresponding to ρ = 1 and ρ = 2 modes are separate curves

when l
exp
1,ρ¼1 = 22 (24) and l

exp
1,ρ¼2 = 20 (22). However when

l
exp
1,ρ¼1 = 23 and l

exp
1,ρ¼2 = 21, it is observed that corresponding

dispersion curves nearly merge and can be fitted using

Eq. (7) by a single dispersion curve. In this case, h(Δλl,ρ)
2i

is observed to be a minimum.

The Sellmeier equation fitted for the MDR modes in

emission spectra is presented in Fig. 10. RI dispersion of

the sphere compared to that of the bulk anatase TiO2
28 is

shown in the inset of Fig. 10. RI of the spheres can be

seen to be much less than that of bulk. There is a probable

error in the refractive index due to an error in particle

size. To estimate this error, the SEM image is used to

extract 10 diameters of the sphere along 10 different ori-

entations. The error bars in Fig. 10 indicate the spread of

refractive index due to the spread of the diameters esti-

mated along different orientations. It may be noted that

changes in RI can occur up to the second significant digit.

The slight differences between the dispersion curves

related to different spheres may be due to slight differ-

ences in the pore distribution and the pore volume fraction

in the interior of the sphere.

The clear variation in the RI at the third decimal position,

observed in two neighboring modes, is considered to arise

from the chromatic dispersion. As discussed in Appendix A,

numerical dispersion manifesting in the fourth decimal posi-

tion sets the limits to the evaluating scheme particularly while

dealing with the modes having smaller values of l. The values

of Sellmeier coefficients of the RI dispersion and the regres-

sion coefficient (R2) obtained from the fitting for bulk TiO2

and for porous microspheres are shown in Table I.

3. Analysis of the Quality factor

For an ideal homogeneous, isotropic, and non-absorbing

sphere, the Q-factor is determined only by radiative losses

and is denoted by Qrad. Higher values of Qrad occur for the

modes with higher l and lower ρ. For a particular value of ρ,

Qrad increases and tends to infinity with increasing l.

However, such a trend is not to be expected in the experi-

mental spectrum of a mesoporous sphere. The total Q-factor

of an MDR mode for a non-ideal case can be governed by

various processes as given in Eq. (9).

1

Qtotal

¼
1

Qrad

þ
1

Qother

, (9)

with Qother in turn written as Eq. (10):

1

Qother

¼
1

Qmat

þ
1

Qsurf

þ
1

Qcon

, (10)

where, Qmat , Qsurf , and Qcon are the Q-factors related to the

losses caused by absorption by the intrinsic material, scatter-

ing due to surface inhomogeneities, and contacts of the reso-

nator with external agents, respectively.31

Q-factors of the observed modes are of the order of 102,

which is much less than that of an equivalent isotropic homo-

geneous loss-less sphere due to various sources of losses

indicated in Eq. (10). It is surmised that Qsurf may have a sig-

nificant contribution due to the porous structure of the

sphere. Furthermore, Qmat appears to exist due to the pres-

ence of impure elements (N and C) as well as oxygen vacan-

cies. The Q-factors of the ρ = 1 mode for the smaller spheres

(of diameters 3.18 μm and 2.91 μm) of Fig. 4(a) do not decay

over the spectrum considered. However, for the larger sphere

of diameter 4.32 μm, the Q-factors for the ρ = 1 modes start

decaying toward the lower WL region as shown in Fig. 4(a)

as well as in Fig. 7 (experimental MDR spectrum). However,

the ρ = 2 mode does not seem to decay as much. Equation (9)

implies that the value of Qtotal is lower than the lowest of

Qrad and Qother. When Qother is much lower than Qrad,

Qtotal:Qrad ratio is much lower for the modes with higher l

and lower ρ, or in other words, for the modes with higher

value of Qrad .

IV. SUMMARY AND CONCLUSION

Mesoporous TiO2 spheres of high surface area, consist-

ing of nano-crystalline grains of average size 7 nm (from

XRD data) and pores of size about 7.6 nm (from BJH estima-

tion), supporting MDR modes have been synthesized.

Though the bulk anatase phase of TiO2 is a birefringent mate-

rial, the mesoporous sphere is found to behave as an effective

isotropic medium as it is made up of nanocrystalline grains

with random crystallographic orientations and pores, both of

which are very small compared to the WL of the light inside

the sphere. RI of the mesoporous TiO2 medium and the asso-

ciated chromatic dispersion is determined using an iterated

determination of l by minimizing the WL difference between

computed spectral position and observed spectral position.

The suggested procedure for the estimation of RI and its dis-

persion works with either TE or TM modes or with both,

deals with higher order radial modes as long as 1 << x < l is

satisfied, provides the best estimates within a few iterations,

and does not require bulk phase values. The numerical disper-

sion estimated in the current implementation limits the esti-

mation of chromatic dispersion to the third significant digit.

Due to the high porosity, effective RI of the mesoporous

sphere decreases significantly from its bulk value. The pres-

ence of high pore volume fraction is found to change the dis-

persion of refractive index as well from that of the bulk. FSR

of a spherical resonator is related to the size and RI of the

sphere. A lower refractive index leads to a lower confinement

of the MDR modes and hence higher FSR. Reduction in the

RI value due to porosity can be compensated by increasing

the size of the sphere to maintain the required FSR.

Most of the applications such as photo-catalysis reaction,

energy conversion and transfer, water splitting, etc. require

TiO2 to have high scattering efficiency. Enhancement of the

surface area of mesoporous TiO2 sphere facilitates interaction

TABLE I. Sellmeier coefficients for bulk anatase and porous sphere (PS).

Sample p1 p2 (μm) R2

Bulk 4.108 0.05490 0.998

PS dia. = 4.32 μm 1.372 0.03746 0.998

PS dia. = 3.18 μm 1.396 0.03790 0.999

PS dia. = 2.91 μm 1.375 0.03962 0.998
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with external molecules and atoms, making it suitable for

various applications. The presence of MDR mode helps

enhance the scattering efficiency and hence the performance

of the sphere. TiO2 microspheres with MDR modes as well

as high surface area would be a very promising optical mate-

rial particularly in the applications related to photocatalysis.

APPENDIX A: ESTIMATION OF NUMERICAL
DISPERSION IN RI EXTRACTION

Calculations of RI using the proposed procedure for the

MDR spectra obtained by MiePlot30 can be seen in Fig. 11.

MiePlot is used to obtain the MDR spectra of a sphere of

radius 1.5 μm and a constant RI 1.5. By assigning different

mode numbers to the spectral positions, RI is estimated using

Eq. (4). In the first approximation, RI from FSR, using

Eq. (6), was found to be 1.3701. In the range of 500–800

nm, the value of lowest angular mode number (l1) obtained

solving Eq. (4) with this RI is 13. For l1 < 15, computed RI

is observed to increase with l. For l1 > 15, it is observed to

decrease with l. For l1 = 15, RI was observed to be nearly

constant at 1.5 with slight deviation at the fourth decimal

point. This deviation was observed to be more for lower

values of l as shown in Table II. Modes with smaller l values

in the scattering efficiency spectrum are affected by contribu-

tions from other neighboring modes. The proposed method

for RI determination would be more precise when applied to

modes with larger values of l (l >> 1).

APPENDIX B: MODE POSITIONS OF EXPERIMENTAL
AND SIMULATED DATA

The resonance positions of experimental and simulated

scattering spectra are given in Tables III and IV.

As described in Sec. III B 2, the square of the differ-

ence between measured and computed spectral positions,

taken from these tables, tends to a minimum for the correct

choice of l.
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