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Morozov’s Discrepancy Principle
under

General Source Conditions

M. T. Nair, E. Schock and U. Tautenhahn

Abstract. In this paper we study linear ill-posed problems Ax = y in a Hilbert space
setting where instead of exact data y noisy data yδ are given satisfying ‖y− yδ‖ ≤ δ
with known noise level δ. Regularized approximations are obtained by a general
regularization scheme where the regularization parameter is chosen from Morozov’s
discrepancy principle. Assuming the unknown solution belongs to some general
source set M we prove that the regularized approximation provides order optimal
error bounds on the set M . Our results cover the special case of finitely smoothing
operators A and extend recent results for infinitely smoothing operators.
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1. Introduction

Ill-posed problems arise in several contexts and have important applications
in science and engineering (see, e.g., [1, 3, 4, 6, 10, 13]). In this paper we are
interested in the minimum-norm solution x† ∈ X of the ill-posed problem

Ax = y (1.1)

where A : X → Y is a linear bounded operator with non-closed range R(A)
of A, y ∈ R(A) and X, Y are infinite dimensional real Hilbert spaces with
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inner products (·, ·) and norms ‖ · ‖, respectively. Throughout this paper we
assume that yδ ∈ Y are the available noisy data with ‖y−yδ‖ ≤ δ and known
noise level δ > 0. For the stable approximate solution of problem (1.1) some
regularization technique has to be applied, which provides regularized approx-
imations xδ

α = Rδ
αyδ with property xδ

α → x† as δ → 0 where the regularization
parameter α = α(δ, yδ) has to be chosen properly. Hence, regularized approx-
imations xδ

α depend continuously on the data. However, the convergence of
xδ

α to x† can be arbitrarily slow without assuming additional quantitative a
priori restrictions on the unknown solution x†, which is typical for ill-posed
problems (see [12]). In order to guarantee certain convergence rates the set
of solutions has to be restricted to certain source sets. Typically, for operator
equations (1.1) with finitely smoothing operators A, source conditions of the
type x† ∈ Mp,E with

Mp,E =
{

x ∈ X
∣∣∣ x = (A∗A)

p
2 v, ‖v‖ ≤ E

}
(p > 0) (1.2)

are exploited (see [1, 2, 6, 15]). For infinitely smoothing operators A source
conditions of type (1.2) are generally too restrictive. In this case it is natural
to assume that x† ∈ M log

p,E with

M log
p,E =

{
x ∈ X

∣∣∣ x = ln−
p
2 (A∗A)−1v, ‖v‖ ≤ E

}
(p > 0) (1.3)

(see [5, 7, 11, 13]). In this paper we are interested in order optimality results
under general source conditions x† ∈ Mϕ,E with Mϕ,E given by

Mϕ,E =
{

x ∈ X
∣∣∣ x =

[
ϕ(A∗A)

] 1
2 v, ‖v‖ ≤ E

}
. (1.4)

Herein the operator function ϕ(A∗A) is well defined via spectral representation
ϕ(A∗A) =

∫ a

0
ϕ(λ) dEλ where A∗A =

∫ a

0
λ dEλ is the spectral representation

of A∗A, {Eλ : 0 ≤ λ ≤ a} is the spectral family of A∗A with a > 0 satisfying
σ(A∗A) ⊆ [0, a] and ‖A‖2 ≤ a, σ(A∗A) denoting the spectrum of the operator
A∗A. Throughout this paper we assume that x† ∈ Mϕ,E such that

x† =
[
ϕ(A∗A)

] 1
2 v with ‖v‖ ≤ E

where the function ϕ satisfies

Assumption 1.1. The function ϕ : (0, a] → (0,∞) with ‖A∗A‖ ≤ a is
continuous and satisfies the conditions

(i) limλ→0 ϕ(λ) = 0
(ii) ϕ is strictly monotonically increasing on (0, a]
(iii) ρ : (0, ϕ(a)] → (0, a ϕ(a)] defined by ρ(λ) = λ ϕ−1(λ) is convex.
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2. Optimality and order optimality

Any operator R : Y → X can be considered as a special method for solving
equation (1.1). The approximate solution to (1.1) is then given by Ryδ. Let
us consider the worst case error ∆(δ,R) for identifying the minimum-norm
solution x† of problem (1.1) from yδ ∈ Y under the assumptions ‖y− yδ‖ ≤ δ
and x† ∈ Mϕ,E defined by

∆(δ,R) = sup
{
‖Ryδ − x†‖ : x† ∈ Mϕ,E , yδ ∈ Y, ‖y − yδ‖ ≤ δ

}
.

This worst case error characterizes the maximal error of the method R if
the minimum-norm solution x† of problem (1.1) varies in the set Mϕ,E . An
optimal method R0 is characterized by

∆(δ,R0) = inf
R

∆(δ,R).

It is easy to see that
inf
R

∆(δ,R) ≥ ω(δ,Mϕ,E)

where
ω(δ,Mϕ,E) = sup

{‖x‖ : x ∈ Mϕ,E , ‖Ax‖ ≤ δ
}
. (2.1)

In view of the above relation, it is important to have some estimates for
the quantity ω(δ,Mϕ,E). From [13] we have

Theorem 2.1. Let Mϕ,E be given by (1.4) and let Assumption 1.1 be
satisfied. Then

ω(δ,Mϕ,E) ≤ E

√
ρ−1

(
δ2

E2

)
. (2.2)

If δ2

E2 ∈ σ
(
A∗Aϕ(A∗A)

)
, then in (2.2) equality holds.

Due to Theorem 2.1, the following definition makes sense.

Definition 2.2. Consider the set Mϕ,E of (1.4) and let Assumption 1.1
be satisfied. Then any regularization method R = Rδ

α or any regularized
approximation xδ

α = Rδ
αyδ is called

(i) optimal on the set Mϕ,E if ‖xδ
α − x†‖ ≤ E

√
ρ−1

(
δ2

E2

)

(ii) order optimal on the set Mϕ,E if ‖xδ
α − x†‖ ≤ cE

√
ρ−1

(
δ2

E2

)
with

c ≥ 1.

In [13] it has been proved that there exist special regularization methods
that are optimal on the set Mϕ,E . One of these methods is the method of gen-
eralized Tikhonov regularization. In this method a regularized approximation
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xδ
α is determined by solving the minimization problem

min
x∈X

Jα(x)

Jα(x) = ‖Ax− yδ‖2 + α
∥∥[

ϕ(A∗A)
]−1/2

x
∥∥2 (x ∈ X)

(2.3)

or, equivalently, by solving the Euler equation

(
A∗A + α

[
ϕ(A∗A)

]−1)
xδ

α = A∗yδ

of Tikhonov’s functional Jα. This method is optimal on the set Mϕ,E given
by (1.4) provided the regularization parameter α is chosen properly. In fact,
we have the following result from [13]:

Theorem 2.3. Let Mϕ,E be given by (1.4), let Assumption 1.1 be satis-
fied, ϕ be twice differentiable, ρ be strictly convex and δ2

E2 ≤ a ϕ(a). Then the
Tikhonov regularized approximation xδ

α defined by (2.3) is optimal on Mϕ,E

provided the regularization parameter α is chosen by

α =
λ

ϕ−1(λ)ϕ′(ϕ−1(λ))

( δ

E

)2

with λ = ρ−1
( δ2

E2

)
. (2.4)

It is to be mentioned that, for method (2.3), in a general setting of an
unbounded operator L in place of [ϕ(A∗A)]−

1
2 , order optimal results are ob-

tained by Mair [7] under an apriori choice of the parameter, and by Nair [9]
by using the Morozov discrepancy principle.

3. The general regularization scheme

The construction of regularized approximations that are optimal on the source
set Mϕ,E given in (1.4), such as the ones considered in [7, 9, 13], requires the
knowledge of the function ϕ. In practice, however, the smoothness properties
of the unknown solution x† of problem (1.1) are generally unknown. Hence,
there arises the question if there are regularization methods which do not
require the knowledge of the function ϕ and which are order optimal on the
set Mϕ,E .

We will prove in this section that if the function ϕ is concave, then
the classical regularization methods such as Tikhonov regularization, iter-
ated Tikhonov regularization, asymptotical regularization, regularized singu-
lar value decomposition and others provide, combined with Morozov’s discrep-
ancy principle, regularized approximations xδ

α which are order optimal on the
set Mϕ,E .
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It is well known that in the classical regularization methods the regularized
approximations xδ

α can be represented in the general form

xδ
α = gα(A∗A)A∗yδ (3.1)

with some piecewise continuous function gα : (0, a] → (0,∞) with a ≥ ‖A‖2
and α > 0 so that gα(A∗A) =

∫ a

0
gα(λ)dEλ. This representation appears to

be useful in the theoretical study of regularization methods. For choosing the
regularization parameter α we consider Morozov’s discrepancy principle (cf.
[8]). In this principle the regularization parameter α is chosen as the solution
of the equation

d(α) := ‖Axδ
α − yδ‖ = Cδ with C ≥ 1. (3.2)

For studying properties of the function d we exploit

Assumption 3.1. The function gα : (0, a] → (0,∞) with a ≥ ‖A‖2 and
α > 0 satisfies

(i) sup0≤λ≤a |gα(λ)| ≤ γ
α for a constant γ > 0

(ii) sup0≤λ≤a |1− λgα(λ)| ≤ 1

(iii) 1− λgα(λ) → 0 for α → 0 and all λ ∈ [0, a]

(iv) |1− λgα1(λ)| ≤ |1− λgα2(λ)| for α1 ≤ α2

(v) gαn(λ) → gα(λ) for αn → α > 0 and all λ ∈ [0, a].

From [15: p. 64, Lemma 3.1] we have that under conditions (i) – (iii) of
Assumption 3.1 there hold the limit relations

lim
α→0

d(α) = ‖Qyδ‖ and lim
α→∞

d(α) = ‖yδ‖

where Q denotes the orthoprojection of Y onto N(A∗) = R(A)⊥. In addition
we have from [15: p. 64, Lemma 3.1] that under conditions (iv) – (v) of
Assumption 3.1 the function d is monotonically increasing and continuous.
Hence, under Assumption 3.1 the nonlinear scalar equation (3.2) possesses a
solution α = αD provided

‖Qyδ‖ < Cδ < ‖yδ‖. (3.3)

Note that assumption (3.3) on yδ is not unrealistic. Indeed, since y ∈
R(A), we have Qy = 0 so that ‖Qyδ‖ = ‖Q(y − yδ)‖ ≤ ‖y − yδ‖ ≤ δ. Hence,
condition (3.3) is satisfied, e.g., if C > 1 and Cδ < ‖yδ‖.

For our further study we exploit some assumption from [15: p. 75]:
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Assumption 3.2. The function gα : (0, a] → (0,∞) with a ≥ ‖A‖2 and
α > 0 satisfies

(i) gα(λ) ≥ 0

(ii) 0 ≤ 1− λgα(λ) ≤ gα(λ)
κα

with κα := sup0≤λ≤a gα(λ)

(iii) β
α ≤ κα ≤ γ

α with constants β > 0 and γ > 0.

In our next theorem we provide order optimal error bounds for ‖xδ
α−x†‖.

We shall make use of the relation

‖xδ
α − x†‖2 + κα

{‖Axδ
α − yδ‖2 − ‖Ax† − yδ‖2}

≤ ([
I −A∗Agα(A∗A)

]
x†, x†

) (3.4)

which holds true under Assumption 3.2 (see [15: p. 77/Lemma 4.1]).

Theorem 3.3. Let Mϕ,E be given by (1.4), let Assumption 1.1 be satisfied
and let xδ

α be the regularized approximation (3.1) with gα satisfying Assump-
tion 3.2. Let Assumption 3.1 and (3.3) hold and let α be chosen by Morozov’s
discrepancy principle (3.2). If the function ϕ is concave, then xδ

α is order
optimal on the set Mϕ,E and

‖xδ
α − x†‖ ≤ (C + 1)E

√
ρ−1

(
δ2

E2

)
. (3.5)

Proof. For all (α, λ) for which gα is defined we define

rα(λ) = 1− λgα(λ).

Let α = αD be the regularization parameter chosen by (3.2). Due to relation
(3.4) and to

‖Ax† − yδ‖ ≤ ‖Axδ
α − yδ‖

([
I −A∗Agα(A∗A)

]
x†, x†

)
=

∥∥[rα(A∗A)]
1
2 x†

∥∥2

we have
‖xδ

α − x†‖ ≤ ‖[rα(A∗A)]
1
2 x†‖. (3.6)

Since ϕ is a concave function with limλ→0 ϕ(λ) = 0 we have t ϕ(λ) ≤ ϕ(tλ)
for t ∈ [0, 1] or, equivalently, ϕ−1(tϕ(λ)) ≤ λt which, due to ρ(λ) := λϕ−1(λ),
provides the relation ρ(t ϕ(λ)) ≤ t2λϕ(λ). We apply this estimate with t =
rα(λ) := 1− λgα(λ) and obtain

ρ
(
rα(λ)ϕ(λ)

) ≤ λr2
α(λ) ϕ(λ). (3.7)

Let xα be approximation (3.1) with yδ replaced by the exact data y, that is,

xα = gα(A∗A)A∗y. (3.8)
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Since α = αD is the solution of equation (3.2), we have

‖Axα −Ax†‖ = ‖Arα(A∗A)x†‖
= ‖rα(AA∗)Ax†‖
≤ ‖rα(AA∗)yδ‖+ ‖rα(AA∗)(Ax† − yδ)‖
= ‖Axδ

α − yδ‖+ ‖rα(AA∗)(Ax† − yδ)‖
≤ (C + 1)δ.

(3.9)

Now we exploit (1.4), the convexity of ρ, inequalities (3.6) - (3.7) and Jensen’s
inequality. Thus

ρ

(‖[rα(A∗A)]
1
2 x†‖2

‖v‖2
)

= ρ

(∫ a

0
rα(λ)ϕ(λ) d‖Eλv‖2∫ a

0
d‖Eλv‖2

)

≤
∫ a

0
ρ
(
rα(λ)ϕ(λ)

)
d‖Eλv‖2∫ a

0
d‖Eλv‖2

≤
∫ a

0
λr2

α(λ)ϕ(λ) d‖Eλv‖2∫ a

0
d‖Eλv‖2

=

∥∥(A∗A)
1
2 rα(A∗A)

[
ϕ(A∗A)

] 1
2 v

∥∥2

‖v‖2

=
‖Axα −Ax†‖2

‖v‖2

≤ (C + 1)2δ2

‖v‖2 .

(3.10)

Using the monotonicity of ϕ−1 and the realtions ϕ−1(λ) = 1
λρ(λ) and (3.10),

we obtain

ϕ−1

(‖[rα(A∗A)]
1
2 x†‖2

(C + 1)2E2

)
≤ ϕ−1

(‖[rα(A∗A)]
1
2 x†‖2

‖v‖2
)

=
‖v‖2

‖[rα(A∗A)]1/2x†‖2 ρ

(‖[rα(A∗A)]
1
2 x†‖2

‖v‖2
)

≤ (C + 1)2δ2

‖[rα(A∗A)]
1
2 x†‖2

or, equivalently,

ρ

(‖[rα(A∗A)]
1
2 x†‖2

(C + 1)2E2

)
≤ δ2

E2
.

This estimate together with (3.6) leads to (3.5)
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Let us discuss two special cases. In our first special case we consider
operator equations with finitely smoothing operators A and assume that x† ∈
Mp,E with Mp,E given in (1.2). This set has form (1.4) with ϕ(λ) = λp.
For this function Assumption 1.1 is satisfied. Since ϕ−1(λ) = λ

1
p we obtain

ρ(λ) := λϕ−1(λ) = λ
p+1

p , consequently, ρ−1(λ) = λ
p

p+1 . Since ϕ(λ) = λp is
concave for p ≤ 1, the following result is a special case of Theorem 3.3.

Corollary 3.4. Let xδ
α be the regularized approximation (3.1) with gα

satisfying Assumption 3.2. Let Assumption 3.1 and (3.3) hold and let α be
chosen by Morozov’s discrepancy principle (3.2). If p ≤ 1, then xδ

α is order
optimal on the set Mp,E given in (1.2), and

‖xδ
α − x†‖ ≤ (C + 1)E

1
p+1 δ

p
p+1 .

Although this classical result of Corollary 3.4 is not new (compare [15: p.
78/Theorem 4.2]), we realize that it can be obtained as a special case of our
more general Theorem 3.1.

In our second special case we consider operator equations with infinitely
smoothing operators A and assume that x† ∈ M log

p,E with M log
p,E given in (1.3).

This set has form (1.4) with ϕ(λ) =
[
ln 1

λ

]−p. For this function Assump-
tion 1.1 is satisfied. Since ϕ−1(λ) = e−1/λ1/p

we obtain ρ(λ) := λϕ−1(λ) =
λe−1/λ1/p

, consequently,

ρ−1(λ) =
[
ln

1
λ

]−p (
1 + o(1)

)
for λ → 0

(see, e.g., [7]). Since ϕ(λ) is concave for λ ≤ 1
(p+1)p , from Theorem 3.3 we

obtain

Corollary 3.5. Let xδ
α be the regularized approximation (3.1) with gα

satisfying Assumption 3.2. Let Assumption 3.1 and (3.3) hold and let α be
chosen by Morozov’s discrepancy principle (3.2). If ‖A‖ ≤ 1

(p+1)p/2 , then xδ
α

is order optimal on the set M log
p,E given in (1.3) and

‖xδ
α − x†‖ ≤ (C + 1)E

[
ln

E2

δ2

]− p
2 (

1 + o(1)
)

for δ → 0.

Remarks. For Tikhonov regularization, a result analogous to Corollary
3.5 has been proved by Pereverzev and Schock [11] under a modified form of
Morozov’s discrepancy principle. For the general regularization of form (3.1),
Hohage [5] proved a result analogous to Corollary 3.5 under the assumption
on gα that λµ[1 − λgα(λ)] ≤ cµαµ for 0 ≤ µ ≤ µ0 for some µ0 > 0. We
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deduced Corollary 3.5 from a more general result, Theorem 3.3, whose proof
also seems to be much simpler than the procedures adopted in [5, 11].

While proving Theorem 3.3 we made use of relation (3.4). For the special
case of Tikhonov regularization we shall provide in Section 5 an alternative
proof which does not require (3.4) and allows additional discretization.

4. The general regularization scheme revisited

Theorem 3.3 requires the assumption that ϕ is concave. This assumption
is too strong for certain special regularization methods and certain special
source sets. Therefore we reconsider the general regularization scheme under
some other assumption which appears to be weaker in certain circumstances.
However, let us start our studies with some general order optimality result for
the regularization error ‖xα − x†‖.

Proposition 4.1. Let Mϕ,E be given by (1.4) and let xα be the regularized
approximation (3.8). Let Assumption 3.1 and (3.3) hold and let α be chosen
by Morozov’s discrepancy principle (3.2). If x† ∈ Mϕ,E, then

‖xα − x†‖ ≤ (C + 1) ω(δ,Mϕ,E) (4.1)

with ω(δ,Mϕ,E) given by (2.1). If in addition Assumption 1.1 is satisfied, then

‖xα − x†‖ ≤ (C + 1)E
√

ρ−1
(

δ2

E2

)
. (4.2)

Proof. We define zα = 1
C+1 (xα − x†) with α chosen by (3.2). Due to

xα − x† =
[
gα(A∗A)A∗A− I

] [
ϕ(A∗A)

] 1
2 v

we have zα =
[
ϕ(A∗A)

] 1
2 w, where w = 1

C+1

[
gα(A∗A)A∗A− I

]
v satisfies

‖w‖ ≤ 1
C + 1

‖v‖ ≤ E.

Hence, zα ∈ Mϕ,E . In addition, due to (3.9) we have ‖Azα‖ ≤ δ. Hence,
due to (2.1) we obtain ‖zα‖ ≤ ω(δ,Mϕ,E) or, equivalently, (4.1). Now (4.2)
follows from (4.1) and (2.2)

Our next proposition provides an order optimality result under the con-
dition that αD ≥ α0 with αD as the solution of equation (3.2) and α0 given
by

α0 = ϕ−1
(
ρ−1

( δ2

E2

))
. (4.3)
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This order optimality result requires an additional assumption on gα that
there exists some constant c0 such that

sup
λ∈[0,a]

∣∣√λ gα(λ)
∣∣ ≤ c0√

α
. (4.4)

Proposition 4.2. Let Mϕ,E be given by (1.4), let Assumption 1.1 be sat-
isfied and let xδ

α be the regularized approximation (3.1). Let Assumption 3.1
and (3.3) hold, let αD be the solution of (3.2) and let α0 be given by (4.3). If
αD ≥ α0, then xδ

αD
is order optimal on the set Mϕ,E, and

‖xδ
αD

− x†‖ ≤ (C + c0 + 1)E
√

ρ−1
(

δ2

E2

)
. (4.5)

Proof. Consider xα given by (3.8). Due to (4.4) we have

‖xδ
α − xα‖ =

∥∥gα(A∗A)A∗(yδ − y)
∥∥ ≤ c0δ√

α
. (4.6)

From (4.6) and αD ≥ α0 we obtain

‖xδ
αD

− xαD
‖ ≤ c0δ√

αD
≤ c0δ√

α0
= c0E

√
ρ−1

( δ2

E2

)
.

Consequently, (4.5) follows from (4.2) and the triangle inequality

Now it remains to study the case αD ≤ α0. In this case, however, we need
the additional condition that there exists some constant cϕ such that

sup
0<λ≤a

∣∣[1− λgα(λ)
]
ϕ(λ)

∣∣ ≤ cϕϕ(α). (4.7)

Theorem 4.3. Let Mϕ,E be given by (1.4) and let Assumptions 1.1 be
satisfied. Let xδ

α be the regularized approximation (3.1) with gα satisfying
Assumption 3.2, (4.4) and (4.7). Let in addition Assumption 3.1 and (3.3)
hold and let αD be the solution of equation (3.2). Then xδ

αD
is order optimal

on the set Mϕ,E and

‖xδ
αD

− x†‖ ≤ cE

√
ρ−1

(
δ2

E2

)
(4.8)

with c = max
{
C + c0 + 1,

√
cϕ

}
.

Proof. Let us distinguish two cases. In the first case of αD ≥ α0 with
α0 given by (4.3) the proof of this theorem follows from Proposition 4.2.
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It remains to consider the second case αD ≤ α0. Using relation (3.4) and
exploiting (1.4) and (4.7) we obtain

‖xδ
αD

− x†‖2 ≤ ([
I − gαD

(A∗A)A∗A
]
ϕ(A∗A)v, v

)

≤ E2 sup
0<λ≤a

∣∣[1− λgαD
(λ)

]
ϕ(λ)

∣∣

≤ E2cϕϕ(αD).

Hence, since αD ≤ α0 and ϕ is monotonically increasing, we have in the second
case

‖xδ
αD

− x†‖2 ≤ E2cϕϕ(α0) = E2cϕρ−1
( δ2

E2

)
.

This completes the proof

The proof of the following corollary, a companion result to Corollary 3.4,
is immediate from Theorem 4.3.

Corollary 4.4. Let xδ
α be the regularized approximation (3.1) with gα

satisfying Assumption 3.2 and (4.4). Let Assumption 3.1 and (3.3) hold and
let α be chosen by Morozov’s discrepancy principle (3.2). Suppose, in addition,
that there exists p0 > 0 with the property that for each p ∈ (0, p0] there exists
cp > 0 such that

sup
0<λ≤a

λp
[
1− λgα(λ)

] ≤ cpα
p for 0 < p ≤ p0. (4.9)

Then for each p ∈ (0, p0], xδ
α is order optimal on the set Mp,E given in (1.2)

and
‖xδ

α − x†‖ ≤ cE
1

p+1 δ
p

p+1

with c = max
{
C + c0 + 1,

√
cp

}
.

Our next proposition shows that for many regularizaton methods condi-
tion (4.7) in Theorem 4.3 is indeed weaker than the concavity condition for
the function ϕ in Theorem 3.3.

Proposition 4.5. Let Assumption 1.1 be satisfied. Define

h(λ) := 1− αλ gα(αλ) (0 ≤ λ < ∞) (4.10)

and assume that h is independent of α, that 0 ≤ h(λ) ≤ 1 and that λh(λ) ≤ 1.
If the function ϕ is concave, then assumption (4.7) holds true with cϕ = 1.

Proof. We substitute λ = αs into (4.7) and obtain from (4.10)

sup
λ∈[0,a]

∣∣[1− λgα(λ)
]
ϕ(λ)

∣∣ ≤ sup
s≥0

∣∣[1− αsgα(αs)
]
ϕ(αs)

∣∣ = sup
s≥0

∣∣h(s)ϕ(αs)
∣∣.

(4.11)
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Since ϕ is a concave function with limλ→0 ϕ(λ) = 0 we have t ϕ(s) ≤ ϕ(ts) for
t ∈ [0, 1]. We apply this estimate with t = h(s) and obtain

h(s) ϕ(αs) ≤ ϕ(αsh(s)).

Since ϕ is monotonically increasing and sh(s) ≤ 1 there follows

h(s)ϕ(αs) ≤ ϕ(αs h(s)) ≤ ϕ(α).

This estimate and (4.11) provide the result of the proposition

Examples for regularization methods (3.1) with h defined in (4.10) satis-
fying 0 ≤ h(λ) ≤ 1 and λh(λ) ≤ 1 include, e.g.,

(a) the method of ordinary Tikhonov regularization with h(λ) = 1
λ+1

(b) the method of asymptotical regularization with h(λ) = e−λ

(c) the method of truncated singular value decomposition with h(λ) = 0
for λ ≥ 1 and h(λ) = 1− λ for λ ≤ 1.

5. Discretization in Tikhonov’s method

In the method of ordinary Tikhonov regularization the regularized approxi-
mation xδ

α is determined by solving the minimization problem

min
x∈X

Jα(x)

Jα(x) = ‖Ax− yδ‖2 + α‖x‖2 (x ∈ X)

or, equivalently, xδ
α is the unique solution of the Euler equation

(A∗A + αI)xδ
α = A∗yδ

of Tikhonov’s functional Jα. Hence, xδ
α has form (3.1) with gα(λ) = 1

λ+α .
The computation of regularized approximations xδ

α requires the numerical
realization of (3.1) and (3.2) in finite-dimensional spaces. Let us approximate
the space X by a finite-dimensional subspace Xn. Then, in Tikhonov’s method
a finite-dimensional regularized approximation xδ

n,α can be defined by solving
the finite-dimensional minimization problem

min
x∈Xn

Jα(x)

Jα(x) = ‖Ax− yδ‖2 + α‖x‖2 (x ∈ Xn).
(5.1)

Problem (5.1) is equivalent to minimizing the functional ‖Anx−yδ‖2 +α‖x‖2
over X, where An = APn and Pn : X → X is the orthogonal projector onto
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the subspace Xn. Therefore, the finite-dimensional regularized approximation
xδ

n,α of problem (5.1) is given by

xδ
n,α = (A∗nAn + αI)−1A∗nyδ (5.2)

where An = APn. If {φ1, ..., φn} is a basis of Xn, then (5.2) has the form

xδ
n,α =

n∑

j=1

cjφj

with c = (c1, ..., cn)T ∈ Rn as the unique solution of the linear system of
equations

[A + αΦ]c = d

where A and Φ are n×n matrices with ij-th entries (Aφj , Aφi) and (φj , φj),
respectively, and d ∈ Rn is a vector with entries di = (yδ, Aφi).

For choosing the regularization parameter we consider a discretized dis-
crepancy principle, that is, we choose α as the solution of the equation

dn(α) := ‖Axδ
n,α − yδ‖ = (1 + εn)δ (5.3)

with some constant εn ≥ 0. The function dn is continuous with dn(0) =
‖Qnyδ‖ and limα→∞ dn(α) = ‖yδ‖ where Qn denotes the orthoprojection of Y

onto N(A∗n) = R(An)⊥. Hence, the nonlinear scalar equation (5.3) possesses
a unique solution αD provided

‖Qnyδ‖ < (1 + εn)δ < ‖yδ‖. (5.4)

In our next theorem we show that our finite-dimensional regularized ap-
proximation (5.2) with α chosen by (5.3) is order optimal on the general source
set (1.4) provided ϕ is concave and Pn satisfies approximation property (5.5).

Theorem 5.1. Let Mϕ,E be given by (1.4) and let Assumption 1.1 be
satisfied. Let xδ

n,α the finite-dimensional regularized approximation (5.2), let
(5.4) hold and let α be chosen by the discretized discrepancy principle (5.3).
If Pn satisfies ∥∥A(I − Pn)x†

∥∥ ≤ εnδ (5.5)

and if ϕ is concave, then xδ
n,α is order optimal on the set Mϕ,E and

‖xδ
n,α − x†‖ ≤ (2 + εn)E

√
ρ−1

(
δ2

E2

)
. (5.6)
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Proof. Since xδ
n,α satisfies the equation αxδ

n,α = PnA∗[yδ − Axδ
n,α] we

obtain due to APnxδ
n,α = Axδ

n,α that

‖xδ
n,α − x†‖2
=

(
x† − xδ

n,α, x†
)− (

x† − xδ
n,α, xδ

n,α

)

= (x† − xδ
n,α, x†)− 1

α

(
x† − xδ

n,α, PnA∗[yδ −Axδ
n,α]

)

=
(
x† − xδ

n,α, x†
)− 1

α

(
APnx† −Axδ

n,α, yδ −Axδ
n,α

)

=
(
x† − xδ

n,α, x†
)

+
1
2α

{∥∥APnx† − yδ
∥∥2

− ∥∥Axδ
n,α − yδ

∥∥2 − ∥∥APnx† −Axδ
n,α

∥∥2
}

.

(5.7)

From (5.5) we have

‖APnx† − yδ‖ ≤ ‖Ax† − yδ‖+ ‖A(I − Pn)x†‖ ≤ (1 + εn)δ.

Consequently, due to (5.7) and (5.3) we obtain for α = αD

‖xδ
n,α − x†‖2 ≤ (x† − xδ

n,α, x†).

Exploiting the source condition x† ∈ Mϕ,E with Mϕ,E given in (1.4) yields

‖xδ
n,α − x†‖2 ≤ E

∥∥[ϕ(A∗A)]
1
2 (xδ

n,α − x†)
∥∥,

hence
‖xδ

n,α − x†‖2
(2 + εn)2E2

≤
∥∥[ϕ(A∗A)]

1
2 (xδ

n,α − x†)
∥∥2

‖xδ
n,α − x†‖2 .

Since ϕ is monotone and concave we obtain that ϕ−1 is monotone and convex.
We use the monotonicity of ϕ−1, apply Jensen’s inequality and obtain

ϕ−1

(‖xδ
n,α − x†‖2

(2 + εn)2E2

)
≤ ϕ−1

(∥∥[ϕ(A∗A)]
1
2 (xδ

n,α − x†)
∥∥2

‖xδ
n,α − x†‖2

)

= ϕ−1

(∫ a

0
ϕ(λ) d

∥∥Eλ(xδ
n,α − x†)

∥∥2

∫ a

0
d‖Eλ(xδ

n,α − x†)‖2
)

≤
∫ a

0
λ d

∥∥Eλ(xδ
n,α − x†)

∥∥2

∫ a

0
d
∥∥Eλ(xδ

n,α − x†)
∥∥2

=
‖Axδ

n,α −Ax†‖2
‖xδ

n,α − x†‖2 .



Morozov’s Discrepancy Principle 213

Due to λϕ−1(λ) = ρ(λ) and

‖Axδ
n,α −Ax†‖ ≤ ‖Axδ

n,α − yδ‖+ ‖Ax† − yδ‖ ≤ (2 + εn)δ

we obtain

ρ

(‖xδ
n,α − x†‖2

(2 + εn)2E2

)
≤ δ2

E2

which provides (5.6)

Note that for Pn = I, Xn = X and 1+ εn = C the results of Theorem 5.1
and Theorem 3.3 with gα(λ) = 1

λ+α coincide.

6. Asymptotical regularization

In the method of asymptotical regularization the regularized approximation
xδ

α is given by xδ
α = x( 1

α ) where x = x(t) is obtained by solving the initial
value problem

d

dt
x(t) + A∗Ax(t) = A∗yδ (0 < t ≤ 1

α )

x(0) = 0



 . (6.1)

It is well known that xδ
α has the representation

xδ
α = gα(A∗A)A∗yδ with gα(λ) =

1− e−
λ
α

λ
. (6.2)

Obviously, this method fits into the framework of the general regularization
method (3.1). In this section we will give, compared with Theorem 4.3, some
other proof for order optimal error bounds which instead of assumption (4.7)
requires some weaker assumption. We start our studies with providing some
monotonicity property.

Proposition 6.1. Let xδ
α be the regularized approximation (6.2). Let

(3.3) hold and let αD be the regularization parameter obtained by Morozov’s
discrepancy principle (3.2). Then

‖xδ
αD

− x†‖ ≤ ‖xδ
α − x†‖ for αD ≤ α. (6.3)

Proof. From gα(λ) = 1−e−
λ
α

λ we have

d

dα
gα(λ) = − 1

α2
e−

λ
α =

1
α2

(
λgα(λ)− 1

)
.
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Consequently,

d

dα
gα(AA∗)yδ =

1
α2

[
AA∗gα(AA∗)− I

]
yδ =

1
α2

[
Axδ

α − yδ
]
.

This identity provides the estimate

1
2

d

dα
‖xδ

α − x†‖2 =
(
xδ

α − x†, A∗
d

dα
gα(AA∗)yδ

)

=
(
Axδ

α − yδ + (yδ − y),
d

dα
gα(AA∗)yδ

)

=
1
α2

(
Axδ

α − yδ + (yδ − y), Axδ
α − yδ

)

≥ ‖Axδ
α − yδ‖
α2

{
‖Axδ

α − yδ‖ − δ
}

.

From this estimate and the monotonicity of the norm ‖Axδ
α− yδ‖ as function

of α it follows that, for all α ≥ αD,

1
2

d

dα
‖xδ

α − x†‖2 ≥ Cδ

α2
D

(C − 1)δ ≥ 0.

Thus, we obtain the required property (6.3)

In order to derive order optimal error bounds for ‖xδ
αD
−x†‖ we distinguish

as in Section 4 two cases, a first case with αD ≥ α0 and a second one with
αD ≤ α0 where α0 is given by (4.3). In the first case we will exploit Proposition
4.2, and in the second case Proposition 6.1. The second case requires, instead
of assumption (4.7), the weaker condition that there exists some constant dϕ

such that
sup

0<λ≤a

∣∣[1− λgα(λ)
]√

ϕ(λ)
∣∣ ≤ dϕ

√
ϕ(α). (6.4)

Note that for functions gα with |1− λgα(λ)| ≤ 1 relation (4.7) implies (6.4).

Theorem 6.2. Let Mϕ,E be given by (1.4) and let Assumption 1.1 be
satisfied. Let xδ

α be the regularized approximation (6.2), let (3.3) hold and let
αD be the solution of equation (3.2). If assumption (6.4) is satisfied, then xδ

αD

is order optimal on the set Mϕ,E and

‖xδ
αD

− x†‖ ≤ cE

√
ρ−1

(
δ2

E2

)
(6.5)

with c = max
{
C + 1.6382, dϕ + 0.6382

}
.

Proof. For method (6.2) assumption (4.4) holds true with c0 ≤ 0.6382.
Hence, for the case of αD ≥ α0 with α0 given by (4.3) the proof of this theorem
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follows from Proposition 4.2. It remains to consider the second case αD ≤ α0.
From Proposition 6.1, the triangle inequality, estimation (4.6) and the identity

δ√
α0

= E

√
ρ−1

(
δ2

E2

)

we obtain
‖xδ

αD
− x†‖ ≤ ‖xδ

α0
− x†‖

≤ ‖xα0 − x†‖+ ‖xδ
α0
− xα0‖

≤ ‖xα0 − x†‖+ c0E

√
ρ−1

(
δ2

E2

)
(6.6)

with c0 ≤ 0.6382. Exploiting (6.2), (1.4), (6.4) as well as (4.3), we obtain in
the second case

‖xα0 − x†‖ =
∥∥[

gα0(A
∗A)A∗A− I

]
[ϕ(A∗A)]1/2v

∥∥
≤ dϕE

√
ϕ(α0)

= dϕE

√
ρ−1

(
δ2

E2

)
.

(6.7)

Now (6.5) follows from (6.6) - (6.7)
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