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a b s t r a c t 

The loading path dependence of ductile failure by void growth to coalescence is studied using a unit 

cell model of a porous material, containing a periodic distribution of voids in an elasto-plastic power 

law hardening matrix. The unit cell is subjected to triaxial proportional loading paths, and predictions 

for the strains to failure, defined as the onset of void coalescence by plastic strain localization in the 

inter-void ligaments, are obtained as a function of the loading path parameters, the stress triaxiality and 

the Lode parameter. Analogous simulations of a macroscopic material element subjected to proportional 

loading are performed using a multi-surface plasticity model, which accounts for void growth by diffuse 

plastic flow and void coalescence by the localization of plastic strains inside a micro-scale representative 

volume element. A phenomenological hardening law that approximately accounts for the physics of 

strain hardening during both pre- and post-coalescence deformation is proposed. The strains to failure 

in the continuum simulations are determined as the equivalent strains to the onset of void coalescence 

at the micro-scale of the voids. It is shown that the multi-surface plasticity model quantitatively predicts 

the loading path dependence of the strains to failure obtained from the cell model simulations over a 

wide range of values of the Lode parameter, from axisymmetric to shear dominated states, and moderate 

to large values of the stress triaxiality. Quantitative agreement with cell model simulations is obtained 

for two representative values of the strain hardening exponent, and in the absence of heuristic adjustable 

parameters in the model. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

The growth and coalescence of micro-voids is a key mechanism 

of failure in ductile materials. The growth of micro-voids leads to 

material softening and promotes the onset of plastic instabilities 

such as necking or shear banding. The formation of such local- 

ization zones is quickly followed by crack nucleation and growth, 

aided by rapid void growth in the crack-tip process zones, leading 

to complete failure. Given that the void growth process is a result 

of plastic deformation of the matrix material, the damage growth 

rates are expected to be strongly influenced by the loading history. 

The loading path in stress space is usually characterized by two 

non-dimensional quantities, namely the stress triaxiality, T , and the 

Lode parameter, L , which are related to the ratios of the stress in- 

variants. The triaxiality T is the ratio of the mean stress and the 

von Mises equivalent stress, while the Lode parameter is related 

to the determinant of the stress deviator normalized by the Mises 
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stress. It has long been established that the triaxiality plays a crit- 

ical role in the damage growth process, which is a consequence of 

the hydrostatic stress dependence of void growth. As is well known 

from notched bar tension experiments ( Hancock and MacKenzie, 

1976; Hancock and Brown, 1983 ), the ductility decreases exponen- 

tially as a function of the stress triaxiality. However, the effect of 

the Lode parameter, which allows to distinguish between axisym- 

metric and shear dominated stress states for a given hydrostatic 

stress, on the ductility has historically received less attention in 

the literature. 

The Lode parameter dependence of ductile failure has been 

brought into focus by several recent experimental studies aimed 

at understanding the mechanisms of failure under low triaxiality 

shear dominated loading conditions, when void growth is slow due 

to the low hydrostatic stress levels ( Bao and Wierzbicki, 2004; Bar- 

soum and Faleskog, 2007; Dunand and Mohr, 2011; Haltom et al., 

2013; Papasidero et al., 2015 ). Bao and Wierzbicki (2004) used 

a series of fracture specimens, including notched bars, butterfly 

shear specimens and uniaxial compression pins to study ductile 

fracture over a wide range of average triaxialities ranging from 

positive to negative values. In contrast with the earlier studies of 
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Hancock and MacKenzie (1976) , they reported a non-monotonic 

variation of the ductility as a function of the average triaxiality 

in their experiments, with the ductility increasing with decreas- 

ing triaxiality till a values of T ≈0.4 followed by a decrease in duc- 

tility towards lower values of T . Similar results were also reported 

by Barsoum and Faleskog (2007) using tension-torsion experiments 

on weldox steel specimens. However, Haltom et al. (2013) reported 

that the same trends could not be reproduced in tension-torsion 

experiments using Aluminum 6061 specimens. Many authors have 

suggested that the reduced ductility at low triaxialities observed in 

some experiments is a result of a change in failure mechanism at 

the micro-scale of the voids, from void growth to coalescence un- 

der highly triaxial stress states to shear strain localization between 

the voids (the so called void sheet mechanism) for low values of 

T . While the existing experimental evidence is not conclusive for 

the mechanisms operative at the micro-scale, the above hypothesis 

entails a dependence of the ductility on the Lode parameter, since 

shear dominated stress states are much more likely to promote the 

void sheet mechanism than axisymmetric states. 

Classical models of ductile failure such as the Rice and 

Tracey (1969) void growth model and the Gurson (1977) yield cri- 

terion for an isotropic porous material were developed assuming 

spherical voids growing in a triaxial axisymmetric velocity field; 

and predict an exponential decrease in ductility with triaxiality 

consistent with the early experimental data on notched bars. How- 

ever, they predict no dependence of damage growth on the Lode 

parameter, primarily due to the assumption of isotropy entailed by 

the self-similar growth of spherical voids and the focus on axisym- 

metric states. Widely used ‘damage indicator’ models, which spec- 

ify evolution laws for a damage variable as a function of the load- 

ing path together with a failure criterion based on the attainment 

of a critical value of the damage variable, such as the Johnson and 

Cook (1985) model, are based on Rice and Tracey (1969) ’s solution, 

and therefore insensitive to the Lode parameter. Recently, several 

authors have proposed alternative damage indicator models that 

include a Lode parameter dependence of the damage evolution 

law, by using phenomenological arguments and calibration with 

experimental data to determine the parameters in the model ( Xue, 

2007; Bai and Wierzbicki, 2008; Dunand and Mohr, 2011 ). These 

models retain the assumption of isotropy in the early microme- 

chanical models and introduce the Lode parameter dependence by 

fiat. On the other hand, evidence from experimental micrographs 

( Barsoum and Faleskog, 2007; Pineau et al., 2016 ) and microme- 

chanical cell model simulations ( Nielsen et al., 2012 ) indicate that 

anisotropic effects due to void shape evolution are likely to play an 

important role in the failure process at low T . 

Several anisotropic extensions of the Gurson model have 

been developed over the past decades ( Gologanu et al., 1993; 

1997; Kailasam and Castaneda, 1998; Benzerga and Besson, 2001; 

Monchiet et al., 2008; Keralavarma and Benzerga, 2008; 2010; 

Danas and Ponte Castañeda, 20 09a; 20 09b; Madou and Leblond, 

2012a; 2012b ), which attempt to capture the effect of material 

anisotropy due to void shape evolution and crystallographic tex- 

ture on the constitutive response and damage rates. These models 

can, in principle, capture the apparent Lode parameter influence 

on the ductility, since the Lode parameter influences the evolution 

of the void shape and consequent anisotropy of the material. In 

fact, material anisotropy due to void shape evolution and non- 

radial loading path effects have been shown to lead to a similar 

Lode parameter dependence, and a non-monotonic dependence 

of the ductility on the triaxiality, as in the experiments ( Benzerga 

et al., 2012; Danas and Ponte Castañeda, 2012; Thomas et al., 

2016 ). However, the above models assume that plasticity is diffuse 

at the scale of the voids, and therefore preclude the possibility of 

shear strain localization in the inter-void ligaments as in the void 

sheet mechanism postulated earlier. 

Periodic cell model simulations of porous representative vol- 

ume elements (RVE) subjected to triaxial loadings have been 

used as an effective com putational tool to study the micro- 

mechanisms of ductile failure ( Tvergaard, 1981; Koplik and Needle- 

man, 1988 ). Two-dimensional cell model analysis of void growth 

under axisymmetric proportional loading by Koplik and Needle- 

man (1988) showed that the deformation in the RVE undergoes a 

transition from void growth by diffuse plastic flow at low porosi- 

ties to void ‘coalescence’ by plastic collapse of the inter-void liga- 

ments at high porosities. Under shear dominated stress states, an- 

alytical models show that yielding at the micro-scale of the voids 

is likely to occur preferentially by shear localization along a layer 

of voids in a periodic ( Drucker, 1966; Leblond and Mottet, 2008 ) 

or random ( Idiart and Ponte Castañeda, 2005; Keralavarma, 2017 ) 

array of voids. In order to study the loading path dependence of 

the microscopic deformation mechanisms, several groups have re- 

cently performed three-dimensional periodic cell model simula- 

tions of void growth under combined tension and shear ( Barsoum 

and Faleskog, 2011; Dunand and Mohr, 2014; Teko ̆glu et al., 2015; 

Luo and Gao, 2018 ). These studies reproduce the exponential de- 

crease in ductility with increase in triaxiality T at a fixed value 

of the Lode parameter L , evidenced in the early two-dimensional 

studies. However, these studies also showed a characteristic non- 

monotonic dependence of the ductility on L at fixed T , with lower 

ductilities predicted for shear-dominated stress states ( L near zero) 

compared to axisymmetric states ( L = ±1 ). Importantly, these stud- 

ies showed that void coalescence, defined as the acceleration of 

void growth following a localization of plasticity in the inter-void 

ligaments, can occur due to a combination of tensile and shear 

strain localization in the inter-void ligaments. 

One possibility to account for the transition in deformation 

mechanisms at the microscopic scale, within the framework of 

continuum damage-plasticity models, is to use a multi-surface ap- 

proach; where the individual yield surfaces correspond to each 

possible mode of yielding within the RVE (see Pardoen and 

Hutchinson, 20 0 0; Benzerga, 20 02; Tekoglu et al., 2012 ). Similar to 

the Gurson criterion for a porous material yielding by diffuse plas- 

tic flow, Thomason (1985) had proposed a semi-analytical criterion 

for void coalescence by internal necking between the voids under 

predominantly tensile loading of the ligament. A rigorous upper- 

bound analytical solution for the same problem was obtained re- 

cently by Benzerga and Leblond (2014) . Torki et al. (2015) and 

Keralavarma and Chockalingam (2016) extended the above solution 

to account for localized yielding of the inter-void ligaments by a 

combination of the internal necking and shear localization modes. 

More recently, Keralavarma (2017) used the multi-surface approach 

to combine the Gurson yield criterion with the coalescence crite- 

rion of Keralavarma and Chockalingam (2016) to predict the effec- 

tive yield locus for a statistically isotropic material containing a 

random distribution of equiaxed voids in a von Mises plastic ma- 

trix. All possible orientations of the potential coalescence bands at 

the scale of the voids were considered using a limit analysis ap- 

proach, by assuming that the actual orientation of the coalescence 

band corresponds to the minimum yield stress for a given radial 

loading path in stress space. Comparison with numerically derived 

quasi-exact yield loci showed that the resulting criterion was in 

better agreement with the numerical data than the Gurson model; 

particularly for large values of the porosity and/or shear dominated 

loading paths (see Keralavarma, 2017 ). 

The objective of the present paper is to perform a detailed com- 

parison of the predictions of Keralavarma (2017) ’s multi-surface 

model of void growth to coalescence (referred to simply as the 

multi-surface model in the following) with three dimensional cell 

model simulations under combined tension and shear similar to 

those reported by Barsoum and Faleskog (2011) ; Dunand and 

Mohr (2014) . A periodic unit cell containing an initially spherical 
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concentric void, corresponding to a tetragonal lattice of voids in an 

isotropic von Mises matrix, will be monotonically loaded to fail- 

ure under triaxial proportional loading conditions. Periodic bound- 

ary conditions will be imposed, and the “failure strain” of the RVE 

will be determined as the value of the macroscopic equivalent 

strain at which deformation localizes into a ligament connecting 

neighboring voids. The initial orientation of the unit cell relative to 

the principal directions of loading will be chosen to approximately 

minimize the effective ductility for a given loading path, so as to 

mimic the behavior of a random statistically isotropic aggregate of 

voids. The methodology for the unit cell simulations is explained 

in Section 2.1 , followed by a summary of the simulation results in 

Section 2.2 . The multi-surface plasticity model is summarized in 

Section 3 , where a new phenomenological hardening law, applica- 

ble for both pre- and post-coalescence deformation of the RVE, is 

introduced in Section 3.2 . Section 4 contains a detailed compari- 

son of the model predictions for the loading path dependence of 

ductility with the cell model simulations, for nearly ideal plastic 

( Section 4.1 ) and strain hardening ( Section 4.2 ) materials. Broader 

implications of the results are discussed in Section 5 , followed by 

the conclusions of the study in Section 6 . 

2. Periodic cell model simulations 

2.1. Plasticity model, RVE and boundary conditions 

Consider a tetragonal lattice of spherical voids embedded in an 

elastic-plastic isotropic matrix, as shown in Fig. 1 (a). The matrix is 

assumed to follow rate independent J 2 flow theory with the Eule- 

rian deformation rate tensor, d , additively decomposed into elastic 

and plastic parts, d e and d p , respectively, as 

d = d 
e + d 

p (1) 

The elastic strain rate is related to the Cauchy stress, σ , via a hy- 
poelastic constitutive law 

∇ 
σ = C : d 

e (2) 

where C is the fourth order elastic stiffness tensor and 
∇ 
σ denotes 

the Jaumann rate of σ . The plastic deformation rate d p derives 

from the yield function via the normality property 

d 
p = ˙ λ

∂F 

∂σ
, F(σ) := σeq − σ̄ (3) 

where F(σ) ≤ 0 is the von Mises yield function, ˙ λ ≥ 0 is the plas- 

tic multiplier, σeq := 

√ 
3 
2 σ

′ : σ ′ is the Mises equivalent stress, σ
′ 
is 

the stress deviator and σ̄ is the instantaneous flow stress of the 

material. The latter is given by a power law hardening equation of 

Fig. 1. (a) Periodic tetragonal lattice of spherical voids. (b) Representative volume 

element containing a single concentric void. 

the form 

σ̄ = σ0 

(

1 + 
ε p eq 
ε 0 

)n 

(4) 

where σ 0 is the initial yield stress, ε0 is a constant reference 

strain, n is the hardening exponent and ε p eq is the equivalent plas- 
tic strain, which evolves with the plastic strain rate d p according 

to the relation 

˙ ε p eq = 

√ 

2 

3 
d p : d p (5) 

In the rate independent limit, the plastic multiplier ˙ λ is deter- 

mined using the consistency condition ˙ λ ˙ F = 0 . 

The effective macroscopic constitutive behavior of the porous 

material is investigated by loading the tetragonal RVE shown in 

Fig. 1 (b) along a radial loading path in stress space, subjected to 

periodic boundary conditions. The dimensions of the RVE corre- 

spond to the inter-void spacing in Fig. 1 (a), which is assumed to be 

smallest in the transverse plane; i.e. c ≥ a . The macroscopic stress, 

�, and deformation rate, D , tensors are obtained through volume 

averaging of the corresponding microscopic quantities within the 

framework of Hill–Mandel homogenization theory; i.e. 

� = 〈 σ〉 V , D = 〈 d 〉 V (6) 

where the notation 〈 · 〉 V denotes averaging over V , the volume of 

the RVE in the current configuration. Analogous to Eq. (1) , the 

macroscopic deformation rate can be decomposed into elastic and 

plastic parts, D = D e + D p , where the macroscopic elastic and plas- 

tic deformation rates, D e and D p respectively, are volume averages 

of the corresponding microscopic quantities. Under radial loading, 

the ratios of the components of � remain constant throughout the 

loading history, and can be written as a function of the two load- 

ing path parameters introduced earlier, the stress triaxiality T and 

the Lode parameter L , and the orientation of the RVE relative to the 

principal directions of loading. T and L are related to the invariants 

of � as 

T = 
�m 

�eq 
, L = −

27 

2 

det (�
′ 
) 

�3 
eq 

(7) 

where �m = 
1 
3 tr (�) is the mean stress, �eq = 

√ 
3 
2 �

′ : �′ is the 

macroscopic equivalent stress and �
′ 
is the deviator of �. The ori- 

entation of the RVE relative to the principal directions of loading 

is chosen such as to approximately minimize the ductility as ex- 

plained below. 

The effective mechanical behavior of the RVE shown in Fig. 1 (b) 

is expected to be orthotropic in the Cartesian basis shown in the 

figure; with equal yield stresses in the e 1 and e 3 directions due 

to the tetragonal symmetry. In the special case of equal void spac- 

ing in the axial and transverse directions, i.e. c = a, the effective 

response will have cubic symmetry. However, if the initial poros- 

ity of the material is low ( � 0.001), as is the case in all the sim- 

ulations reported here, the equivalent elasto-plastic response of 

the RVE at small strains is known from prior cell model studies 

to be approximately isotropic; dependent only on the void vol- 

ume fraction and independent of the aspect ratio of the unit cell 

( Koplik and Needleman, 1988 ). On the other hand, at large plas- 

tic strain and porosity levels, neighboring voids begin to interact 

through the plastic strain fields in the inter-void ligaments, fol- 

lowing which void coalescence occurs by plastic strain localization 

along a band of voids. The condition for the onset of coalescence 

depends on the thickness of the inter-void ligaments in the direc- 

tion of coalescence; i.e. the strain to the onset of coalescence will 

be clearly different for a cubic and tetragonal lattice of voids at 

the same porosity. The onset of coalescence is usually followed by 
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Fig. 2. (a) Orientation of the RVE relative to the principal directions of stress. (b) 

Structured mesh used in the finite element computations for a quadrant of the 

RVE. The location of the point M , used to compute the localization indicator, is also 

shown. 

accelerated growth of porosity inside the band, associated with a 

rapid drop in the overall flow stress, and eventual material separa- 

tion. Since the latter is not accounted for in the simulations, the 

ductility of the material for a given loading path will be quan- 

tified by the equivalent strain to the onset of void coalescence, 

when plasticity first localizes into a band connecting neighboring 

voids. 

Continuum studies of plastic strain localization in a gen- 

eral class of dilatant elasto-plastic materials by Rudnicki and 

Rice (1975) had shown that localization tends to occur first 

along a band with its normal perpendicular to the interme- 

diate principal stress direction. Further, analysis of the onset 

of coalescence in a random distribution of equiaxed voids by 

Keralavarma (2017) showed that the normal to the plane of coa- 

lescence must be orthogonal to a principal direction, which is usu- 

ally found to be the intermediate stress direction at low to moder- 

ate porosities relevant to ductile fracture studies. Motivated by the 

above results, we orient the c -axis of the tetragonal RVE perpen- 

dicular to the intermediate principal stress direction, as illustrated 

in Fig. 2 (a). The triad associated with the principal axes of the RVE 

is denoted e 1 , e 2 , e 3 in Fig. 2 (a), and the principal directions of 

stress are denoted ˆ e 1 , ̂  e 2 , ̂  e 3 , corresponding to the principal stresses 

�1 ≥�2 ≥�3 respectively. The e 3 axis of the RVE is taken to coin- 

cide with the intermediate principal direction ˆ e 2 , while the c -axis 

of the RVE (collinear with base vector e 2 ) makes an angle φ with 

the major principal stress direction ˆ e 1 . The value of φ is chosen 

such that the expected orientation of the localization band coin- 

cides approximately with the material plane with the highest pack- 

ing density of voids (or smallest inter-void ligament thicknesses), 

which is the transverse plane for the tetragonal RVE, shown shaded 

in Fig. 2 (a). By this device of choosing the loading orientation to 

approximately minimize the strain to coalescence for a given load- 

ing path in stress space, we seek to approximate the behavior of a 

random statistically isotropic aggregate of voids in our cell model 

simulations. 

Given the choice of the RVE orientation in Fig. 2 (a), the compo- 

nents of the average shear stress on the e 3 faces of the RVE (i.e. 

the faces with normal ± e 3 ) vanish, and the non-zero components 

of the macroscopic stress tensor acting on the faces of the RVE are 

marked in Fig. 2 (a). The resulting deformation involves warping of 

the e 1 and e 2 faces of the RVE, while the e 3 faces remain planar. 

Exploiting this fact, together with the point symmetry of the de- 

formation in the e 1 − e 2 plane about the center of the void, only a 

quadrant of the unit cell shown in Fig. 2 (b) is meshed and analyzed 

using the commercial finite element software, Abaqus/Standard, 

version 6.10. The boundaries of the domain perpendicular to e 3 
are constrained to remain planar while periodicity conditions are 

imposed on the remaining boundaries. A structured mesh con- 

sisting of fully integrated 8-node linear brick elements is used. A 

refined grid is used along the void boundary and the transverse 

inter-void ligament regions in order to capture the strain localiza- 

tion accurately; while a coarser grid is used away from the voids 

in the axial direction of the cell, as shown in Fig. 2 (b). 

The loading is imposed by prescribing the average normal dis- 

placements of the nodes on the boundary together with a simple 

shear deformation in the e 1 − e 2 plane. Let ±U i denote the av- 

erage normal displacements of the nodes on a periodic boundary 

(i.e. a boundary that does not intersect the void) with unit nor- 

mal ± e i ( i = 1 .. 3 ). In addition, simple shear in the e 1 − e 2 plane 

is imposed by prescribing the average tangential displacement, U T , 

of the nodes on the top boundary, with normal e 2 , in the e 1 direc- 

tion. Periodicity of the deformation, and the symmetry conditions 

on the boundaries that intersect the void, are enforced using multi- 

point constraint equations given in Appendix A (also see Tekoglu, 

2014; Dunand and Mohr, 2014 ). The boundary conditions are de- 

signed such that the anti-symmetric warping of the boundaries of 

the RVE on the e 1 − e 2 section planes due to shear is captured, 

while the e 3 faces are constrained to remain planar due to sym- 

metry. 

The components of the average deformation gradient, F , due to 

the imposed average boundary displacements U i , in the principal 

frame of the cell, can be written as 

[ F ] = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 + 
2 U 1 

D 1 

2 U T 

D 2 
0 

0 1 + 
2 U 2 

D 2 
0 

0 0 1 + 
2 U 3 

D 3 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(8) 

where D i ( i = 1 .. 3 ) denotes the length of the RVE in the e i direc- 

tion in the reference configuration. For the tetragonal RVE shown 

in Fig. 2 (a), D 1 = D 3 = a and D 2 = c. The macroscopic deformation 

rate tensor, D , work conjugate to � is obtained as the symmet- 

ric part of the macroscopic velocity gradient tensor, L = ˙ F F −1 . The 

components of D in the above Cartesian frame read 

[ D ] = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

2 ˙ U 1 

d 1 

˙ U T 

d 2 
−

2 U T ˙ U 1 

d 1 d 2 
0 

˙ U T 

d 2 
−

2 U T ˙ U 1 

d 1 d 2 

2 ˙ U 2 

d 2 
0 

0 0 
2 ˙ U 3 

d 3 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(9) 

where d i = D i + 2 U i are the average lengths of the RVE along the 

respective coordinate directions in the current configuration. 

Radial loading implies that the components of � vary in pro- 

portion; such that the normalized stress tensor, S := �/ �eq , re- 

mains constant and can be written as a function of the loading 

path parameters T and L , and the orientation of the RVE given by 

the angle φ between the major principal stress direction ˆ e 1 and the 

c -axis of the RVE; see Fig. 2 (a). Expressions for the components of 

the normalized stress tensor S ( T , L , φ) are given in Appendix B . 

The rate of work done per unit volume of the RVE in the current 

configuration can therefore be written as 

� : D = �eq ˙ E eq (10) 

where ˙ E eq := S : D is a macroscopic equivalent strain rate work 

conjugate to �eq . Using Eq. (9) and the definition of the normal- 

ized stress tensor S in (10) , ˙ E eq can be written as 

˙ E eq = 

(

2 S 11 
d 1 

−
4 S 12 U T 

d 1 d 2 

)

˙ U 1 + 

(

2 S 22 
d 2 

)

˙ U 2 + 

(

2 S 33 
d 3 

)

˙ U 3 + 

(

2 S 12 
d 2 

)

˙ U T 

(11) 
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The loading is imposed on the RVE through a set of four additional 

nodes, exterior to the mesh shown in Fig. 2 (b), whose instanta- 

neous velocities are equated with the average displacement rates 

of the RVE boundaries, ˙ U 1 , ˙ U 2 , ˙ U 3 and ˙ U T , through equation con- 

straints. The total rate of work done on RVE therefore equals 

�eq ˙ E eq V = F 1 ˙ U 1 + F 2 ˙ U 2 + F 3 ˙ U 3 + F T ˙ U T (12) 

where F 1 , F 2 , F 3 , F T are the forces acting on the respective nodes 

in their direction of motion. Using (11) in (12) , it follows that the 

forces F i ( i = 1 , 2 , 3 , T ) must be in proportion to the corresponding 

coefficients of ˙ U i in (11) ; i.e. 

F 1 : F 2 : F 3 : F T = 

(

2 S 11 
d 1 

−
4 S 12 U T 

d 1 d 2 

)

: 

(

2 S 22 
d 2 

)

: 

(

2 S 33 
d 3 

)

: 

(

2 S 12 
d 2 

)

(13) 

Radial loading of the RVE is ensured by imposing the above pro- 

portionality constraint between the nodal forces. This is done by 

using a linear multi-point constraint equation relating prescribed 

velocity, ˙ U 0 , of a fifth master node and the velocities of the above 

four slave nodes, as 

(

2 S 11 
d 1 

−
4 S 12 U T 

d 1 d 2 

)

˙ U 1 + 

(

2 S 22 
d 2 

)

˙ U 2 + 

(

2 S 33 
d 3 

)

˙ U 3 + 

(

2 S 12 
d 2 

)

˙ U T = ˙ U 0 

(14) 

where the coefficients of ˙ U 1 , ˙ U 2 , ˙ U 3 and ˙ U T are proportional to the 

respective nodal forces according to (13) ; see Zhu et al. (2018) for 

details. Recall that d i = D i + 2 U i are the average cell dimensions in 

the current configuration, so that for constant S , the ratios of F i 
evolve as a function of time. 

2.2. Simulation results 

The effective response of the RVE shown in Fig. 2 subjected to 

proportional stressing (constant T and L ) is examined by plotting 

the macroscopic equivalent stress �eq and the porosity f as a func- 

tion of the macroscopic equivalent strain, E eq , obtained as 

E eq = 

∫ t 

0 

˙ E eq d t (15) 

with ˙ E eq given by (11) . The matrix is assumed to be isotropic, 

and follow rate independent J 2 elasto-plastic model with power- 

law hardening, as discussed in Section 2.1 . Material properties are 

Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0 . 3 , initial yield 

stress σ0 = 420 MPa, hardening exponent n = 0 . 1 and the refer- 

ence strain ε 0 = 0 . 002 in Eq. (4) . The void is assumed to be initially 

spherical with a volume fraction f 0 = 0 . 001 . The orientation of the 

RVE relative to the major principal stress direction, i.e. the angle 

φ in Fig. 2 , is chosen such that the effective ductility is minimized 

for a given T and L . This minimization in performed by trial and 

error by varying the value of φ in discrete intervals over the range 

0 ◦–45 ◦. It is observed that, irrespective of the loading path, the 

minimum ductility occurs for some value of φ in the range 36 ◦–

45 ◦, in agreement with earlier results reported by Barsoum and 

Faleskog (2011) using similar unit cells. Moreover, predictions for 

the orientation of the coalescence plane using the multi-surface 

model, described in Section 3 , falls in the range 40 ◦ < φ ≤45 ◦ over 

a wide range of values of T and L . It is also observed that the varia- 

tion of the predicted ductility within the above range of φ is small 

in comparison to the variation of ductility as a function of T and L , 

so that, unless mentioned otherwise, all the simulation results are 

shown for a constant value of φ = 45 ◦. The effect of varying φ on 

the ductility will be shown in Fig. 6 , which illustrates the accuracy 

of this approximation. 

Fig. 3 (a) shows a comparison of the equivalent stress-strain 

response obtained in the simulations performed for two values 

of the cell aspect ratio, α := c / a , corresponding to cubic ( α = 1 ) 

and tetragonal ( α = 2 ) symmetry. Corresponding results for the 

evolution of the porosity f as a function of E eq are shown in 

Fig. 3 (b). Results are shown for three different values of the stress 

triaxiality T = 2 / 3 , 1 and 2, and a constant value of the Lode 

parameter L = −1 , corresponding to axisymmetric stress states 

with major axial stress, �1 > �2 = �3 . The results in Fig. 3 (a) and 

(b) show that, for all values of T shown, the unit cell response 

during the initial hardening stage is independent of the aspect 

ratio of the cell. This is consistent with the findings from earlier 

cell model studies ( Koplik and Needleman, 1988 ) that void growth 

for dilute values of the porosity is independent of the distribution 

of the voids. However, at large values of the equivalent strain, 

neighboring voids begin to interact through the plastic strain 

fields in the inter-void ligaments, resulting in rapid softening and 

accelerated damage growth by strain localization in the ligaments, 

referred to as void coalescence. 

The onset of coalescence, which is a precursor to ductile frac- 

ture, is characterized by the instance when plastic deformation 

starts to intensify in a narrow band, while the material outside the 

band undergoes elastic unloading. The width, W , of the localiza- 

tion band is known to be of the order of the void diameter, except 

for highly oblate penny shaped voids ( Benzerga, 2002; Morin et al., 

2015 ). In order to detect the onset of coalescence, the quarter cell 

in Fig. 2 (b) is divided into lower and upper blocks corresponding 

to 0 < X 2 < B /2 and B /2 < X 2 < D 2 /2 respectively ( W ≪B < D 2 ), such 

that when plastic deformation localizes into a band of width W 

containing the void, the upper block, X 2 > B /2, undergoes elastic 

unloading. The average deformation gradient of the upper block, 

F u , is calculated as follows using the displacement, u M , of a refer- 

ence point M at ( D 1 /2, B /2, 0); see Fig. 2 (b). 

[ F u ] = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 + 
2 U 1 

D 1 

2(U T − u M 
1 + U 1 ) 

(D 2 − B ) 
0 

0 1 + 
2(U 2 − u M 

2 ) 

(D 2 − B ) 
0 

0 0 1 + 
2 U 3 

D 3 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(16) 

Following Dunand and Mohr (2014) ; Needleman and Tver- 

gaard (1992) , a scalar localization indicator, ξ , is defined as 

ξ = 
|| ̇ F || 
|| ˙ F u || 

(17) 

where F and F u are the deformation gradients of the RVE and the 

upper block respectively, and || · || denotes the Euclidean norm of a 

tensor. Assuming B ≫W and the elastic strains are negligibly small 

compared to the plastic strains, the onset of localization corre- 

sponds to ξ → ∞ . In practice, small finite increments of F are used 

in place of the rates in Eq. (17) to compute ξ and localization is 

assumed to have occurred when the value of ξ exceeds an arbi- 

trarily defined cutoff value of 10. The value of B is chosen as B = a 

for the tetragonal RVE and B = 0 . 8 a for the cubic RVE in the results 

shown in Fig. 3 . 

The variation of ξ as a function of E eq for the simulations in 

Fig. 3 (a) and (b) is shown in Fig. 3 (c); and the onset of coales- 

cence, as determined using the above criterion, is indicated by the 

× symbol in all the figures. The value of the localization indicator 

ξ remains close to unity during initial void growth by diffuse plas- 

tic flow. The onset of coalescence corresponds to a sharp increase 

in the value of ξ over a short interval of strain, following which 

the curve becomes almost vertical. While the × marks in Fig. 3 (c) 

corresponds to ξ = 10 , it is clear that the strain to coalescence 

is insensitive to this choice; provided the value of the cutoff is 
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Fig. 3. Effective response of a tetragonal RVE with aspect ratio α = 2 (solid lines) and a cubic RVE with aspect ratio α = 1 (dashed lines) subjected to proportional stressing 

with L = −1 and varying T : (a) normalized equivalent stress �eq vs. equivalent strain E eq , (b) porosity f vs E eq , (c) localization indicator ξ vs E eq , and (d) localization indicator 

ζ vs E eq . The × marks in all the figures correspond to the onset of coalescence according to the criterion ξ = 10 . 

sufficiently large. The equivalent strain to the onset of coalescence, 

E c eq , will be used in the remainder of this paper as a measure of 

the intrinsic ductility of the material under proportional loading 

paths. It can be seen from Fig. 3 (a) and (b) that the value of E c eq 
decreases as a function of T for both RVE shapes considered. The 

effect of triaxiality on the ductility observed in Fig. 3 has been 

well characterized from several cell model studies in the litera- 

ture as well as theoretical models. Fig. 3 also shows that, at fixed 

T , the strain to the onset of coalescence is significantly lower for 

the tetragonal cell (solid lines) compared to the cubic cell (dashed 

lines). Void coalescence occurs due to plastic collapse of the inter- 

void ligaments, the condition for which clearly depends on the lig- 

ament thickness. Hence, the tetragonal RVE with a smaller initial 

ligament thickness in the transverse direction shows lower strains 

to coalescence than the cubic RVE. 

Comparison of the localization indicators in Fig. 3 (c) also shows 

that the value of ξ shows rapid high amplitude oscillations during 

the transition to coalescence in the case of the cubic RVE, which 

is absent in the case of the tetragonal RVE. Upon further examina- 

tion, it turns out that this is due to the value of B = 0 . 8 a not being 

sufficiently large compared to the width of the localization band 

for the cubic RVE; so that part of the localized strain field extends 

up to the point M used to compute F u in (16) . An alternate local- 

ization indicator, ζ , can be defined by looking at the ratio of the 
average plastic dissipation rate in the RVE, ˙ �, to the average plas- 

tic dissipation rate in the upper block, ˙ �u , as 

ζ = 
˙ �

˙ �u 

(18) 

Fig. 3 (d) shows the variation of ζ as a function of E eq , superposed 

with × marks corresponding to the values of E c eq determined using 

the other localization indicator ξ . It is clear that both localization 
indicators show similar variation with E eq as well as predicts iden- 

tical value of E c eq in the case of the tetragonal RVE. For the cubic 

RVE, the variation of ζ with E eq is somewhat different and shows 

much lower noise compared to ξ . Further, the value of the failure 
strains predicted by the two localization indicators are slightly dif- 

ferent in some cases, such as T = 1 . In fact, simulations performed 

for some values of L (e.g. L ≈1) shows that neither of the local- 

ization criteria discussed above is satisfied up to very large values 

of E eq , in the case of the cubic RVE. This indicates that the cu- 

bic distribution of voids has difficulty in achieving localization in 

the transverse direction for certain loading paths. A possible rea- 

son for this is the phenomenon of necklace coalescence (coales- 

cence between voids along the major stress direction), which has 

been observed in the case of a cubic distribution of voids in some 

recent cell model studies ( Luo and Gao, 2018 ); although precluded 

by the boundary conditions in the present case. On the other hand, 

a clear transition to coalescence in the transverse direction is ob- 

tained over a much wider range of values of T and L for the tetrag- 

onal RVE; so that the results in the remainder of the paper will be 

shown for the tetragonal RVE with aspect ratio α = 2 . 

The effective response of the tetragonal RVE as a function of 

the Lode parameter L for fixed T = 1 is shown in Fig. 4 . The range 

of variation of L is [ −1 , 1] with a value of −1 for axisymmetric 

stress states with major axial stress, +1 for axisymmetric stress 

states with major lateral stress and zero for generalized shear load- 

ings (pure shear with superposed hydrostatic stress). Intermediate 
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Fig. 4. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with T = 1 and varying L : (a) normalized equivalent stress �eq vs. 

equivalent strain E eq , (b) porosity f vs E eq . The × marks indicate the onset of coalescence according to the criterion ξ = 10 . 

values of L correspond to a combination of axisymmetric and shear 

loadings. The effective stress-strain response for five different val- 

ues of L are shown in Fig. 4 (a), and the corresponding porosity 

curves are shown in Fig. 4 (b). The onset of coalescence, indicated 

by the × marks, is determined using the condition ξ = 10 in this 

and all subsequent figures; since both the localization indicators 

discussed above predict identical results for the tetragonal RVE. It 

is clear that axisymmetric loading paths with L = ±1 yield higher 

ductilities compared to shear dominated loadings. The lowest duc- 

tility is predicted for L = −0 . 4 . The effect of the sign of L (equiv- 

alently the sign of the determinant of the deviatoric stress J 3 ; see 

Eq. (7) ) is also visible, with positive values of L yielding higher duc- 

tilities compared to negative values. Similar trends are observed 

also in the porosity curves of Fig. 4 (b), with axisymmetric states 

showing slower void growth compared to shear dominated loading 

paths. Although the above results are shown for a specific value of 

T = 1 , qualitatively similar results are obtained over a wide range 

of (positive) values of T . The results obtained are consistent with 

other recent cell model studies of void growth under combined 

tension and shear ( Barsoum and Faleskog, 2011; Dunand and Mohr, 

2014; Teko ̆glu et al., 2015; Luo and Gao, 2018 ), all of which predict 

reduced ductility under shear dominated loading paths compared 

to axisymmetric loading at fixed triaxiality. 

Fig. 5 shows the contours of microscopic equivalent plastic 

strain ε p eq plotted on the deformed configuration of the cell, at a 

relatively large value of the effective strain E eq just prior to the on- 

set of coalescence. For ease of comparison of the void shapes, only 

a rectangular sub-domain centered on the void is shown. Fig. 5 (a) 

shows the contours for T = 2 at E eq = 0 . 1 and three different val- 

ues of L = −1 , 0 and +1 , while Fig. 5 (b) shows similar contours 

for T = 2 / 3 at E eq = 0 . 7 . The void retains a more or less equiaxed 

shape up to the onset of coalescence for T = 2 , due to the rel- 

atively high hydrostatic stress levels. Further, the effect of L on 

void growth is also visible with the average void size being largest 

for L = 0 and smallest for L = 1 at constant effective strain. For 

T = 2 / 3 , the void shape evolves significantly from an initial sphere 

Fig. 5. Contours of microscopic equivalent plastic strain ǫ p 
eq on the deformed configuration of the unit cell at a constant value of E eq , constant T and varying L : (a) E eq = 0 . 1 

and T = 2 , (b) E eq = 0 . 7 and T = 2 / 3 . Only a small rectangular sub-domain centered on the void is shown. 
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Fig. 6. Effect of loading orientation on the macroscopic equivalent strains to coalescence E c eq for (a) L = 0 and several values of T , and (b) T = 1 and several values of L . The 

failure loci, E c eq as a function of (c) T for several values of L and (d) L for several values of T . The solid lines in (c)–(d) corresponds to a fixed RVE orientation given by φ = 45 ◦

in Fig. 2 (a), while the dashed lines correspond to the minimum ductility over all loading orientations considered in (a) and (b). 

to a highly non-equiaxed ellipsoid, and the principal axes of the 

void also rotate as a result of the imposed shear deformation in 

the transverse plane of the RVE. Hence, the induced anisotropy in 

the effective response of the RVE will be significantly higher for 

lower values of T . Unlike in Fig. 5 (a), the effect of L on void growth 

is not obvious from Fig. 5 (b) due to the significant distortion of 

the void shape, which is largest in the case of generalized shear 

( L = 0 ). 

Simulations of the type shown in Figs. 3 and 4 have been per- 

formed over a wide range of values of T and L , and several loading 

orientations defined by the orientation angle φ between the c -axis 

of the RVE and the major loading axis ˆ e 1 in Fig. 2 (a). Fig. 6 shows 

a summary of the ductility predictions obtained using the localiza- 

tion criterion discussed above. For a fixed value of L = 0 , Fig. 6 (a) 

shows the variation of the equivalent strains to the onset of coales- 

cence E c eq as a function of the RVE orientation angle φ for several 

values of T . Similarly, Fig. 6 (b) shows the variation of E c eq with φ for 

T = 1 and several values of L . It is clear from these plots that, ir- 

respective of the values of T and L , minimum ductility is predicted 

for 36 ◦ ≤φ ≤45 ◦; in agreement with the results of Barsoum and 

Faleskog (2011) . Fig. 6 (c) shows the variation of E c eq as a function of 

T for constant values of L = −1 , 0 and 1; while Fig. 6 (d) shows the 

variation of E c eq as a function of L for constant values of T = 2 / 3 , 1 

and 2. The points connected by dashed lines in Figs. 6 (c) and (d) 

correspond to the minimum value of E c eq obtained over all load- 

ing orientations considered in Fig. 6 (a) and (b). The points con- 

nected by solid lines of the same color correspond to the value of 

E c eq obtained in the simulations for a fixed value of φ = 45 ◦. The 

results in Figs. 6 (c) and (d) show that the difference between the 

values of E c eq for the minimum ductility orientation and φ = 45 ◦

is small compared to the effect of the loading parameters T and 

L on the ductility. Therefore, all the simulations in Section 4 and 

the comparison with the analytical model will be done assuming 

φ = 45 ◦. 

The effect of the triaxiality on E c eq shown in Fig. 6 (c) is con- 

sistent with an exponential decrease in ductility observed in sev- 

eral earlier cell model studies. However, the figure also clearly il- 

lustrates the Lode parameter dependence of ductility, since the 

curves for the different values of L diverge for values of T < ∼3. 

Highest ductility is predicted for axisymmetric loadings with ma- 

jor lateral stress ( L = 1 ), while lowest ductility is predicted for 

generalized shear loadings ( L = 0 ). Similar trends as in Fig. 6 (c) 

have also been reported by Teko ̆glu et al. (2015) (see Fig. 14 

of that paper). The effect of the Lode parameter on ductility at 

fixed triaxiality is illustrated in Fig. 6 (d) for three different val- 

ues of T . The curves of E c eq vs. L have approximately convex shapes 

with the minimum ductility predicted for some negative value of 

L , consistent with the trends reported in the recent studies by 

Barsoum and Faleskog (2011) ; Dunand and Mohr (2014) and others. 

In the Section 4 , we compare the predicted stress-strain response 

and strains to the onset of coalescence from the cell model simula- 

tions with corresponding predictions from the recently developed 



V. Vishwakarma and S.M. Keralavarma / International Journal of Solids and Structures 166 (2019) 135–153 143 

multi-surface porous plasticity model of Keralavarma (2017) , sum- 

marized in the following section. 

3. Multi-surface porous plasticity model 

3.1. Yield criterion 

The plasticity model proposed by Keralavarma (2017) is based 

on a multi-surface yield criterion, obtained from the combination 

of the Gurson (1977) criterion and the void coalescence criterion 

of Keralavarma and Chockalingam (2016) . The basic premise of the 

model is that yielding of a porous RVE at the micro-scale can oc- 

cur either by diffuse plasticity of the matrix or by plastic flow lo- 

calization in a band connecting neighboring voids, as illustrated 

schematically in Fig. 7 . Yielding by diffuse plastic flow in the ma- 

trix generally prevails at dilute porosities, and is governed by the 

Gurson (1977) yield criterion 

F 
G (�) := 

�2 
eq 

σ̄ 2 
+ 2 f cosh 

(

3 

2 

�m 

σ̄

)

− 1 − f 2 = 0 (19) 

where � is the macroscopic stress tensor, corresponding to the av- 

erage value of the Cauchy stress tensor over a micro-scale RVE de- 

fined in Eq. (6) , σ̄ denotes the average or effective flow stress of 

the matrix material and f denotes the porosity. On the other hand, 

the criterion for yielding of the RVE by plastic flow localization (or 

coalescence) along a planar band of normal n must be a function 

of the normal and shear stresses on the coalescence plane, �n and 

�sh , respectively, given by 

�n = n · �n , �sh = 

√ 

n · �2 n − �2 
n , �2 := � · � (20) 

Using limit analysis of a hollow cylindrical RVE containing a coax- 

ial truncated cylindrical void, and a trial deformation field corre- 

sponding to plastic flow localization in the transverse plane of the 

RVE within a band of width W equal to the height of the void, 

Keralavarma and Chockalingam (2016) proposed the following co- 

alescence criterion 

F 
C (�, n ) := 3 

�sh 
2 

σ̄ 2 
+ 2 f b cosh 

(

β
�n 

σ̄

)

− 1 − f 2 b = 0 (21) 

where f b denotes the porosity of the material within the coales- 

cence band and β is a parameter that depends on f b , given by 

β = 

√ 

5 

6 
log 

(

1 

f b 

)

[ 
√ 

b 2 +1 −
√ 

b 2 + f 2 
b 
+ b log 

( 

b + 

√ 

b 2 + f 2 
b 

f b (b+ 
√ 
b 2 + 1 ) 

) ] −1 

(22) 

and 

b = 

√ 

1 

3 
+ 

5 

288 

1 

f b 

(

1 + f b − 5 f 2 
b 

+ 3 f 3 
b 

)

(23) 

Fig. 7. Schematic diagram depicting yield of an RVE by (a) diffuse plasticity in the 

matrix and (b) localized plasticity in the inter-void ligaments. 

The relation between f b and the overall porosity f depends on the 

void shape and the geometry of the RVE. Assuming a cylindrical 

RVE of aspect ratio α = c/a, equal to the aspect ratio of the tetrag- 

onal RVE used in the cell model simulations, and an equiaxed void 

shape, we obtain f b = ( α f ) 
2 / 3 . 

In a statistically isotropic material containing a random distri- 

bution of equiaxed voids, the orientation of the coalescence band, 

defined by the unit vector n , is determined solely by the applied 

state of stress. Using the multi-surface approach, one can obtain 

an effective isotropic coalescence domain in stress space as the re- 

gion at the intersection of all coalescence domains corresponding 

to all possible orientations of the unit vector n in Euclidean space. 

For a given state of stress �, the value of the isotropic coalescence 

function, F C 
iso 

(�) , can then be determined as the maximum of 

F C (�, n ) over all possible unit vectors n . Thus, 

F 
C iso (�) := max 

n ∈U 
F 

C (�, n ) , U = 
{

n ∈ R 
3 | n · n = 1 

}

(24) 

As shown in Keralavarma (2017) , the unit vector n c that maximizes 

the value of F C for a given � must be an eigenvector of �, or a 

linear combination of two eigenvectors corresponding to unequal 

eigenvalues. In other words, the normal to the plane of coalescence 

in a statistically isotropic material must fall on a principal plane of 

stress. If the solution n c coincides with a principal direction of �, 

the shear stress on the plane of the coalescence band vanishes, and 

coalescence occurs by internal necking between neighboring voids. 

Otherwise, n c can be written as a linear combination of two eigen- 

vectors, say ˆ e 1 and ˆ e 3 , corresponding to unequal principal stresses 

�1 > �3 ; i.e. n 
c = cos φˆ e 1 + sin φˆ e 3 . The angle φ between n c and 

the major stress direction ˆ e 1 is determined from the condition that 

the normal stress on the coalescence plane �n = n c · �n c must sat- 

isfy the transcendental equation 

�n 

σ̄
−

1 

3 
β f b sinh 

(

β
�n 

σ̄

)

= 
�1 + �3 

2 ̄σ
�n ∈ (�3 , �1 ) (25) 

If a solution exists for �n in the range ( �3 , �1 ), coalescence 

can occur by a combination of necking and shear localization on 

the above plane n c . Other potential solutions for n c can be found 

by considering other pairs of principal stresses and directions in 

(25) . The isotropic coalescence function, F C 
iso 

(�) defined in (24) , 

is therefore evaluated as the maximum value of F C (�, n c ) over the 

discrete set of potential orientations of n c discussed above. 

At small porosities, yielding generally occurs by diffuse plastic- 

ity in the matrix according to criterion (19) . However, as the poros- 

ity increases due to void growth, void coalescence by strain lo- 

calization becomes increasingly feasible. The competition between 

the two modes is captured by again using the multi-surface ap- 

proach to define the overall yield domain as the region at the inter- 

section of the Gurson and the isotropic coalescence domains. The 

effective isotropic yield function is then given by 

F(�) := max 

{ 

F 
G (�) , F 

C iso (�) 

} 

(26) 

where F G (�) and F C 
iso 

(�) are given by (19) and (24) , respectively. 

The above multi-surface yield function predicts a non-smooth yield 

surface in stress space composed of flat and curved regions and 

sharp corners at the intersection between different yield surfaces. 

Comparisons with quasi-exact yield loci obtained using a numeri- 

cal limit analysis procedure in Keralavarma (2017) showed that the 

multi-surface criterion is more accurate than the Gurson model, 

particularly for large values of the porosity and/or shear dominated 

loading paths; although the numerical yield surfaces showed blunt 

corners where the multi-surface model predicted sharp ones. 
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3.2. Flow-rule and evolution of the internal variables 

The macroscopic deformation rate tensor D is additively decom- 

posed into elastic and plastic parts, D = D e + D p , where the elastic 

strain rate D e is linearly related to the Jaumann rate of the macro- 

scopic stress using a hypoelastic constitutive law 

∇ 

� = C : D 
e (27) 

Assuming dilute porosities, the effect of the porosity on the elastic 

constants is neglected, so that the stiffness tensor C is assumed 

to be the same as for the matrix material. The macroscopic plastic 

deformation rate D p is obtained using the normality flow rule 

D 
p = ˙ �N , N = 

∂F 

∂�
(�) (28) 

where ˙ � ≥ 0 denotes the macroscopic plastic multiplier, whose 

value is determined using the consistency condition ˙ � ˙ F = 0 for a 

rate independent material. The expression for the flow direction 

tensor N depends on the active yield surface, F = F G or F C . We 

have, 

N = 

⎧ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎩ 

N 
G := 3 

�
′ 

σ̄ 2 
+ 

f 

σ̄
sinh 

(

3 

2 

�m 

σ̄

)

I , F = F 
G 

N 
C := 

3 

σ̄ 2 
[ n c � �n c + �n c � n c − 2�n n 

c 
� n c ] 

+ 
2 β f b 
σ̄

sinh 

(

β
�n 

σ

)

n c � n c , F = F 
C 

(29) 

where n c is the unit normal vector and �n = n c · �n c is the nor- 

mal stress on the plane of coalescence as determined earlier. Note 

that the normal to the yield surface is indeterminate at a yield sur- 

face corner such as F G = F C = 0 , which corresponds to the onset 

of coalescence when both the Gurson and a coalescence criterion 

are satisfied simultaneously. At a yield vertex, stability of plastic 

flow requires that the flow direction tensor N must be bounded by 

the normals to the two yield surfaces N G and N C . In such cases, we 

assume N = N C , which amounts to choosing the coalescence mode 

of deformation at the transition from void growth to coalescence. 

It is observed that the above choice generally leads to the lowest 

rate of dissipation compared to other choices such as N = N G or a 

conical combination of N G and N C . 

The rate of evolution of porosity is proportional to the trace of 

D p due to plastic incompressibility of the matrix, which yields 

˙ f = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

˙ �(1 − f ) 
3 f 

σ̄
sinh 

(
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2 

�m 

σ̄

)

, F = F 
G 

˙ �(1 − f ) 
2 β f b 
σ̄

sinh 

(

β
�n 

σ̄

)

, F = F 
C 

(30) 

Analogous to the behavior of the matrix material in the cell model 

simulations, the macroscopic flow stress σ̄ can be written as a 

power law function of an average plastic arc length parameter, ε̄ p eq , 
for a micro-scale RVE, as 

σ̄ = σ0 

(

1 + 
ε̄ p eq 
ε 0 

)n 

(31) 

where the values of the hardening parameters are assumed to 

be same as for the matrix material. The evolution of ε̄ p eq is usu- 
ally determined by invoking equivalence of the energy dissipation 

between the macroscopic material and a micro-scale RVE, which 

leads to the condition 

˙ �� : N = (1 − f ) ̄σ ˙ ̄ε p eq (32) 

However, the above equation assumes that the dissipation is 

distributed throughout the matrix volume, whereas during void co- 

alescence the deformation is localized into a band containing the 

void, whose volume is much smaller than the total volume of the 

matrix. This implies that plastic flow and strain hardening ceases 

in the material outside the band, while the material inside the 

band undergoes significantly higher plastic strains and hardening 

than the average given by the above equation. The volume frac- 

tion of the matrix inside the localization band equals ρ − f, where 

ρ is the volume fraction of the localization band. Assuming that 

the width W of the band scales with the size of the voids, one can 

write ρ = k f 1 / 3 , where the value of constant k depends on the RVE 

geometry. If W is assumed to be equal to the height of the void 

normal to the band, k = 1 for a random isotropic distribution of 

voids and k = α−2 / 3 for a periodic distribution represented by the 

tetragonal RVE of aspect ratio α in Fig. 1 (b). Therefore, the con- 

dition for the equivalence of plastic dissipation at the micro- and 

macro-scales is amended as 

˙ �� : N = 

{

(1 − f ) ̄σ ˙ ̄ε p eq F = F 
G 

(k f 1 / 3 − f ) ̄σ ˙ ̄ε p eq F = F 
C 

(33) 

from which the evolution of ε̄ p eq is determined. Comparison with 

cell model simulations shows that the above modified evolution 

law for ε̄ p eq is in better agreement with the numerical data than 

Eq. (32) for a strain hardening material, although the difference 

disappears as the matrix behavior approaches ideal plasticity, as 

expected. Further, for a hardening matrix, the best results for 

the effective hardening rate in the post-coalescence regime are 

obtained by assuming k = 1 , corresponding to a cubic or ran- 

dom distribution of voids, irrespective of the value of α. Therefore, 

Eq. (33) will be used with k = 1 to compute the evolution of ε̄ p eq in 
all the comparison results presented in the next section. 

4. Comparison of model predictions with cell model 

simulations 

4.1. Nearly ideal plastic matrix with n = 0 . 01 

The yield criteria used in the multi-surface model, described in 

Section 3.1 , have been derived using limit analysis theory, assum- 

ing ideal plastic behavior of the matrix. Strain hardening is intro- 

duced a posteriori using the phenomenological approach described 

in Section 3.2 , Eq. (33) . Therefore, the model predictions are first 

compared against cell model simulations for a power-law harden- 

ing material with a very small value of the hardening exponent, 

n = 0 . 01 , whose behavior approximates that of an ideal plastic ma- 

trix. 

The plasticity model presented in Section 3 is integrated under 

proportional loading paths for a macroscopic material point, and 

the predicted effective stress-strain and porosity growth response 

is compared with the results of cell model simulations for a peri- 

odic tetragonal lattice of voids with aspect ratio α = 2 . The strains 

to coalescence in the cell model simulations are determined as the 

value of the macroscopic equivalent strain to the onset of coales- 

cence E c eq determined using the criterion ξ = 10 ; see Section 2.2 . 

These are compared with the values of the macroscopic equiva- 

lent strains at which the transition from void growth to void co- 

alescence occurs in the continuum simulations; also denoted E c eq 
for simplicity. Note that, for shear dominated loading paths with 

L ≈0, the multi-surface model predicts yielding to occur by local- 

ized plasticity in the inter-void ligaments, i.e. F(�) = F C 
iso 

(�) , at 

zero plastic strain (see Keralavarma, 2017 ); which is a consequence 

of the assumption of ideal plasticity in the derivation of the macro- 

scopic yield criterion. However, it is observed in the simulations 

that the presence of even small amounts of strain hardening has a 
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Fig. 8. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = 1 and varying T : (a) normalized equivalent stress �eq vs. 

equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface model. 

The × marks indicate the onset of coalescence. 

stabilizing effect on plastic flow, such that the material reverts to 

diffuse plastic flow soon after yielding occurs. Therefore, strains to 

coalescence E c eq reported in the continuum simulations correspond 

to the value of E eq at which the final transition to coalescence oc- 

curs; i.e. when the stabilizing effect of strain hardening in the lig- 

aments according to Eq. (33) is no longer sufficient to counteract 

the destabilizing effect of sustaining void coalescence at the micro- 

scale. 

Fig. 8 shows the comparison of the equivalent stress strain and 

porosity curves for several values of the stress triaxiality and a 

fixed value of the Lode parameter L = 1 , corresponding to axisym- 

metric loading with major lateral stress ( �1 = �2 > �3 ; see Fig. 2 ). 

The equivalent stress-strain response is shown in Fig. 8 (a) and the 

evolution of porosity f as a function of E eq is shown in Fig. 8 (b). 

The equivalent stress is shown normalized by the initial yield 

stress σ 0 of the matrix. The solid lines show the average response 

obtained from the cell model simulations, while the dashed lines 

show the predictions using the multi-surface model. The × marks 

indicate the onset of strain localization inside the RVE according to 

the criterion ξ = 10 in the cell model simulations, and the onset 

of void coalescence in the continuum simulations, respectively. A 

rapid decrease in ductility with increase in T is evident, which has 

been well characterized in several cell model studies in the litera- 

ture. Notice that the strains to coalescence predicted by the multi- 

surface model are in good quantitative agreement the cell model 

simulations. 

Although the equivalent stress–strain and porosity growth re- 

sponse predicted by the model matches the cell model simulations 

at small strains, the cell model simulations show accelerated dam- 

age growth and rapid softening prior to the onset of coalescence, 

which is not observed in the continuum simulations. In fact, the 

transition from void growth to coalescence is smooth in the cell 

model simulations, while the model predicts an abrupt transition 

marked by a sharp change in slope of the curves at the onset 

of coalescence. This is a consequence of the multi-surface nature 

of the model, which results in a sharp change in the direction of 

plastic flow at a yield surface corner corresponding to the transi- 

tion from void growth to coalescence. The comparatively smooth 

transition in the cell model simulations indicates that such ver- 

tices are absent in the true yield loci, as has also been observed in 

earlier numerical studies ( Morin et al., 2016; Keralavarma, 2017 ). 

Consequently, the multi-surface model also predicts significantly 

lower values of the porosity f at the onset of coalescence than the 

cell model, although the porosity is subsequently seen to “catch 

up” with the cell model simulations due to rapid post-coalescence 

damage growth predicted by the multi-surface model. 

The porosity at the onset of coalescence obtained from the cell 

model simulations is seen to increase with decreasing T till T = 1 , 

followed by a decrease for T = 2 / 3 , although the model predicts a 

monotonic increase with decreasing T . Further examination shows 

that, the cell model simulations for T = 2 / 3 shows a comparatively 

softer stress-strain response and slower damage growth rates than 

predicted by the model, unlike the case of T ≥1. This is clearly an 

effect of induced anisotropy due to void shape evolution at low tri- 

axialities, which is not accounted for in the isotropic multi-surface 

model. Hence, the comparisons between the multi-surface model 

and cell model simulations in the present study is restricted to 

moderate to large values of T ≥2/3. Extending the present study 

to low triaxialities, including the important special case of pure 

shear ( T = L = 0 ), requires consideration of void shape effects and 

use of anisotropic yield criteria in the multi-surface model; which 

is left to future research. Nevertheless, the fact that the porosity at 

the onset of coalescence obtained from the cell model simulations 

varies as a function of T (and possibly also L ) shows that failure 

criteria based on the attainment of a critical value of the poros- 

ity, frequently used in the literature, are likely to yield poorer re- 

sults than a micromechanics-based coalescence criterion used in 

the present study. 

Fig. 9 shows similar comparison results as in Fig. 8 for a differ- 

ent value of L = 0 , corresponding to pure shear stress states with 

a superposed hydrostatic stress ( �2 = 
�1 +�3 

2 ), and several values 

of the triaxiality T = 2 / 3 , 1 , 3 / 2 and 2. The solid lines show the 

results of cell model simulations while the dashed lines show pre- 

dictions from the multi-surface model. It is clear from the figure 

that the effective strains to the onset of coalescence E c eq , marked 

by the × symbols, are lower by at least an order of magnitude 

than for L = 1 . It can be shown using a simple minimum dissipa- 

tion argument that, in a periodically voided ideal plastic material 

subjected to pure shear, it is always energetically favorable for the 

strain to localize along a band of voids irrespective of the poros- 

ity , as has been recognized previously in the literature ( Drucker, 

1966; Leblond and Mottet, 2008 ). Therefore, in a very low hard- 

ening matrix with n = 0 . 01 under predominantly shear loadings 

(| L | ≪1), strain localization occurs at very small plastic strains and 

nearly the initial porosity levels in the cell model simulations. The 

multi-surface model predicts the same trends with the variation of 
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Fig. 9. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = 0 and varying T : (a) normalized equivalent stress �eq vs. 

equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface model. 

The × marks indicate the onset of coalescence. 

Fig. 10. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = −1 and varying T : (a) normalized equivalent stress �eq 
vs. equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface 

model. The × marks indicate the onset of coalescence. 

the equivalent strains to coalescence E c eq as a function of T , in good 

agreement with the cell model simulations. The porosity curves in 

Fig. 9 (b) show that, for T = 1 and T = 2 / 3 , the behavior of the unit 

cells is qualitatively different from the predictions of the multi- 

surface model. While the model predicts a monotonic increase in f 

as a function of E eq with the rate increasing as a function of T , the 

simulation for T = 2 / 3 shows the porosity increasing till the on- 

set of localization followed by a decrease due to void closure inside 

the localized shear field between neighboring voids. As discussed 

earlier, the multi-surface model is unable to predict such low tri- 

axiality effects due to the assumption of isotropy. 

Fig. 10 shows the comparison of the effective stress-strain and 

porosity growth curves for L = −1 , corresponding to axisymmet- 

ric loadings with major axial stress ( �1 > �2 = �3 ) and several 

values of the triaxiality. Comparison with Figs. 8 and 9 shows 

that, for a given value of T , the ductility observed in the cell 

model simulations for L = −1 is smaller than for L = 1 , although 

significantly higher than the ductility for L = 0 . Moreover, unlike 

for L = 1 and 0, the multi-surface model is seen to significantly 

overestimate the ductility for all values of T , although the dif- 

ference is most pronounced for the lower values of T . Fig. 10 (b) 

also shows that the multi-surface model significantly underesti- 

mates the porosity growth rates for all values of T . This behavior 

of the Gurson model, which is identical to the multi-surface model 

till the onset of coalescence, is well known from the early ductile 

fracture studies that focused on axisymmetric stress states; and is 

usually corrected by the introduction of Tvergaard’s q -parameters 

( Tvergaard, 1982; Koplik and Needleman, 1988 ). However, the re- 

sults of Fig. 8 shows that such correction is likely to lead to an 

underestimation of the ductility for loading paths close to L = 1 . 

It is worth mentioning that the cell model simulation results in 

Fig. 10 are obtained for a specific orientation of the RVE cor- 

responding to φ = 45 ◦ in Fig. 2 (a), which is close to the mini- 

mum ductility orientation according to the result of Fig. 6 , while 

most simulations in the literature consider φ = 0 ◦ corresponding 

to the RVE aligned with the axis of symmetry of the loading. Nev- 

ertheless, in both cases the multi-surface model can be shown 

to underestimate the damage growth rates and overestimate the 

ductility. 

Cell models simulations of the type shown in Figs. 8–10 have 

been performed over a range of intermediate values of L ∈ [ −1 , 1] 

and several values of T ≥2/3. Fig. 11 shows a comparison of the 

strains to coalescence E c eq obtained in the cell model simulations 

with those predicted by the multi-surface model for a power-law 
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Fig. 11. Macroscopic equivalent strains to coalescence E c eq as a function of (a) T 

for various constant values of L , and (b) L for various constant values of T . The 

points connected by solid lines show the results of cell model simulations while 

the dashed lines show predictions from the multi-surface model. 

hardening material with n = 0 . 01 . The points connected by solid 

lines show the data from the cell model simulations, while the 

dashed curves show the predictions from the multi-surface model. 

Fig. 11 (a) shows the variation of E c eq as a function of T for the three 

values of the Lode parameter shown in Figs. 8–10 . Notice that the 

strains to coalescence obtained from the cell model simulations for 

L = 1 and L = 0 fall nicely on the corresponding curves predicted 

by the multi-surface model. For the case L = −1 , the model over- 

estimates the ductility for all T as noted in Fig. 10 , although the 

predicted variation of E c eq with T is qualitatively similar to that ob- 

tained from the cell model simulations. 

Fig. 11 (b) shows the variation of the ductility as a function of 

L for various constant values of T . The multi-surface model pre- 

dictions for E c eq are again in good quantitative agreement with 

the cell model simulations over a wide range of values of L for 

T ≥2/3. Importantly, the multi-surface model reproduces the ap- 

proximately convex shapes of the failure loci and the asymmetry 

between positive and negative values of L at fixed T , which indi- 

cates that the transitions in the failure mechanisms as a function 

of the loading path are correctly captured by the model. Quantita- 

tive discrepancies are observed for loading paths near L = −1 (ax- 

isymmetric loadings with major axial stress), for which the multi- 

surface model overestimates the ductility as shown in Fig. 10 . In 

fact, the cell model simulations evidence a stronger asymmetry be- 

tween positive and negative values of L or, equivalently, the sign 

of the determinant of the deviatoric stress, than the multi-surface 

model. Nevertheless, it is remarkable that the multi-surface model, 

in the absence of heuristic adjustable parameters, is able to achieve 

good quantitative comparison with the cell model simulations for 

proportional loading paths over a wide range of values of T and L . 

It is worth noting that, all the simulation results using the multi- 

surface model in this section used the modified evolution law for 

the equivalent plastic strain, Eq. (33) , which has different forms in 

the pre- and post-coalescence stages. However, for a nearly ideal 

plastic matrix with n = 0 . 01 , use of the “standard” evolution law 

for ε̄ p eq , Eq. (32) , leads to nearly similar results for the ductility 

(not shown) as in Fig. 11 . 

4.2. Strain hardening matrix with n = 0 . 1 

Strain hardening has the effect of stabilizing plastic flow and 

delaying the onset of plastic instabilities in continuum simulations. 

Therefore, strain hardening can also be expected to increase the 

intrinsic ductility of a porous material by delaying the onset of 

void coalescence by plastic strain localization inside a micro-scale 

RVE. In this section, we compare the effective response and ductil- 

ity predictions obtained in the cell model simulations for a power- 

law hardening matrix with exponent n = 0 . 1 , with the predictions 

from the multi-surface model. The chosen value of n is typical 

of the hardening exponent of structural metals in their annealed 

state. 

Fig. 12 shows the comparison of the cell model simulations 

with the model predictions for axisymmetric loading paths with 

major lateral stress ( L = 1 ) and several values of the triaxiality. As 

in Figs. 8–10 , the cell model results are shown using solid lines 

while the model predictions appear using dashed lines. Unlike for 

n = 0 . 01 , the equivalent flow stress increases by a factor of 1.5–2 

due to strain hardening before the ultimate stress is reached. The 

equivalent stress-strain curves in Fig. 12 (a) show that the model 

predictions are in very good agreement with the cell model simu- 

lations up to the ultimate stress point. Beyond the ultimate stress 

point, plasticity begins to localize inside the unit cell, resulting in 

additional softening before the coalescence criterion is satisfied at 

the points marked by the × . Note that, unlike in the cell model 

simulations, the transition to coalescence is abrupt in the case of 

the multi-surface model, corresponding to the sudden change of 

the plastic flow direction at a yield surface corner. Nevertheless, 

the predicted values of the strains to the onset of coalescence E c eq 
are comparable between the model and the cell model simula- 

tions. However, unlike in the case of n = 0 . 01 , the multi-surface 

model is seen to slightly underestimate the ductility for all values 

of T shown. The comparison of the porosity curves in Fig. 12 (b) 

are qualitatively similar to Fig. 8 (b) for n = 0 . 01 , with the model 

underestimating the porosity at the onset of coalescence, although 

the subsequent rapid growth of porosity is in good agreement with 

the cell model simulations. 

Fig. 13 shows the comparison of the multi-surface model pre- 

dictions with cell model simulations for generalized shear loadings 

with L = 0 and several values of T . Unlike for the case of L = 1 , 

the model predicts a transition to the coalescence branch of the 

yield criterion (i.e. F = F C ) immediately upon yielding, due to the 

fact that the multi-surface model predicts a lower yield stress for 

localized yielding compared to diffuse yielding irrespective of the 

value of f . However, notice that the final transition to void coa- 

lescence occurs in the model at much higher plastic strains near 

the ultimate stress point, as shown using the × marks on the 

dashed curves. This is a consequence of the fact that the hardening 

law in Eq. (33) predicts a significantly higher hardening rate when 

the deformation is localized between the voids, which stabilizes 
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Fig. 12. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = 1 and varying T : (a) normalized equivalent stress �eq vs. 

equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface model. 

The × marks indicate the onset of coalescence. 

Fig. 13. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = 0 and varying T : (a) normalized equivalent stress �eq vs. 

equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface model. 

The × marks indicate the onset of coalescence. 

plastic flow in the ligaments and leads to the model switching back 

to the diffuse mode of plastic flow. This behavior of the model 

is physical and can also be observed in some cell model simula- 

tions for shear dominated loadings, where the values of the lo- 

calization indicator ξ shows low amplitude fluctuations at small 

strains, before coalescence occurs at much larger porosities when 

the hardening capacity of the material is no longer sufficient to 

counteract the destabilizing effect of void growth on the plastic 

flow. It is observed from Fig. 13 that the macroscopic strains to 

coalescence E c eq predicted by the model are in good quantitative 

agreement with the cell model simulations for all values of T . As 

shown in Fig. 13 (b), the model underestimates the porosity at co- 

alescence compared to the cell model simulations, although the 

overall porosity curves match well with the cell model simula- 

tions; i.e. the effect of T on damage growth is well predicted by the 

model. 

Fig. 14 shows the comparison for L = −1 (axisymmetric load- 

ing with major axial stress) and several values of T for a hardening 

material with n = 0 . 1 . Notice that, as in the case of the low hard- 

ening material with n = 0 . 01 , the model overestimates the duc- 

tility for low values of T . This is also reflected in the porosity 

growth plots, which show good quantitative agreement for T ≥3/2, 

although the porosity at failure is underestimated by the model. 

However, for low values of T , the model predicts significantly lower 

damage growth rates and higher strains to coalescence than the 

cell model data. As mentioned in the context of Fig. 10 , these dis- 

crepancies are correctable by the introduction of heuristics such as 

Tvergaard’s q -parameters, although it is a priori unclear what ef- 

fect this will have on the failure strains predicted by the model for 

loading paths other than axisymmetric. 

Fig. 15 summarizes the results of all the simulations done for 

n = 0 . 1 by plotting the strains to coalescence E c eq as a function of 

T and L in Fig. 15 (a) and (b), respectively. The variation of E c eq with 

T in Fig. 15 (a) for L = 0 and ±1 shows that the model predicts 

the correct qualitative trends for the T and L dependence of duc- 

tility. Good quantitative agreement is observed for L = 0 , although 

the model overestimates the ductilities for L = −1 at low T and un- 

derestimates the ductilities for L = 1 for all values of T . Fig. 15 (b) 

shows that the Lode parameter dependence of ductility is correctly 

captured by the model for values of T ≥2/3, along with reason- 

ably good quantitative agreement except for axisymmetric loading 

paths. Note that the above comparison is achieved using the mod- 

ified evolution of equation for ε̄ p eq in Eq. (33) . Unlike for n = 0 . 01 , 

using the original version (32) of the energy balance condition to 
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Fig. 14. Effective response of a tetragonal RVE with aspect ratio α = 2 subjected to proportional stressing with L = −1 and varying T : (a) normalized equivalent stress �eq 
vs. equivalent strain E eq , (b) porosity f vs E eq . Solid lines show the results of the cell model simulations, while the dashed lines show predictions from the multi-surface 

model. The × marks indicate the onset of coalescence. 

Fig. 15. Macroscopic equivalent strains to coalescence E c eq as a function of (a) T 

for various constant values of L , and (b) L for various constant values of T . The 

points connected by solid lines show the results of cell model simulations while 

the dashed lines show predictions from the multi-surface model. 

compute ˙ ̄ε p eq leads to the model significantly under-predicting the 

ductility compared to the cell model simulations. The correspond- 

ing plots are omitted for brevity. 

Most importantly, the results in Fig. 15 indicate that the multi- 

surface model, sans any heuristic adjustable parameters, provides 

reasonably good quantitative match with the cell model simula- 

tions over a wide range of values of L and moderate to high val- 

ues of T . As remarked previously, it is possible that introduction 

of additional heuristics in the model can potentially improve the 

comparison with cell model data even for axisymmetric states near 

L = ±1 . However, existing approaches such as use of Tvergaard’s q - 

parameters achieve reduced ductility by accelerating the damage 

growth rates for all values of T and L , which is likely to result in 

a poorer comparison with the unit cell data for shear dominated 

loading paths. Consideration of such heuristics is outside the scope 

of the present paper. 

5. Discussion 

Cell model analysis of the type performed here has long been 

used to study the micro-mechanisms of ductile failure ( Tvergaard, 

1982; Koplik and Needleman, 1988 ); with recent work focused on 

understanding the influence of the third invariant of the deviatoric 

stress, or the Lode parameter, on the ductility under proportional 

loading conditions ( Barsoum and Faleskog, 2011; Dunand and 

Mohr, 2014; Tekoglu, 2014; Luo and Gao, 2018 ). The trends from 

our cell model simulations are consistent with the results of all 

the above studies, with the strains to failure decreasing exponen- 

tially as a function of the stress triaxiality, and lower ductilities 

predicted under shear dominated loading conditions compared 

to axisymmetric loading paths at fixed triaxiality. Plots of the 

equivalent strains to failure as a function of L at fixed T , shown 

in Figs. 11 (b) and 15 (b), have approximately convex asymmetric 

shapes with a minimum in ductility for small negative values 

of L . 

Widely used continuum plasticity models such as the Rice and 

Tracey (1969) and the Gurson–Tvergaard–Needleman (GTN) mod- 

els ( Tvergaard and Needleman, 1984 ) do not predict the Lode 

parameter influence on ductility, as damage growth in these 

models is independent of L and depends only on T . Several 

phenomenological extensions of the GTN model have been devel- 

oped recently to account for the so called shear damage effect, 

starting with the works of Xue (2008) and Nahshon and Hutchin- 

son (2008) ; although these models typically introduce additional 
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Fig. 16. (a) Comparison of the equivalent strains to the onset of coalescence E c eq (solid lines) and the strains to the onset of macroscopic localization according to the criterion 

of Rice (1976) (dashed lines), in the simulations using the multi-surface model. (b) Comparison of the model predictions for the angle between the coalescence plane normal 

n c and the major principal stress direction ̂  e 1 , φ
c (solid lines), and the angle between the normal to the plane on which the Rice localization criterion is satisfied n l and ̂  e 1 , 

φ l (dashed lines). The hardening exponent is n = 0 . 1 . 

heuristic parameters that need to be calibrated from experimental 

data. To the best of our knowledge, none of the above models have 

been shown to quantitatively match the cell model simulation 

data for the Lode parameter dependence of ductility evidenced in 

Figs. 6, 11 and 15 . It should be mentioned that uncoupled ductile 

damage models (in the terminology of Pineau et al., 2016 ) have 

been developed recently to account for the influence of shear on 

ductility at low triaxialities ( Bai and Wierzbicki, 2008; Mohr and 

Marcadet, 2015 ), which can predict the L dependence of ductility 

observed in the experiments; albeit with the introduction of 

several heuristic fitting parameters. 

In contrast with the above mentioned “shear modified” dam- 

age models, the multi-surface model has been developed using mi- 

cromechanical analysis accounting for different possible modes of 

yielding within a micro-scale porous RVE. Assuming diffuse plas- 

tic flow in the RVE leads to the classical Gurson (1977) model, 

while the assumption of localized plasticity in the RVE leads to a 

void coalescence criterion that has a fundamentally different form 

from the Gurson criterion ( Keralavarma and Chockalingam, 2016 ). 

The results of the present study show that an isotropic contin- 

uum plasticity model constructed from the combination of the 

Gurson criterion and the above coalescence criterion can quanti- 

tatively reproduce the loading path dependence of ductility ob- 

served in the cell model simulations, under moderate to high tri- 

axiality loading conditions. It is further shown that, with the addi- 

tion of a micromechanics-based coalescence criterion to the Gur- 

son model, use of Tvergaard and Needleman (1984) ’s heuristic pa- 

rameters such as q 1 , q 2 , q 3 and f c are not necessary to obtain good 

comparison with the large deformation elastic-plastic behavior of 

porous unit cells, over a wide range of values of T and L under pro- 

portional stressing. Significant quantitative discrepancies are ob- 

served only in the case of axisymmetric loading, the correction of 

which possibly requires more sophisticated heuristics than in the 

GTN model. 

In both the continuum and the cell model simulations, the duc- 

tility has been quantified as the equivalent strain till the onset of 

void coalescence at the microscopic scale of the voids. On the other 

hand, the ductility in macroscopic structures is often limited by the 

localization of plastic flow due to plastic instability, such as neck- 

ing in round bars and shear banding in plane specimens, followed 

by rapid void growth and coalescence inside the localization bands. 

Due to the use of periodic boundary conditions in the cell model 

simulations, the average response of the RVE nominally represents 

the behavior of a homogeneously deforming material at the macro- 

scale; so that such macroscopic localization phenomena cannot be 

captured in our study. Nevertheless, for a homogeneously deform- 

ing material, Rice (1976) (also see Rudnicki and Rice, 1975 ) has 

shown that the criterion for the nucleation of a localization band 

can be written in terms of the fourth order elasto-plastic tangent 

stiffness tensor, C t . According to Rice’s criterion, a homogeneous 

plastic flow field can localize into a planar band with normal n l 

when the determinant of the acoustic tensor, A , defined as 

A ( n l ) = n l · C 
t · n l (34) 

vanishes. The minimum value of det (A ) , over all possible spatial 

orientations of the unit vector n l , is tracked in the continuum sim- 

ulations using the multi-surface model in Section 4 . The strain to 

the onset of macroscopic plastic instability according to the Rice 

criterion, E l eq , is determined as the smallest value of E eq at which 

det (A ) ≤ 0 for any direction n l . 

Fig. 16 (a) shows a comparison of the strains to the onset of co- 

alescence E c eq , and macroscopic plastic instability E l eq predicted by 

the Rice criterion, as a function of L for four different values of T . 

The results shown correspond to a strain hardening matrix with 

n = 0 . 1 , although similar results (not shown) are also obtained for 

n = 0 . 01 . Notice that, for all values of T and L , the value of E l eq is 

equal to or greater than the value of E c eq . Further, the curves for 

E c eq and E 
l 
eq vs. L are close to each other, indicating that the on- 

set of macroscopic instability is predicted soon after the onset of 

void coalescence at the micro-scale. This result appears to suggest 

that a change in the mechanism of yielding at the micro-scale (i.e. 

the onset of void coalescence in the present case) can act as a po- 

tential trigger for the onset of plastic instabilities at the macro- 

scale; a hypothesis that has been put forth earlier by Rice (1976) . 

In order to verify this hypothesis, we examine the correlation be- 

tween the orientation of the plane n l for which the Rice instabil- 

ity criterion is first satisfied, with the orientation of the plane n c 

on which void coalescence is predicted at the micro-scale in the 

continuum simulations. Fig. 16 (b) plots the angles φl and φc that 

the vectors n l and n c , respectively, makes with the major loading 

direction ˆ e 1 , as a function of L for several values of T . It is clear 

from the figure that the two angles nearly coincide and, more im- 

portantly, exhibit identical trends for the variation with L and T . 

This result indicates that, not only can the onset of macro-scale lo- 

calization lead to void growth and coalescence at the micro-scale, 

the converse is also possible where the onset of coalescence at the 
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micro-scale can act as a trigger for the onset of plastic instabilities 

at the macro-scale. Hence, it seems reasonable to expect that in 

materials containing a non-uniform distribution of defects or un- 

der non-homogeneous loading conditions, the onset of void coa- 

lescence locally due to excessive damage growth or stress concen- 

trations can trigger the onset of macroscopic instabilities such as 

shear bands. 

It is emphasized that the results in Fig. 16 are obtained under 

the assumption of proportional loading up to and beyond the onset 

of coalescence at the micro-scale; which is difficult to reproduce in 

laboratory experiments. In reality, the onset of macroscopic local- 

ization is almost always accompanied by a change of constraint for 

the material within the localization band, which will have a sig- 

nificant impact on the ductility obtained in fracture experiments. 

A typical example is the increase in stress triaxiality experienced 

by the material in the minimum section of a necked tensile spec- 

imen, which leads to rapid acceleration of the damage growth in- 

side the neck. While our simulation approach does not allow for 

such loading path changes resulting from the onset of macro-scale 

localization, more sophisticated approaches have been used to cap- 

ture this effect in cell model studies ( Teko ̆glu et al., 2015 ). Notably, 

Teko ̆glu et al. (2015) ’s study shows that the onset of void coales- 

cence often occurs after the onset of macroscopic localization, un- 

like in Fig. 16 ; although the two phenomena occur at nearly iden- 

tical values of the macroscopic equivalent strain. Therefore, the use 

of a sophisticated plasticity model such as the multi-surface model 

that can predict the loading path dependence of damage growth 

and material softening can be expected to lead to more accurate 

prediction of the onset of plastic instability, and consequently the 

ductility, in structural simulations. 

Perhaps the most significant limitation of the multi-surface 

model is the assumption of isotropy, which restricts its domain of 

applicability to moderate to large values of the triaxiality. This is 

evident from the comparison of the model predictions with cell 

model simulation results for T = 2 / 3 , which shows greater dis- 

crepancies with the model predictions than for higher values of T . 

Significantly, the cell model simulations for T = 2 / 3 predicted both 

softer stress-strain behavior and slower void growth rates than 

predicted by the model, which clearly indicates that anisotropy due 

to void shape evolution has an important effect on the response 

for this value of T . In fact, it is known from prior cell model studies 

under axisymmetric conditions that negligible void growth occurs 

for values of T ≤1/3 ( Benzerga and Leblond, 2010 ); so that the 

porosity can no longer can be used as a useful measure of dam- 

age, and void shape effects must be considered. Nevertheless, the 

isotropic multi-surface model can be shown to be an improvement 

over the widely used GTN model in ductile fracture simulations 

involving the growth of a dominant crack, such as the tensile 

failure of a round smooth and notched bars ( Reddi et al., 2019 ). 

On the other hand, parameter-free prediction of ductile failure 

by shear band instability under low triaxiality (typically T ≤1/3) 

loadings probably requires the use anisotropic models, many of 

which have been developed in recent years ( Monchiet et al., 

20 08; Keralavarma and Benzerga, 20 08; 2010; Madou and Leblond, 

2012a; 2012b ). These anisotropic models have been shown to re- 

produce several experimental features of ductile failure under low 

triaxiality shear dominated loading conditions ( Morin et al., 2017; 

Torki and Benzerga, 2018 ), or in the presence of strong textural 

anisotropies ( Benzerga et al., 2019 ). It is possible to extend the 

multi-surface approach of Keralavarma (2017) for an anisotropic 

ductile material by combining an anisotropic void growth crite- 

rion, including void shape and material anisotropy effects such as 

Keralavarma and Benzerga (2010) , with the coalescence criterion 

of Keralavarma and Chockalingam (2016) . The resulting model can 

be expected to capture the anisotropic effects on void growth and 

coalescence under low triaxiality loading conditions. Such models 

are currently under development and will be reported in future 

publications. 

6. Conclusion 

Periodic cell model simulations of void growth to coales- 

cence in an elasto-plastic power law hardening material under 

proportional loading have been performed to study the loading 

path dependence of ductile failure. The results of the cell model 

simulations are compared against predictions from an isotropic 

continuum plasticity model, based on a multi-surface yield cri- 

terion that accounts for void growth by diffuse plastic flow as 

well as void coalescence along a band of voids. It is shown that 

the multi-surface model, in the absence of heuristic adjustable 

parameters, is able to quantitatively match the strains to failure 

obtained from the cell model simulations, over a wide range of 

values of the Lode parameter and moderate to large triaxialities. 

Additional conclusions from the study are listed below. 

• The cell model simulations predict that the equivalent strain 

to the onset of coalescence, E c eq , is an exponentially decreas- 

ing function of T , and an approximately convex non-monotonic 

function of L at fixed T . Minimum ductility is predicted for 

shear dominated loadings with L < 0 at constant T , in agree- 

ment with the results of recent three dimensional cell model 

studies. 

• Motivated by the physics of void coalescence inside a micro- 

scale RVE, a new phenomenological hardening law has been 

proposed for continuum simulations using the multi-surface 

model. 

• The multi-surface model predictions for the equivalent strains 

to the onset of void coalescence E c eq are shown to be in good 

quantitative agreement with the values of E c eq obtained from 

the cell model simulations, for both nearly ideal plastic matrix 

behavior (hardening exponent n = 0 . 01 ) and a hardening matrix 

( n = 0 . 1 ). 

• The largest discrepancies between the model predictions with 

cell model simulations are observed for axisymmetric loading 

paths with L = ±1 and for the lowest value of the triaxiality 

T = 2 / 3 considered. It is concluded that the latter is a result of 

void shape effects playing an increasingly important role at low 

triaxialities, which is not accounted for in the isotropic model. 
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Appendix A. Periodic boundary conditions for the unit cell 

Periodic boundary conditions are imposed on the RVE shown in 

Fig. 2 (a) using multi-point constraint equations relating the rele- 

vant degrees of freedom of periodic image nodes; using a method 

previously employed in Tekoglu (2014) (also see Barsoum and 

Faleskog, 2011; Dunand and Mohr, 2014 ). Let D i ( i = 1 .. 3 ) denote 

the length of the RVE in the e i direction in the reference config- 

uration; i.e. D 1 = D 3 = a and D 2 = c. Cartesian components of the 

position vector of a point, X , in the reference configuration are de- 

noted by X i . 

On the right and left boundaries with normals ± e 1 ( X 1 = 

±D 1 / 2 ): 

u 1 (D 1 / 2 , X 2 , X 3 ) − u 1 (−D 1 / 2 , X 2 , X 3 ) = 2 U 1 

u 2 (D 1 / 2 , X 2 , X 3 ) − u 2 (−D 1 / 2 , X 2 , X 3 ) = 0 (A.1) 

u 3 (D 1 / 2 , X 2 , X 3 ) − u 3 (−D 1 / 2 , X 2 , X 3 ) = 0 
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On the top boundary with normal e 2 ( X 2 = D 2 / 2 ): 

u 1 (+ X 1 , D 2 / 2 , X 3 ) + u 1 (−X 1 , D 2 / 2 , X 3 ) = 2 U T 

u 2 (+ X 1 , D 2 / 2 , X 3 ) + u 2 (−X 1 , D 2 / 2 , X 3 ) = 2 U 2 (A.2) 

u 3 (+ X 1 , D 2 / 2 , X 3 ) − u 3 (−X 1 , D 2 / 2 , X 3 ) = 0 

On the bottom boundary with normal −e 2 ( X 2 = 0 ): 

u 1 (+ X 1 , 0 , X 3 ) + u 1 (−X 1 , 0 , X 3 ) = 0 

u 2 (+ X 1 , 0 , X 3 ) + u 2 (−X 1 , 0 , X 3 ) = 0 (A.3) 

u 3 (+ X 1 , 0 , X 3 ) − u 3 (−X 1 , 0 , X 3 ) = 0 

On the front and back faces with normals ± e 3 ( X 3 = 0 and −D 3 / 2 

respectively): 

u 3 (X 1 , X 2 , 0) = 0 (A.4) 

u 3 (X 1 , X 2 , −D 3 / 2) = −U 3 

Appendix B. Components of the normalized stress tensor S( T , 

L , φ) 

The components of S = �/ �eq in the principal coordinate sys- 

tem of � ( ̂ e 1 , ̂  e 2 , ̂  e 3 ) can be written as 

ˆ [ S ] = 

[ 
S 1 0 0 
0 S 2 0 
0 0 S 3 

] 

(B.1) 

where 

S 1 = T + 
2 

3 
cos θ , S 2 = T −

2 

3 
cos 

(

θ + 
π

3 

)

, 

S 3 = T −
2 

3 
cos 

(

θ −
π

3 

)

(B.2) 

and θ ∈ 
[

0 , π3 

]

is the Lode angle defined by θ = 
1 
3 cos 

−1 (−L ) . The 

principal directions are ordered such that the condition S 1 ≥ S 2 ≥ S 3 
is satisfied. If T ≥1/6, the maximum principal stress also equals 

the absolute maximum normal stress. The eigenvectors of � can 

be written in terms of the base vectors of the principal coordinate 

system of the RVE ( e 1 , e 2 , e 3 ) as (see Fig. 2 ) 

ˆ e 1 = − sin φe 1 + cos φe 2 , ˆ e 2 = e 3 , ˆ e 3 = cos φe 1 + sin φe 2 

(B.3) 

where φ is the angle between the c -axis of the tetragonal RVE and 

the major principal direction ˆ e 1 . Using the appropriate coordinate 

transformation, the components of S in the ( e 1 , e 2 , e 3 ) frame are 

[ S ] = 

[ 
S 11 S 12 0 
S 12 S 22 0 
0 0 S 33 

] 

(B.4) 

where 

S 11 = T + 
2 

3 
cos θ −

(

cos θ + 
1 

√ 
3 
sin θ

)

cos 2 φ

S 22 = T −
2 

3 
cos 

(

θ −
π

3 

)

+ 
2 

3 

(

cos θ + cos 

(

θ −
π

3 

))

cos 2 φ

S 33 = T −
2 

3 
cos 

(

θ + 
π

3 

)

S 12 = −
1 

2 

(

cos θ + 
1 

√ 
3 
sin θ

)

sin 2 φ (B.5) 
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