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Abstract. Based upon the results of a literature review, a set of physical parameters suitable
for quantitative comparison in experimental and numerical studies is determined. The review
showed the feasibility of modeling the process of the outflow of an immersed jet of inert gas into
the surrounding space and the evolution of a free shear layer formed by hot and cold gases to
analyze the process of convective and diffusion transport of various types of particles. In the
model formulation we consider the problem of solid destruction by a melt of the same substance,
as well as by a nitrogen stream at high temperature. The test simulation of the problems of
two-phase interaction of a immersed jet of molten liquid and hot gas, on the whole, qualitatively
showed the reproduction of the main characteristics of the flow: the generation of large-scale
vortices around the jet in the induction zone, the oscillations of the jet when it collides with an
obstacle, and the shape of the cavity formed.

1. Introduction

Low-temperature plasma (LTP) generators create a stream of highly ionized quasineutral gas,
which in some cases forms a jet immersed into the surrounding space allowing regarding this
process as a classical problem of fluid mechanics. The fluid jet is an unstable unsteady flow
that has several evolution stages on a scale determined by the characteristic size—the diameter
of the outlet D (or width W in planar case). Accordingly, one can introduce the characteristic
Reynolds number ReD = ρUD/µ at this scale, where U to be the characteristic speed, ρ to be
the density, µ to be dynamic viscosity. A submerged jet appears to be extremely sensitive to
perturbations of velocity and pressure emerged from the nozzle exit region. Artificially generated
disturbances (using vibrating plates, acoustic speakers, auxiliary inlet channels) can be axial or
spiral, and their amplitude can be about 0.01% of the speed U [1]. Such excitations allow to
control mixing intensity and, in some cases, to divide the turbulent jet into two or three streams
with a maximum divergence angle of 160◦. The nature of the flow instability is also determined
by perturbations propagating through the gas duct of the gas-dynamic facility (LTP generator),
nozzle block eigenfrequencies, hydrodynamic perturbations from stationary vortices at gas path
elbows, and the boundary layer break-up at sharp edges.
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Along with the nozzle exit section a free shear layer is an important element of the submerged
jet too. Its properties, such as an average velocity Ū , velocity difference ∆U , the maximum
shear |∂U/∂y|max [2], the size of the initial displacement or momentum thickness to a large
extent determine the instability mode (convective or absolute [3]), as well as its increment. The
growth of instability in the shear layer is intrinsically two-dimensional at least at the linear
stage of evolution [4]. Further development leads to the roll-up of Kelvin–Helmholtz vortices,
which in the case of a three-dimensional jet have a toroidal shape. Their intensity determines
the entrainment rate of surrounding fluid in the jet and the destruction of the core, the shape
of resulting coherent structures in the far field of the stream.

The immersed jet is divided into several sections (at least three): the initial section (z/D . 6),
transitional section (6 . z/D . 20), and the main one (self-similar, z/D & 20), where z to be a
distance from the outlet. An important parameter is the characteristic Mach number M in the
boundary layer, which determines the effect of compressibility [2].

The described scenario of evolution will be significantly complicated if jet is composed of
thermal plasma. A large gap across the shear in a number of thermodynamic quantities (density,
temperature, etc) should have a significant effect on the instability development, as well as on
the of mixing with host fluid.

An important factor is plasma radiative quenching due to nonequilibrium radiation, which
leads to the rapid cooling of macroscopic fluid parcels and decrease in their volume, as well as
the equilibrium recombination of atoms and molecules that change, in particular, the average
molar mass of the mixture. Observing the mixing process and the resulting structures in a
recombining plasma jet, as well as finding the velocity distribution, is a difficult task due to high
temperatures leading to the evaporation of tracer particles and the destruction of measuring
probes, and the high luminescence intensity of gases leaving the plasma torch.

This article is structured in the following way. In section 2, we provide a brief overview of
effective experimental diagnostics providing independent measurements of velocity, temperature
and concentrations of species. These methods allow obtaining profound and reliable data to
be compared with numerical investigations. The latter appears to be rather difficult task as
plasma jet evolution is accompanied by shear flow instabilities, developed turbulence and huge
chemical and heat diffusion rates. We finalize section 2 depicting our results on graphite ablation
visualized by laser knife. In section 3, we build two models of jet-solid destructive interaction
departing from classical Stefan problem. The first models deals with the interaction of the
immersed tin jet with solid plate of the same substance. In the second model, we move from
liquid tin to gaseous nitrogen stream, trying to achieve heat fluxes and to maintain algorithm
stability.

2. Convective and molecular transport in the immersed jet of thermal plasma

In addition to well-known methods for measuring plasma velocity and temperature, such as
Pilot’s tube, tracing particles seeded into plasma, spectroscopic measurements of spontaneous
emission of excited species, immersed plasma jets are experimentally investigated using Thomson
scattering, 2-photon induced laser fluorescence, enthalpy probes, coherent anti-Stokes Raman
spectroscopy.

These methods provide a fairly complete picture of hydrodynamic and thermal characteristics,
as well as determine the concentration of some species. In particular:

• enthalpy probe measures total oxygen concentration, velocity and temperature profiles in
the flow;

• Thomson scattering—a non-invasive method allowing independent measurements of plasma
velocity and temperature, which can be compared with the data of an enthalpy probe;
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• using fluorescence induced by a 2-photon laser it is possible to determine the concentration
of atomic oxygen;

• molecular oxygen concentration and temperature are measured using coherent anti-Stokes
recombination scattering spectroscopy;

• the schlieren method determines the ratio of the densities in the jet and the surrounding
gas visualizing vortex zones.

The indicated approaches were used elsewhere [5] for the experimental study of a argon jet
from an industrial plasma torch with characteristic plasma temperature T = 12000 K, ionization
degree αi ≈ 0.1–0.3, velocity over 1000 m/s, Mach number M ≈ 0.5. Since such plasma torches
are often used for plasma spraying, the measurements of macroscopic mixing and molecular
diffusion rates of atmospheric gases into the jet and their subsequent reaction with particles of
the sprayed powder are extremely important. Due to high temperatures the differences in a
material parameters and transport coefficients, particularly in density, remain in the far field
of the jet, even though the jet quickly dissipates due to capture of the surrounding fluid. The
entrainment changes the chemical composition and quickly slows down and cools the jet, creating
an oxidizing atmosphere and changing the efficiency of melting and particle acceleration.

Using the schlieren method, it was found that the mixing of the jet with the surrounding
liquid is turbulent. Indeed, according to [6], if the characteristic Reynolds number (by mass
average values) exceeds 400, the shear layer at the exit of the plasma torch is turbulent either.
The accelerated turbulization of the mixing layer is possibly preceded by the turbulization of
a sufficiently thick boundary layer on the inner surface of the gas duct of the plasma torch,
which has a relatively low temperature. However, due to the high temperature, low density, and
relatively high viscosity at the jet centerline, the core remains laminar at the outlet.

At the initial section of the jet the process of vorticity generation in the irrotational fluid is
kinematic (determined by the Biot–Savart law), and such fluid particles immediately adjacent
to the shear layer, begin to participate in large-scale shear movements long before they acquire
their own vorticity through diffusion.

For large Reynolds numbers dimensional considerations [6] allow to obtain an expression for
the time required to achieve the determination of a certain size of the vortex (the required wave
number k, or spatial scale) [7]. The time to reach the Kolmogorov scale is τλ0

≈ 2k1δ/U , where
δ to be the thickness of the shear layer, and k1 to be a constant of the order of unity.

The concentration diffusion time in a vortex of the size λ is τλd
≈ λ2/d, and the propagation

time of the heat wave is τλα
≈ λ2/α, where d to be the diffusion coefficient and α to be the

thermal diffusivity. The Damköhler number is the ratio of the time scales of mixing (or diffusion)
and the chemical reaction, and for large scales it has the form τλ0

/τc, and diffusion at small scales
[8] to be τλd

/τc and τλα
/τc, respectively, where τc to be the characteristic reaction time.

Large Damköhler numbers show that the mixing process is limited by chemical reactions,
while small values indicate the limited occurrence of chemical reactions.

The characteristic diffusion scale λD differs from the Kolmogorov scale by the reciprocal
of the Schmidt number [9], λd = λ0Sc

−1/2. Similarly, for heat transfer, we have the relation

λα = λ0Pr
−1/2, where Pr to be the Prandtl number. In gases Pr ≈ Sc ≈ 1, therefore, at the

Kolmogorov scale, diffusion plays a dominant role. Due to the very large temperature gradients
present in the high-temperature jets, significant heat transfer at the boundaries of cold induced
vortices can occur before the mixing of fluid particles takes place at the Kolmogorov scale. This
fact makes the intermediate stage of mixing crucially important.

Thus, in the case of air (containing nitrogen and oxygen) entrainment by a high-temperature
jet, dissociation of a significant amount of trapped gas can take place over a time much shorter
than the time to reach complete equilibrium at small scales. For high-temperature plasma jets,
density effects are also important [6]. Accelerated mixing and entrainment in low-density jets
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followed by mixing of shear layers was also observed in [10–12]. A density ratio below 0.72 leads
to the development of a specific jet instability [13,14], which is associated with the formation of
large unsteady axisymmetric vortex structures that rapidly increase host fluid entrainment.

The instabilities, which occur in the jet, are also dependent upon fluctuations in the supply
voltage and the characteristics of the arc. These oscillations lead to the formation of large-
scale perturbations with a characteristic scale of the order of the jet initial radius. The flow
characteristics at the nozzle exit, as well as the properties of the growing boundary layer in the
plasma torch channel, strongly affect the jet evolution [15], which inhibits comparing the results
of experiments obtained by various authors.

An important and probably still unresolved issue is the form of the invariants along the
streamline in a view of plasma quenching. Based on the model of an incompressible fluid, the
use of Bernoulli-type invariants is sometimes proposed.

In the range of Mach numbers, at which compressibility effects are important, it is assumed
that the flow is decelerated isentropically with a frozen plasma composition [16].

The smallest (Kolmogorov) scale of the vortices in the transition section of the plasma jet

is estimated [17] as λ0 = δRe3/4 and is about 0.1 mm. However, this scale is somewhat smaller
than the results of the Schlieren method (0.5 mm) [5]. The mixing time on the Kolmogorov
scale is of the order of τλ0

= δ/∆v = 40 µs. The characteristic propagation time of the heat wave
τλα

= λ2/α is about 50 µs. Consequently, the time to reach the smallest scales and the time
required to establish thermal equilibrium are of the same order of magnitude. Cold ambient air,
which is continuously entrained into the stream and carried downstream, can survive for tens
of millimeters in the vortex cascade and when the temperature is equalized. The corresponding
Damköhler number is τλα

/τd = 10.
The recombination process in a jet [5] occurs at a relatively low temperature, of the order of

2000 K. At this temperature, the time constant for recombination is of the order of 1 ms, which
indicates a greater effect on the reaction rate. It was found that both on the jet axis at z/D > 8
and in the mixing layers, the concentration of atomic oxygen exceeds equilibrium values. Fincke
et al. [5] noted that although cold vortices can survive for long periods of time, the hot ones have
a shorter characteristic equilibrium time of about 10 µs, which leads to a Damköhler number of
about 0.01, indicating the importance of the recombination rate.

Experiments show that in a plasma jet there are significant deviations from equilibrium and
that mixing to a molecular level is incomplete in a significant part of the flow. This important
feature is associated with incomplete mixing, as well as with the recombination rate during
expansion and cooling of the jet.

A review of the literature shows the feasibility of modeling the process of the outflow of a
jet of inert gas into the surrounding space, due to the possibility of quantitative comparison
with experimental results. It is also necessary to simulate a free shear layer formed by hot
and cold gases to analyze the process of convective and diffusion transport of various types of
particles. Available experimental data allow us to expand the set of parameters for quantitative
comparison with the results of numerical studies—in addition to speed, pressure, temperature
and heat flux, one can use density, as well as the concentration of individual types of particles.

In [18–23], we were studying the process of graphite sublimation in a chemically active and
inert plasma created by LTP generator with an expanding channel of the output electrode having
a number of technological advantages [24].

The important information on plasma properties in its head flow on the sample can be
provided by video recording and stereo imaging of the cavity formation zone. Graphite particles
heated by a high enthalpy flow leave tracks on the video frames. Being small enough, they move
in phase with the plasma jet and the particle velocity can be estimated via the exposure time and
the track length [figure 1(a)]. Rectangular (parallelepipeds of sides 12–25 mm and a thickness
of 3.5 and 7 mm) and cylindrical (diameter of 20 mm, thickness of 2, 4 and 6 mm) samples were
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(a) (b)

Figure 1. (a) Carbon sample with nitrogen plasma jet and sublimate puffs. (b) Sample shape
during sublimation under argon plasma jet, the profile of the resulting cavity is visualized using
a green laser knife.

made of isotropic and anisotropic graphite. In nitrogen plasma when reaching a sample surface
temperature of 2500 K, optically semi-opaque puffs were observed. These sublimated carbon
fines aggregations change their shape and size driven by plasma flow. The characteristic time
of interaction of a plasma jet with enthalpy of about 20 kJ/g is sufficient for sublimation of half
the initial mass of a sample weighing about 2 g (1 cm3) in 30–40 s at a distance from the nozzle
exit of Z0 = 20 mm and arc current 250 A.

Further heating of the sample surface in nitrogen plasma leads to periodic bursts of graphite
particles moving at a speed of 30–100 m/s. The process of intense graphite sublimation lasts
20–30 s and then continues in steady state when the sample reaches temperature at which
radiative losses compensate the heat influx from the plasma jet.

The maximum temperature is 4200 ± 200 K for a cylindrical sample and 4000 ± 200 K for
the rectangular one. Resting upon the obtained temperature fields one can conclude that the
maximum sample temperature is of the order of 3600–4200 K. In case of chemically inert argon
plasma jet centerline temperature reaches 2500 K in a short time (5–6 s), and the sample outside
the crater [figure 1(b)] is heated by thermal diffusion up to 2000 K, that also leads to the onset
of sublimation from a heated surface.

Although the ablation process was studied on a graphite target, the tin destruction will be
simulated in the next section due to several methodological reasons (liquid graphite does not
exist), and also because of high ablation enthalpy (an order of magnitude greater compared to
tin), which increases problem computing size significantly.

3. Simulation of immersed jet melting a solid body

The starting point of this study is the test problem of solidification of pure tin in the presence
of overheating of the liquid (Stefan’s problem) [25, 26] in a rectangular region with vertical
boundaries having different temperatures. This temperature variation is significantly less than
tin melting temperature Tm = 505 K. When simulating this two-phase problem COMSOL
Multiphysics computational algorithm is robust and provides correct solution.

Based on the results for two-phase convection, we consider a model of a jet of incompressible
liquid colliding with a solid surface of the same substance. As in [25], we assume that the
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(a) (b)

Figure 2. (a) Computational domain: 1—jet inlet interval; 2—upper boundary; 3—boundaries
of the liquid phase; 4—movable horizontal boundary; 5—vertical boundaries; 6—bottom
boundary. (b) Deformable mesh, the up side (blue) corresponds to the liquid region, the down
side (red) corresponds to the solid material region.

thermophysical properties of tin in the liquid and solid states are temperature independent,
the melt is a Newtonian liquid, and we also neglect the finite values of the velocities at the
interphase boundary due to a change in volume during melting. The calculation is carried out
in a two-dimensional rectangular domain 0.1× 0.1 m2 in size.

At the upper boundary, along with jet inlet interval, a constant temperature T1 = 508 K is
set [figure 2(a)]. The width of a plane inlet is 1 cm. At the left and right boundaries of the
domain corresponding to liquid phase, the conditions for free flow and zero heat flux are set.
The movable vertical boundary corresponds to the melting temperature of 505 K, and can shift
downward if the heat flux carried by immersed jet is able to warm the solid boundary up to the
melting temperature. The shift of the moving boundary in the calculation leads to deformation
of the computational grid, which consists of two regions corresponding to the liquid and solid
phases [figure 2(b)]. At the vertical boundaries, conditions of zero heat flux are set.

At the bottom boundary below the melting region temperature has the value T2 = 503 K.
Figure 2(b) shows a characteristic view of computational grid formed by triangular elements

refined at horizontal boundaries, as well as at the melting zone. The boundary between meshes
constructed for liquid and solid phases changes its position according to

ρSnqSn
dx

dt
· n = (Fin − Fout) · n, (1)

where ρSn to be the tin density (kg/m3), qSn to be tin specific fusion heat (J/kg), Fin to be the
heat flux from liquid phase to the interface, Fout to be the heat flux from solid phase.

The boundary conditions should be set with precautions as in the case of steep gradients
the initial stage of jet motion (when the layers of the surrounding fluid begin to move) can
be calculated with an extremely small spatial step or will not converge at all. This problem
can be solved using built-in step functions. Our experience shows that decaying exponential
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(a) (b) (c) (d)

Figure 3. The color field of the heat flux along Z-axis as well as the heat flux vector at different
moments and the corresponding color scale ranges (W/m2): (a) 2 s, [−1.47 × 107, 4.72 × 107];
(b) 6 s, [−1.38 × 107, 4.74 × 107]; (c) 15 s, [−1.8 × 107, 4.87 × 107]; (d) 30 s, [−2.43 × 107,
5.02× 107].

(a) (b) (c) (d)

Figure 4. The color field (from violet to white) shows temperature T distribution. The vectors
show the direction of spreading liquid. The scale is in the range from 503 to 508 K. The physical
time of the process: (a) 2, (b) 6, (c) 15, (d) 30 s.

functions F (t) = 1 − exp(−at) where a to be some arbitrary coefficient and t to be a physical
time can also be adopted. For a jet the condition for the mass fluid flow is specified in the
form Qm = a[1− exp(−t)], where a = 0.9 kg/s and t to be dimensionless time, which ensures
algorithm stability in the transition mode. The total number of grid cells is 5203.

Figure 3 shows the distribution of the heat flux in the vertical direction at different time
instants indicating very large heat fluxes up to 50 MW/m2 at relatively low speeds (about
0.15 m/s). The development of a flow in a liquid region is associated with the formation of two
vortices as the submerged jet moves to a solid surface, which then increase in size and have a
rounded core. The onset of melting (t ≈ 5 s) leads to deformation of the vortex zone. Impinging
fluid flow forms a stagnant region at the collision point and also begins to spread over the solid
surface. The cavity deepening (t ≈ 15–20 s) leads to separation of streams of spreading fluid
from a solid surface. Temperature distribution in figure 4 shows that the region of maximum
temperature coincides with the stagnant zone and the section of the most rapid melting. The
boundary between the liquid and solid phases occupies its asymptotic position when establishing
the equality of heat fluxes arriving at the grid cell from jet and the bottom cold boundary. Thus,
the melting process is modeled by the displacement of the interphase boundary, which leads to
a displacement of the faces of the computational grid downward, cells stretching and a general
size increase of the molten tin region.

In further, we will consider modeling of a hot gas (with properties of nitrogen) impinging a
tin solid plate in order to achieve heat fluxes affecting an obstacle comparable to the results of



XXXV International Conference on Equations of State for Matter (ELBRUS 2020)
Journal of Physics: Conference Series 1787 (2021) 012062

IOP Publishing
doi:10.1088/1742-6596/1787/1/012062

8

Figure 5. Modified computational domain: 1—jet inlet interval; 2—upper boundary; 3—
boundaries of the liquid phase; 4—interfacial boundary; 5—vertical boundaries; 6—bottom
boundary; 7—vicinity of the inlet.

the first problem. To ensure the correctness and cost-effectiveness of the calculation, a number
of boundary conditions were modified (figure 5).

In particular, the impermeability condition at the upper boundary has been replaced by the
free outlet to simplify the flow pattern around the jet. The latter will restrict the intensity of
large-scale vortices above the solid surface, and also prevent the appearance of hot gas regions at
the upper boundary of the domain in figure 5 leading to temporal step refinement. The condition
for achieving melting temperature at the interfacial boundary for the mesh displacement is
replaced by a system of ratios:

dx

dt
· n = vn, (2)

vn =
Tlm

ρsHabl

, (3)

where n to be the normal to the cell boundary, vn to be the speed of the boundary in the normal
direction, Tlm to be the Lagrange multiplier that numerically coincides with the value of the
resulting heat flux at the cell boundary, ρs to be the density, Habl to be the enthalpy of ablation
of the substance in the solid phase. Thus, if the heat flux from the immersed jet exceeds a
certain critical value, the boundaries of the moving cells are shifted to the corresponding value.

For immersed jet mass flow Qm = b[1− exp(−0.5t)] and temperature Tj = c+ d[1 − exp(−t)],
where b = 0.1 kg/s, c = 505 K, d = 5000 K, conditions acting as limiters of spatial and temporal
velocity and temperature gradients are set when establishing the flow. In the approximation
used the temperature is constant over the jet cross section, while its time dependence shows that
gas heating in the plasma torch does not occur immediately. Obviously, simulated derivatives
dQm/dt and dTj/dt are significantly less than the real values in the plasma torch. However, the
calculation of these transient phenomena would require considerable processor time.

The rectangular area in the immediate vicinity of the entrance indicates the adaptation zone
of the computational grid in order to improve the accuracy of the calculations. The total number
of cells of the computational grid was 14 127.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6. The distribution of heat flux in Z-axis direction at different moments with the color
scale ranges (W/m2) as follows: (a) 0 s, [2.7 × 10−3, 2.79 × 105]; (b) 0.1 s, [15, 4.4 × 105]; (c)
0.2 s, [26.3, 1.11 × 106]; (d) 0.3 s, [124, 2.41 × 106]; (e) 0.5 s, [102, 7.2 × 106]; (f ) 1 s, [47.2,
1.92× 107]; (g) 2.2 s, [49.2, 4.51× 107]; (h) 3.2 s, [33.9, 5.49 × 107].

(a) (b) (c) (d)

Figure 7. Mesh deformation at various time instances: (a) 0.5, (b) 1.0, (c) 2.2, (d) 3.2 s.

This statement is intended to clarify some features of the interaction of a plasma jet with a
destructible surface. In contrast to the simulation of a jet of the same material, in this case a
compressible gas model was used at relatively low Mach numbers (M 6 0.3), providing a model
accuracy of about 10%. In the calculation, it is also assumed that the contribution of evaporated
material to the characteristics of the gas flowing at the surface is negligible.

Figure 6 shows the distribution of the heat flux along the Z axis. It can be seen that the lack
of grid resolution leads to the formation of two jets at the boundary of the inlet section. Due to
the relative low density of hot gas, the achievement of thermal fluxes comparable to the flow of
liquid jet in a stream of nitrogen requires the implementation of much higher temperatures and
speeds. One can note the change of the grid shape in adaptation region (figure 7).

The velocity field in the jet (figure 8) shows the insufficient grid resolution, that is expressed
in the absence of flow in the central zone (the onset of two jets t ≈ 0.1 s) and in the asymmetry of
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 8. Speed distribution in a gas stream at different moments with the corresponding color
scale ranges (m/s): (a) 0 s, [0, 0.185]; (b) 0.1 s, [0, 2.8]; (c) 0.2 s, [0, 5.5]; (d) 0.3 s, [0, 5.5]; (e)
0.5 s, [0, 10.7]; (f ) 1 s, [0, 71.6]; (g) 2.2 s, [0, 162]; (h) 3.2 s, [0, 195].

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 9. Temperature T distribution at different moments with the corresponding color scale
ranges (K): (a) 0 s, [503, 509]; (b) 0.1 s, [503, 981]; (c) 0.2 s, [503, 1410]; (d) 0.3 s, [503, 1800];
(e) 0.5 s, [503, 2470]; (f ) 1 s, [503, 3670]; (g) 2.2 s, [503, 4950]; (h) 3.2 s, [503, 5300].

velocity field in the jet (t ≈ 0.5–2.2 s). Subsequently, the jet becomes stable. It should be noted
that spreading filaments do not detach from the surface of a solid throughout the calculation.
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The appearance of the cavity occurs at t ≈ 0.5 s. Later, a heat flux (55 MW/m2) comparable
to the liquid jet is achieved.

The temperature field (figure 9) suggests that the flow evolution depends on the distance from
the upper boundary of the computational domain to the interface between solid and gaseous
media. Indeed, if this distance is relatively small, then the initial interaction of the hot gas and
the wall is carried out by the hot “wings” of the two jets (together with the central zone), so the
initial contact area is quite large (2–3 characteristic scales), and the high-speed T-shape flow is
already set at the hot fluid layer. If the distance to the surface is large enough, then the two
initial vortices in the induction zone of the jet are left behind and jet impinges the surface at
some local area, followed by spilling over the solid. It should be noted that even at such small
distances, oscillations of the jet core are observed, which lead to a shift of stagnation spot at
the solid surface.

Despite the absence of intense vortices around stream, at t > 2 s there is a rapid warming of
the entire gas region up to the jet temperature. Attention should also be paid to the process of
deformation of the adapted mesh zone.

4. Conclusion

The test simulation of the problems of two-phase interaction of the immersed jet of molten liquid
and hot gas, on the whole, qualitatively showed the main flow characteristics: the generation
of large-scale vortices around in the induction zone, jet oscillations when it collides with an
obstacle, the shape of the cavity formed. At this stage of the program testing, an important
result is the similarity of the cavity profile shape during operation of a real plasma torch and
the results of two-dimensional numerical simulation.

However, we note a number of serious limitations identified when using this software package:

• the impossibility of calculating the convective and diffusion mixing of two gas phases, which
takes place, in particular, when a immersed stream of argon flows into the atmosphere;

• the need to allocate large amounts of memory for the algorithm to work on small grids;

• non-uniformity of the convergence process during mesh refinement;

• restriction on Mach numbers (M about 0.3) in the model for calculating a compressible gas,
the absence of models for calculating transonic flows.

We emphasize that the preliminary modeling contains a number of assumptions that significantly
differ from experimental conditions:

• the real interaction between the jet and solid substrate is three-dimensional;

• being heated the solid body is surrounded by a veil of decomposition products, as well as
gases emanating from the pores (or dissolved) in the sample material;

• combustion (oxidation) of matter evaporating or sublimating from the sample, in particular
carbon atoms and particles, occurs both when using nitrogen and argon as plasma forming
gas (due to mixing and molecular diffusion);

• the sample has a finite size increasing its total temperature at sufficiently long heat exposure;

• there is a slight displacement as well as deformation and morphological transitions in the
sample exposed to plasma jet.

The performed simulation of the interaction between a high-speed plasma jet and solid shows
the possibility of studying a variety of occurring processes, such as heating, temperature field
stabilizing, sample temperature fluctuations, its partial destruction, and also plasma chemical
reactions in the interaction zone, including surface burning of sample material and its sublimate
in nonequilibrium plasma flow.
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