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Abstract

We study the membrane paradigm for horizons in Lanczos-Lovelock models of gravity in
arbitrary D dimensions and find compact expressions for the pressure p and viscosity coef-
ficients η and ζ of the membrane fluid. We show that the membrane pressure is intimately
connected with Noether charge entropy S

Wald
of the horizon when we consider a specific m-

th order Lanczos-Lovelock model, through the relation p(m)A/T = [(D − 2m)/(D − 2)]S(m)
Wald

,
where T is the temperature and A is the area of the horizon. Similarly, the viscosity coefficients
are expressible in terms of entropy and quasi-local energy associated with the horizons. The
bulk and shear viscosity coefficients are found to obey the relation ζ = −2(D − 3)/(D − 2)η.

1 Introduction

The event horizon of a black hole is a one way membrane, albeit one whose existence is almost (i.e.,
apart from tidal forces which are small near the horizon for massive black holes) imperceptible to
observers who fall freely across it. However, the horizon surface serves as a boundary of accessible
region to observers who remain static outside the horizon. The so called membrane paradigm of
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black holes [1, 2] essentially takes the viewpoint that, as far as such static observers are concerned,
the black hole horizon can be replaced by a stretched horizon, a membrane, endowed with specific
physical properties which encode the presence of the inaccessible black hole region. Although
originally developed to facilitate the easy comprehension of physics in black hole backgrounds for
astrophysical applications, work over the last decade or so has indicated that physical properties
of the membrane such as viscosity etc might have a deeper relevance, specifically from the point of
view of holographic dualities which map gravitational systems to non-gravitational systems in one
lower dimension. This has led to a renewed interest in the study of membrane paradigm. 1

More recently [3, 4] the membrane paradigm in Einstein gravity was revisited from a view point of
the emergent gravity paradigm [5]. It was shown that the Damour-Navier Stokes equation governing
the dynamics of the black hole membrane could be obtained starting from an action which could
be given a thermodynamic interpretation as an entropy production rate when expressed in terms
of thermodynamic variables such as temperature, entropy, pressure, etc of the horizon. Such an
approach highlighted the unexplored deeper connection of the membrane paradigm with the horizon
thermodynamics. However, a more formal approach would be to establish a correspondence between
the thermodynamic variables and the quantities describing the membrane. Indeed one such relation
was pointed out in [4] connecting the membrane pressure ps to the entropy S of the horizon through
an equation of state as psA = ST where T is the Hawking temperature and A is the area of the
horizon. Further, it was shown that the membrane pressure ps also has a direct connection with the
entropy density sshell of a self-gravitating system of densely packed shells on the verge of forming a
black hole. Here, one could question about the robustness of these relations for horizons in general.
Hence the resolution would be to check whether these hold even for higher curvature theories of
gravity such as Lanczos-Lovelock theories of gravity. Also, when one is working in Einstein gravity
( or Gauss-Bonnet gravity) the geometric structure of the fluid variables such as transport co-
efficients of the membrane is not evident. For example, in Einstein’s gravity, it is known that the
shear viscosity η is equal to 1/(16π), however the origin of this factor is not well understood in
terms of the geometric properties of the horizon such as its relation with the intrinsic curvature of
the horizon. To trace their geometric origins one needs to consider a higher curvature theory of
gravity such as Lanczos-Lovelock theories of gravity of an arbitrary order m and then proceed in a
more formal general way.

For resolving these issues one first needs to establish the membrane paradigm for horizons for
higher curvature theories of gravity, which according to our literature survey is still missing. In this
note, we generalize the membrane paradigm for black holes to a particular class of higher curvature
theories namely the Lanczos-Lovelock models of gravity. We follow the standard route of evaluating

1There is, however, an important point which, although well known, is worth repeating. In membrane paradigm,
bulk viscosity of the membrane fluid turns out to be negative. Although why this happens is not a mystery (it can be
traced to the teleological property of event horizons), it does betray the fact that a completely physical interpretation
in terms of hydrodynamics is perhaps meaningless in a strict sense. On the other hand, works based on AdS-CFT
yield zero bulk viscosity, which is a more pleasant aspect. The difference can actually be traced to the presence of
the scale associated with hydrodynamic gradients, in addition to the length scale associated with surface gravity of
the horizon. We thank the referee for pointing this out.
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the surface stress tensor of the perturbed horizon surface, and then comparing it with the structure
of the stress tensor for a viscous fluid [6, 7] to read off the pressure, transport co-efficients, etc. The
geometric setup and the procedure is discussed in detail in section 2. As emphasized before, our
main motivation in analyzing such higher curvature actions as Lanczos-Lovelock is to clearly high-
light those characteristics of the fluid transport coefficients which are generic for arbitrary Lanczos-
Lovelock actions, and separate them from the aspects which are peculiar to Einstein-Hilbert action.
In the process we indicate a formal connection between thermodynamic properties of a black hole
horizon, such as its Noether charge entropy and quasi-local energy, and the transport coefficients
of the membrane fluid (see equations in the next paragraph). We also point out a very direct con-
nection [4] of the membrane pressure ps with the Wald entropy of the horizon and also the entropy
density sshell of a self-gravitating system of densely packed shells on the verge of forming a black
hole, which has been recently worked out for Lanczos-Lovelock models in [9]. We briefly mention
the summary of our results below.

SUMMARY OF THE RESULTS:

A. Membrane transport coefficients:

We shall be mainly interested in membranes which have isotropic tangential stresses (pressure),
which is only possible when all directions, everywhere within the horizon surface, are equivalent
(that is, the horizon surface is maximally symmetric). Therefore, the cross-section of the horizon of

the background geometry has curvature (D−2)
(0)

RABCD = (K/r2) (γACγBD −γADγBC), where K = ±1
and r is a constant of dimension length which is related to the intrinsic Ricci scalar of the horizon

cross-section as K(D− 3)(D− 2)r−2 = (D−2)
(0)

R. For simplicity of notation, we will assume K = +1
in the intermediate steps, and only restore it in the final expressions (which is easy to do). Doing
so will come in handy while discussing the case of planar horizons, for which we will simply put
K = 0.

With this assumption, we shall show that the horizon membrane has the stress tensor (see below
for notations etc)

tαβ = ρsuαuβ + e(A)
α e

(B)
β (psγAB − 2ηsσsAB − ζsθsγAB) (1)
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with ps =
∑

m p
(m)
s etc., and

Pressure : p(m)
s =

(
D2m

D2

)( κ

2π

)
4πmαmL

D−2
m−1

Energy density : ρ(m)
s = −

(
θs
κ

)
p(m)
s

Shear Viscosity : η(m)
s =

(
mαmr

2
H

KD2D3

)[
LD−2
m −

(
2κ

rH

)
(m− 1)D2mL

D−2
m−1

]

Bulk Viscosity : ζ (m)
s = −

(
2D3

D2

)
η(m)
s (2)

where we have introduced the notation Dk ≡ (D − k) to avoid clutter, and αm is the coupling
constant of the mth order Lanczos-Lovelock lagrangian

LD
m =

1

16π

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1
a1b1

. . . Rcmdm
ambm

(3)

2. Connection with thermodynamic properties of the horizon:

The transport coefficients above can be connected with the thermodynamic properties of the hori-
zon in Lanczos-Lovelock gravity, by noting that the Wald entropy [10] and quasi-local energy of the
horizon in these theories are given by [11]

S(m)
Wald

= 4πmαm

∫

H

dΣ LD−2
m−1

E
(m)
Wald = αm

∫ λ

dλ

∫

H

dΣ LD−2
m (4)

This immediately implies that

ps
T∞

≡
δ→0

[D−1]/2∑

m=0

(
D − 2m

D − 2

)
S
(m)
Wald (5)

Similarly, it is obvious from the dependence on LD−2
m−1 and LD−2

m factors appearing in the third and
fourth equalities in Eqs. (2) for the shear and bulk viscosities, that both η and ζ are also expressible
solely in terms of S(m) and E(m).

The paper is organized as follows. In section 2, we setup the notations and discuss the geometric
setup required. In section 3, we generalize the membrane paradigm for a Lanczos-Lovelock theory
of arbitrary order m and obtain the expressions for pressure, transport co-efficients, etc. The
results and some of their implications are discussed more fully in the final section 4. We shall
work in D spacetime dimensions. Latin indices a, b, . . . = 0 to (D − 1), Greek indices µ, ν, . . . =
0, 2, 3, · · · (D − 1), and capitalized Latin indices A,B, . . . = 2 to (D − 1).
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2 The setup

In this section we will briefly elaborate on the geometric set-up and the procedure to construct the
membrane paradigm.

We shall work in a D dimensional spacetime containing an event horizon H generated by the
null geodesics l. The surface gravity κ is then determined through ∇ll = κl. We shall deal with
a stationary background spacetime, in which case l corresponds to the timelike Killing vector ξ

restricted to H where ξ2 = 0. For asymptotically flat spacetimes, the norm of l can be fixed at
infinity and there is no ambiguity in the definition of κ. The stretched horizon Hs is then defined as
a timelike surface infinitesimally close to H , and separated fromH along spacelike geodesics n. This
surface is spanned by a unit timelike vector field u and (D− 2) vectors e(A)’s. The correspondence
between points on H and Hs is made via ingoing null geodesics k normalized to have unit Killing
energy, k · l = −1. The horizon H is then located at λ = 0, where λ is the affine parameter along
k, related to the norm of ξ by λ = −(1/2κ)ξ2. We shall define δ =

√
−ξ2 to simplify notation and

also to facilitate comparison with known results in the literature. In the limit λ → 0, Hs → H and
u → δ−1l and n → δ−1l.

The induced metric hµν on Hs is given by hµν = habe
a
(µ)e

b
(ν), where hab = gab−nanb and e(µ)’s are

basis vectors spanning Hs (e(µ) ·n = 0). Similarly, the induced metric γAB on the (D−2)-dimensional
space-like cross-section of Hs orthogonal to u is given by γAB = γabe

a
(A)e

b
(B) where γab = hab + uaub

and e(A)’s are basis vectors spanning γ (e(A) · u = 0 = e(A) · n). The extrinsic curvature of Hs is
defined as Kµν = ea(µ)e

b
(ν)∇anb and it is easy to verify that in the limit δ → 0, we have:

K0̂0̂ = Kµνu
µuν = −δ−1κ

K0̂A = Kµνu
µeν(A) = 0

KAB = Kµνe
µ
(A)e

ν
(B)

= δ−1kAB, (6)

where kAB is the extrinsic curvature of the (D− 2)-dimensional space-like cross-section of the true
horizon H . This can be decomposed with respect to its trace free part as

kAB = σAB +
1

(D − 2)
θ γAB, (7)

where γABσAB = 0, and θ and σAB are the expansion scalar and shear respectively of the l con-
gruence generating the horizon. Of course, for a Killing horizon, both of these vanish as δ2 and
therefore K0̂0̂ remains the only divergent contribution to Kµν . However, since we wish to investi-
gate dissipative properties associated with the horizon, we shall perturb the background away from
staticity and then obtain the membrane stress tensor to first order in perturbations to determine the
transport coefficients. The extrinsic curvature can be written, upto linear order in perturbations,
as

Kα
β =

(0)

Kα
β +

(1)

Kα
β (8)
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where
(0)

Kα
β is the unperturbed extrinsic curvature. Since we assumed the background geometry to

be static, we have

(0)

K0̂0̂ = −κ/δ,
(0)

K0̂A = 0,
(0)

KAB = (δ/r) δAB (9)

To study the additional divergences brought in when the horizon is perturbed, it is convenient to

choose perturbations which do not affect
(0)

K0̂0̂.
2 Therefore, we have

(1)

K0̂0̂ = 0,
(1)

K0̂A = 0,
(1)

KAB = (1/δ)kAB (10)

where we have not bothered to put a “(1)” over kAB since its unperturbed part is strictly zero. The
expansion and shear parameters of the perturbed horizon will now introduce additional divergences
in the stress tensor via KAB.

We are now ready to use all the above facts to analyze the membrane stress tensor in Lanczos-
Lovelock theories of gravity. For further details about the membrane paradigm and aspects of the
perturbation scheme, we refer the reader to earlier literature on the subject [1, 6], and also to the
introductory sections in the recent paper [7] which focuses on Einstein-Gauss-Bonnet theories.

3 Lanczos-Lovelock gravity

The mth order Lanczos-Lovelock lagrangian Lm is given by completely anti-symmetrised product
of m curvature tensors

L(D)
m =

1

16π

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

(11)

For m = 1, Lm reduces to (16π)−1R, which is the Einstein-Hilbert lagrangian. The surface stress
tensor in Lanczos-Lovelock theory is given by [12]

8πtν(m)µ =
αmm!

2m+1

m−1∑

s=0

C̃s π̃
ν
(s)µ

π̃ν
(s)µ = δ

[νν1···ν2m−1]
[µµ1···µ2m−1]

Rµ1µ2
ν1ν2

· · ·Rµ2s−1µ2s
ν2s−1ν2s

Kµ2s+1
ν2s+1

· · ·Kµ2m−1
ν2m−1

(12)

where the coefficients C̃s are given by

C̃s =
4m−s

s! (2m− 2s− 1)!!
(13)

2As we shall see, our final relations will only have divergence of O(δ−1), and perturbing κ will not lead to any
qualitative difference (this can be easily shown). Formally, since we assume the background κ to be non-zero, the
perturbation in κ is not gauge invariant and our choice corresponds to a gauge wherein δκ = 0 [1].
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Here Rµρσν denotes the projection of full spacetime curvature tensor on the (D − 1) dimensional
hypersurface with normal n. It turns out to be convenient to express this stress tensor in terms
of the intrinsic curvature R̂µρσν of the hypersurface (i.e., defined using the induced metric hµν),
through the Gauss-Codazzi relation

R̂µρσν = Rµρσν −KµσKρν +KµνKρσ (14)

We can then write the surface stress energy tensor as

8πtν(m)µ =
αmm!

2m+1

m−1∑

s=0

Cs π
ν
(s)µ

πν
(s)µ = δ

[νν1···ν2m−1]
[µµ1···µ2m−1]

R̂µ1µ2
ν1ν2

· · · R̂µ2s−1µ2s
ν2s−1ν2s

Kµ2s+1
ν2s+1

· · ·Kµ2m−1
ν2m−1

(15)

with

Cs =
m−1∑

q=s

(−2)q−s4m−q
(
q
s

)

q! (2m− 2q − 1)!!
(16)

One can check that for m = 1 and m = 2, the above expression reduces to that of the surface stress
tensor in Einstein [13] and Gauss-Bonnet [14] theories respectively.

As in the case of the membrane paradigm for Einstein gravity, we will interpret the tαβ as due
to a fictitious matter source residing on the stretched horizon Hs. Using the assumptions and
expressions given above, and in the Sections (1) and (2), we will show that the surface stress energy
tensor can be written in a form analogous to that of a viscous fluid, namely,

tαβ = ρsuαuβ + e(A)
α e

(B)
β (psγAB − 2ηsσsAB − ζsθsγAB) (17)

and hence read off the corresponding energy density ρs, pressure ps, shear viscosity co-efficient η
and co-efficient bulk viscosity ζs in terms of the geometrical quantities describing the horizon.

Before proceeding to describe the calculations, it is instructive to note that the determinant
tensor has the property

δ0̂α1α2···αn

0̂β1β2···βn

= δA1A2···An

B1B2···Bn
×

(
δα1
A1
δB1

β1
. . . δαn

Anδ
Bn

βn

)
(18)

That is, the presence of 0 in each row of the determinant tensor forces all the other indices to take
the values 2, 3, · · · (D − 1). Further, keeping in mind that the π(s)

ν
µ
in Eq. (15) is a polynomial

of odd degree [2(m− s)− 1] in Kµν , it is easy to see that, to first order in perturbations, the
only divergences in tαβ are of O(δ−1), and they arise from s = (m − 1) and s = (m − 2) terms
in the series. This follows (upon simple counting) from Eqs. (9), (10), (15) and (18). All the
other terms in the series are of O(δ) and hence vanish in the limit δ → 0. We give below an
outline of the contribution of divergent terms, stating only the relevant expressions and skipping
the cumbersome intermediate steps which are algebraically straightforward. We have also defined(
Q

(D−1)
m

)αµβν

= (1/m) ∂L
(D−1)
m /∂R̂αµβν .
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A. Divergence due to the zeroth order term:

Only the s = (m−1) term will contribute to the zeroth perturbative order. The corresponding
contribution can be found in our recent work [9], and turns out to be

For s = (m− 1) :
[
π(s)0̂0̂

]
div

= 0

[
πA
(s)B

]
div

= δ−1 × 2m 16π
(
Q(D−1)

m

)0̂A
0̂B

κ (19)

B. Divergence due to the first order term:

At first order in the perturbations, we get divergences from s = (m − 1) and s = (m − 2).
The contributions from these can also be found in a straightforward way, and are given by

For s = (m− 1) :
[
π(s)0̂0̂

]
div

= δ−1 × 2m 16π
(
Q(D−1)

m

)0̂C
0̂D

kD
C

[
πA
(s)B

]
div

= δ−1 × 2m 16π
(
Q(D−1)

m

)AC

BD
kD
C

For s = (m− 2) :
[
π(s)0̂0̂

]
div

= 0

[
πA
(s)B

]
div

= 6 δ−1 ×
κ

r
× δ0̂FAC ••···⋆⋆

0̂FBD ••···⋆⋆
R̂••

•• · · · R̂
⋆⋆
⋆⋆︸ ︷︷ ︸

2(m−2)factors

kD
C

(20)

where the symmetry factor of 6 in the last equation comes because we need to choose, from 3

factors of Kαβ, one factor of
(1)

KAB (3 ways) and one factor of Kuu from the remaining 2 Kαβ ’s
(2 ways), which can be done in a total of 3× 2 = 6 ways.

The above equations can be further simplified by using the following identities (see appendix A for
proof)

(
Q(D−1)

m

)0A
0B

=

(
D2m

2D2

)
LD−2
m−1 δ

A
B (21)

(
Q(D−1)

m

)AC

BD
=

1

2

(
LD−2
m

D−2R

)
δAC
BD (22)

δA0̂CE ••···⋆⋆
B0̂DF ••···⋆⋆

R̂••

••
· · · R̂⋆⋆

⋆⋆︸ ︷︷ ︸
2(m−2)factors

=

(
2m−2D2m

D4

)(
16πLD−2

m−1

D−2R

)
δACE
BDF (23)
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where we remind the notation Dk = (D − k) introduced earlier. We can now collect the O(δ−1)

terms in the total stress tensor tαβ =
(0)

t αβ +
(1)

t αβ upto first order in perturbation to get

t0̂
0̂

= δ−1 × 2mαm

(
D2m

D2

)
LD−2
m−1 θ (24)

tAB = δ−1 × 2mαm

{(
D2m

D2

)
LD−2
m−1 κ δAB +

(
LD−2
m

D−2R

)
kA
B

−2(m− 1)D2m

(
LD−2
m

D−2R

)
κ

rH
kA
B

}
(25)

We have therefore accomplished our main task of finding the divergent contributions to surface
stress tensor tµν of the membrane to linear order in horizon perturbations. The only divergence is
of O(δ−1), which is precisely the same as in Einstein theory, and can therefore be regulated in the
same way as is done in conventional membrane paradigm for Einstein gravity. That is, we simply
multiply by δ and obtain the finite part of tµν , with the regularization having the interpretation in
terms of infinite redshift at the horizon. Now writing kA

B in terms of the traceless part σA
B and trace

θ as in Eq. (7), we can easily express the stress tensor in the required form

tαβ = ρ(m)
s uαuβ + e(A)

α e
(B)
β

(
p(m)
s γAB − 2η(m)

s σsAB − ζ (m)
s θsγAB

)
(26)

and read off the pressure, transport co-efficients, etc as

Pressure : p(m)
s =

(
D2m

D2

)( κ

2π

)
4πmαmL

D−2
m−1

Energy density : ρ(m)
s = −

(
θs
κ

)
p(m)
s

Shear Viscosity : η(m)
s =

(
mαm
(D−2)R

)[
LD−2
m −

(
2κ

rH

)
(m− 1)D2mL

D−2
m−1

]

Bulk Viscosity : ζ (m)
s = −

(
2D3

D2

)
η(m)
s (27)

where we again remind of our notation Dk ≡ (D − k). One can check that for Einstein’s gravity
m = 1 and Gauss-Bonnet gravity m = 2, the above expressions reduce to the corresponding
expressions in the literature [1, 7].
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3.1 The η/s ratio:

Using the expression of Wald entropy given in Eq. (4), we can determine the shear viscosity to
entropy density ratio to be

η(m)

s(m)
=

(
1

4π D−2R

)[
LD−2
m

LD−2
m−1

−

(
2κ

rH

)
(m− 1)D2m

]

=

(
D2m

4πD2D3

)[
D2m+1 − 2 (κrH) (m− 1)K−1

]

:=
cm
4π

(say) (28)

where we have used the relation LD−2
m = (K/r2)D2mD2m+1L

D−2
m−1 which holds for a (D − 2) dimen-

sional maximally symmetric spacetime. We can therefore write

η

s
=

1

4π



1 +

mc∑
m=2

cms̄m

1 +
mc∑
m=2

s̄mcm


 (29)

where mc = [(D − 1)/2] and s̄m := sm/s1 = 4sm. One can now investigate the ratio η/s on a case-
by-case basis, considering specific solutions with horizons in Lanczos-Lovelock theory. Specifically,
for planar horizons, K = 0, and we note that in this case, cm → (. . .)K−1. 3 Therefore, since
s̄m → (. . .)Km−1, only the m = 2 term in the sum in the numerator survives for K = 0. One is
therefore lead to the conclusion that no Lovelock term other than Gauss-Bonnet contributes to the
η/s ratio for the planar (K = 0) case; this contribution is given by

For K = 0 :
η

s
=

1 + [c2s̄2]K=0

4π

=
1

4π

[
1− 4α2(D − 4)

(
κ

rH

)]
(30)

However, although only the Gauss-Bonnet contributes for the planar case, it must be noted that
η/s will, in general, depend on other Lovelock coupling constants as well, through the ratio (κ/rH)
which must be calculated using a specific K = 0 solution of the full Lovelock action. Similar result
has been noted in the literature [15, 16] in the context of AdS-CFT correspondence; the difference

3A couple of clarifying points while dealing with planar horizons are in order: (i) although (κrH) would in general
depend on K, we expect it to be finite for K = 0, and (ii) the most general form of a planar horizon metric, consistent
with our assumption of staticity, is: ds2

H
= Ω2(r/Li)

(
dx2 + dy2 + . . .

)
, where Ω(r/Li) is a dimensionless function

constructed out of ratios of the coordinate r and any other length scale(s) Li appearing in the metric. For known
solutions which are asymptotically AdS, Ω(r/Li) ≡ r/ℓ, ℓ being the AdS scale.
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being the boundary used which is the AdS infinity whereas we have considered the boundary to
be the stretched horizon. However, it has been argued in [17] that the η/s ratio for the two cases
are related by a (RG) flow equation in Enstein’s gravity and it would indeed be interesting to
check whether such a flow exist in Lanczos-Lovelock theory, since our result for the membrane
paradigm, in conjunction with the AdS-CFT results for Lanczos-Lovelock gravity, does indicate
such a possible connection in the K = 0 case. Further, in the special case of a black brane solution
in Einstein-Gauss-Bonnet theory, we have κ/rH = (D − 1)/2ℓ2, in which case the result above
matches exactly with the one obtained in the context of AdS-CFT (see [7] and references within).
Using the expression for η/s, it would be interesting to check whether it obeys or violates the KSS
bound [18], η/s ≥ 1/(4π), by explicitly computing it for black hole solutions known for Lanczos-
Lovelock gravity. For K = 0 case, the KSS bound is found to be violated in the AdS-CFT context in
Einstein-Gauss Bonnet gravity [7, 19, 20] and also in a general Lanczos-Lovelock theory of gravity
[15, 21].

4 Conclusions and Discussion

We have studied the membrane paradigm for black hole horizons in Lanczos-Lovelock gravity theo-
ries and found various transport coefficients associated with the membrane fluid, assuming staticity
and maximal symmetry of the horizon surface. Beyond a generalization of known results to Lanczos-
Lovelock actions, there are other important implications of the calculations presented here, which
we briefly discuss in this concluding part.

First, from our final results, the connection between various transport coefficients and the ther-
modynamic properties of the horizon, such as temperature, entropy and quasi-local energy, becomes
immediately obvious. To the best of our knowledge, such a direct connection has not been discussed
previously in the literature. Indeed, it would be very difficult to establish any such connection un-
ambiguously if one is working within the context of Einstein theory itself (or, for that matter, any
particular m-th Lanczos-Lovelock term), since the formal structure of the transport coefficients is
not then apparent. It would be extremely interesting if such a connection holds for horizons in more
general class of gravity theories.

The second aspect which the calculation presented here highlights is the connection between
Wald entropy SWald of the horizon and the pressure ps of the horizon membrane. This relation is
encoded in the form of an equation of state,

psA

Tloc

≡
δ→0

[D−1]/2∑

m=1

(
D − 2m

D − 2

)
S(m)

Wald
(31)

Finally, the algebraic steps leading to the above result are precisely the same as those leading
to the evaluation of entropy of a self-gravitating configuration of densely packed shells, held in
equilibrium with its own “acceleration” radiation, and on the verge of becoming a black hole. The
entropy Smatter in this case was evaluated by Oppenheim [22] in the context of Einstein theory,
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motivated by an “operational” approach first discussed by Pretorius et. al. [23]. In a recent
publication [9], the calculation of Smatter was done for Lanczos-Lovelock models of gravity, and it
was shown that several new features arise when one goes beyond Einstein theory – for example,
while Smatter correctly gives the Bekenstein-Hawking entropy in Einstein theory, it is not equal
to Wald entropy (which is a generalization of Bekenstein-Hawking entropy to higher derivative
gravity theories) for the Lanczos-Lovelock theories. In particular, Smatter near the horizon turns
out to be PA/Tloc, and in fact P ≡ ps appearing in the membrane paradigm. This connects up
the operational approach to horizon entropy discussed in [9] with the membrane paradigm for the
black holes. In fact, it was while generalizing the former approach in [9] that the connection with
membrane paradigm became apparent, thereby providing the motivation for the present work.

Before we conclude, we must also mention that the relation between bulk and shear viscosities for
Lanczos-Lovelock order m, ζ (m)/η(m) = −2(D−3)/(D−2), is independent of m, which immediately
implies ζ/η = −2(D − 3)/(D − 2) for an action which is a sum of certain Lanczos-Lovelock terms.
This corroborates the results already known for Einstein gravity, and recently also established for
Einstein-Gauss-Bonnet case [7]. It would be worth investigating whether there is a deeper reason
for the robustness of this ratio. Also, from the final expression for η in Eq. (27), it is clear that
the shear viscosity (and thereby the ratio η/s which has been a point of focus in many recent
investigations) depends not only on horizon entropy density s ∝ LD−2

m−1, but also on quasi-local
energy E ∝ LD−2

m of the horizon. In fact, for the Einstein case m = 1, the entropy contribution
to η vanishes, and the result η/s = (4π)−1 is only a consequence of the quasi-local energy of the
horizon! Once again, this brings into sharp focus the relevance of going beyond Einstein’s theory to
gain a better understanding of several aspects of horizon thermodynamics and membrane paradigm
in Einstein theory itself.
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A Proof of identities in Eqs. (21) - (23)

To prove the required identities, we will use the following two relations concerning Lanczos-Lovelock
actions of order m in D dimensions [11]

G
i(D)
j(m) = −

1

2

1

16π

1

2m
δia1b1...ambm
jc1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

G
i(D)
i(m) = −

D − 2m

2
LD
m (32)

where G
i(D)
j(m) is the equation of motion tensor for Lanczos-Lovelock action; for e.g., for m = 1,

G
i(D)
j(1) = (16π)−1Gi

j where Gi
j is the Einstein tensor. Note that for maximally symmetric spacetime,

which is the case we are considering for the (D − 2) submanifold corresponding to the (D − 2)
dimensional horizon, we have G2

2 = G3
3 = · · · = GD−1

D−1 due to isotropy. Hence we can write the
second relation in Eq. (32) for equation of motion tensor for the (D − 2) dimensional maximally
symmetric subspace as

G
A(D−2)
B(m) = −

δAB
2

[
(D − 2)− 2m

D − 2

]
LD−2
m (33)

Using the above identity it is easy to prove Eq. (21) as

(
Q0B

0A

)(D−1)

m
=

1

16π

1

2m
δ
[0Bν1···ν2m−2]
[0Aµ1···µ2m−2]

R̂µ1µ2
ν1ν2

· · · R̂µ2m−3µ2m−2
ν2m−3ν2m−2

=
1

16π

1

2m
δ
[BB1···B2m−2]
[AA1···A2m−2]

ˆ̂
RA1A2

B1B2
· · ·

ˆ̂
R

A2m−3A2m−2

B2m−3B2m−2

= −G
B(D−2)
A(m−1) =

1

2

(
D − 2m

D − 2

)
LD−2
m−1 δ

A
B (34)

where to obtain the second equality we have used Eq. (18) and replaced R̂AB
CD with the intrinsic

curvature
ˆ̂
RAB

CD defined completely in terms of the induced metric γAB of the horizon. Such a
replacement is valid since the corresponding extrinsic curvature vanishes due to our assumption
of staticity. The last equality then follows from using Eq. (33). To prove the second identity of
Eq. (22) note that

(
QBD

AC

)(D−1)

m
=

1

16π

1

2m
δ
[BDν1···ν2m−2]
[ACµ1···µ2m−2]

R̂µ1µ2
ν1ν2

· · · R̂µ2m−3µ2m−2
ν2m−3ν2m−2

=
1

16π

1

2m
δ
[BDB1···B2m−2]
[ACA1···A2m−2]

ˆ̂
RA1A2

B1B2
· · ·

ˆ̂
R

A2m−3A2m−2

B2m−3B2m−2

=
(
QBD

AC

)(D−2)

m
= M (D−2)

m δBD
AC (35)

where to obtain the second equality we have used R̂
ˆ̂0µ
ρν = 0 which is true due to (i) static nature of

the background geometry and (ii) maximal symmetry of the (D− 2) dimensional subspace and we
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have again replaced R̂AB
CD with the intrinsic curvature

ˆ̂
RAB

CD. Further, in the last equality we have
again exploited maximal symmetry to get a δBD

AC proportionality with a proportionality constant

M
(D−2)
m which we can determine by contracting the above equation with

ˆ̂
RAB

CD to get

L(D−2)
m =

(
QBD

AC

)(D−2)

m

ˆ̂
RAC

BD = M (D−2)
m δBD

AC
ˆ̂
RAC

BD = 2M (D−2)
m

D−2R (36)

This completes the proof of identity in Eq. (22). To prove the third identity of Eq. (23) we again
use the same procedure and write

δ
[B0DFν1···ν2m−4]
[A0CEµ1···µ2m−4]

R̂µ1µ2
ν1ν2

· · · R̂µ2m−5µ2m−4
ν2m−5ν2m−4

= δ
[BDFB1···B2m−4]
[ACEA1···A2m−4]

ˆ̂
RA1A2

B1B2
· · ·

ˆ̂
R

A2m−5A2m−4

B2m−5B2m−4

= N
(D−2)
m−1 δBDF

ACE (37)

with the proportionality constant N
(D−2)
m−1 determined by contracting both sides of the above expres-

sion by
ˆ̂
RAB

CD and then taking a trace to get

(16π)2m−1D − 2m

D − 2
LD−2
m−1 = N

(D−2)
m−1 (16π)21

D − 4

D − 2
LD−2
1 (38)

This completes the proof of identity in Eq. (23).
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