Header menu link for other important links
X
Modified Mean and Variance Normalization: Transforming to Utterance-Specific Estimates
Published in Birkhauser Boston
2016
Volume: 35
   
Issue: 5
Pages: 1593 - 1609
Abstract
Cepstral mean and variance normalization (CMVN) is an efficient noise compensation technique popularly used in many speech applications. CMVN eliminates the mismatch between training and test utterances by transforming them to zero mean and unit variance. In this work, we argue that some amount of useful information is lost during normalization as every utterance is forced to have the same first- and second-order statistics, i.e., zero mean and unit variance. We propose to modify CMVN methodology to retain the useful information and yet compensate for noise. The proposed normalization approach transforms every test utterance to utterance-specific clean mean (i.e., utterance mean if the noise was absent) and clean variance, instead of zero mean and unit variance. We derive expressions to estimate the clean mean and variance from a noisy utterance. The proposed normalization is effective in the recognizing voice commands that are typically short (single words or short phrases), where more advanced methods [such as histogram equalization (HEQ)] are not effective. Recognition results show a relative improvement (RI) of (Formula presented.) in word error rate over conventional CMVN on the Aurora-2 database and a RI of 20 and (Formula presented.) over CMVN and HEQ on short utterances of the Aurora-2 database. © 2015, Springer Science+Business Media New York.
About the journal
JournalCircuits, Systems, and Signal Processing
PublisherBirkhauser Boston
ISSN0278081X
Open AccessNo
Concepts (10)
  •  related image
    Information use
  •  related image
    CMVN
  •  related image
    HISTOGRAM EQUALIZATIONS
  •  related image
    MEAN AND VARIANCE NORMALIZATIONS
  •  related image
    NOISE COMPENSATION
  •  related image
    SECOND ORDER STATISTICS
  •  related image
    SPEECH APPLICATIONS
  •  related image
    USMN
  •  related image
    USMVN
  •  related image
    Speech recognition