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We propose a class of incompatibility measures for quantum observables based on quantifying the
effect of a measurement of one observable on the statistics of the outcomes of another. Specifically,
for a pair of observables A and B with purely discrete spectra, we compare the following two
probability distributions: one resulting from a measurement of A followed by a measurement of B
on a given state, and the other obtained from a measurement of B alone on the same state. We
show that maximizing the distance between these two distributions over all states yields a valid
measure of the incompatibility of observables A and B, which is zero if and only if they commute
and is strictly greater than zero (and less than or equal to one) otherwise.

For finite dimensional systems, we obtain a tight upper bound on the incompatibility of any pair of
observables and show that the bound is attained when the observables are totally non-degenerate and
associated with mutually unbiased bases. In the process, we also establish an important connection
between the incompatibility of a pair of observables and the maximal disturbances due to their

measurements. Finally, we indicate how these measures of incompatibility and disturbance can
be extended to the more general class of non-projective measurements. In particular, we obtain a
non-trivial upper bound on the incompatibility of one Liiders instrument with another.

A central feature of quantum theory that lies at the
heart of several quantum information processing and
cryptographic tasks is the existence of incompatible ob-
servables. In quantum theory, compatible observables
correspond to a set of commuting self-adjoint opera-
tors. Since their eigen-projectors also commute, there ex-
ists a joint probability distribution associated with such
a set of observables. For non-commuting observables,
however, there does not exist a joint probability distri-
bution (which is affine in the density operator) whose
marginals give the distributions for the individual observ-
ables. Quantifying this incompatibility of a set of non-
commuting observables is an intriguing question with
consequences for both quantum foundations and quan-
tum information theory.

Heisenberg’s celebrated uncertainty relation provided
the first quantitative statement on the incompatibility of
a pair of conjugate observables [1], by providing a bound
on the product of their variances. More recently, state-
independent bounds on the sum of uncertainties of gen-
eral sets of observables have been obtained via entropic
uncertainty relations (EURs) [2-4], and these are often
considered to be providing a measure of incompatibility.
However, EURs give rise to trivial bounds when the ob-
servables share even a single common eigenvector. While
the lower bound on the sum of uncertainties does indeed
capture the incompatibility of a large class of observables,
this lower bound cannot be thought of as a measure of in-
compatibility in general, since it vanishes when the set of
non-commuting observables share even a single common
eigenvector. Rather, as pointed out recently [5], uncer-
tainty relations must be viewed as merely a consequence
of the incompatibility of observables.

A new, operational approach to quantifying incom-

patibility was proposed in [5], based on the notion of
accessible fidelity [6]. The measure Q defined in [5]
captures the incompatibility of a set of (totally non-
degenerate) non-commuting observables as manifest in
the non-orthogonality of their eigenstates.

In this paper we consider a different operational set-
ting for defining incompatibility, which is closer in spirit
to the original formulation due to Heisenberg and oth-
ers of the uncertainty relation. We introduce a class of
incompatibility measures which are based on estimating
the change due to a measurement of one observable on
the statistics of the outcomes of another. If a pair of
observables A and B commute, then, a measurement of
B, which follows a measurement of A, yields the same
measurement statistics as a measurement of B alone, on
all states. However, if A and B do not commute, A and
B are not jointly measurable, and, there exist states on
which a measurement of A disturbs the system in such a
way that a subsequent measurement of B yields proba-
bilities very different from those associated with a mea-
surement of B alone. The distance between these two
probability distributions — one resulting from a measure-
ment of B following a measurement of A and the other
resulting from a measurement of B alone — can thus be
viewed as a measure of the effect of a measurement of A
on the outcomes of a measurement of B, for each given
state. Maximizing this over all the states of the system
gives a measure of incompatibility that is naturally state-
independent.

We are thus lead to an entire class of measures of
incompatibility, which are obtained by choosing differ-
ent measures of distance between probability distribu-
tions. Each of these incompatibility measures is zero for
a pair of observables if and only if the observables com-



mute. Furthermore, this class of measures always yields a
strictly positive value for the incompatibility even when
the observables in question share some common eigen-
states but do not commute over the entire space — unlike
uncertainty relations, which invariably yield a zero lower
bound in such cases.

The paper is organized as follows. In Section I we re-
view the relevant distance measures between probability
distributions and use them to define a class of incompat-
ibility measures between observables. In Section II we
prove that the incompatibility of observable A with B is
bounded by the maximal disturbance due to a measure-
ment of A. In Section ITI we focus on the finite dimen-
sional case and prove a tight upper bound for the fidelity-
based incompatibility measure. We also show that the
upper bound is attained for mutually unbiased observ-
ables. Finally, in Section IV, we show how the measures
introduced here can be extended for the case of general
quantum measurements, beyond the class of projective
measurements.

I. A NEW CLASS OF INCOMPATIBILITY
MEASURES

A. Distance measures for classical probability
distributions and quantum states

Given a pair of discrete probability distributions P ~
{pi} and @ ~ {g;}, we consider the following three mea-
sures of distance between P and Q [7, 8]

(i) Variational Distance or Lj-Distance :

DiP,Q) =53 Ini —a

(ii) Fidelity-based Distance :
DF(PaQ) =1- (F(PvQ))Qv

where the Fidelity F(P, Q) (also known as the
Bhattacharyya Distance) is defined as

F(RQ)EZx/P—i\@

(iii) Chebyshev Distance or L.-Distance :

Do (P,Q) = max Ipi — qil

All three distance measures satisfy:
0<Do(P,Q) <1, (a €{L1,F 00})

with D, (P,Q) = 0 if and only if P and @ are identi-
cal. Furthermore, D1(P,Q) and Do (P, Q) are metrics

on the space of probability distributions, that is, they
are symmetric

Da(Pa Q) = Da(va)v (a - 1700)

and, for three probability distributions P, @, S, the tri-
angle inequality holds:

Dy(P,Q) < Do(P,S) + Dy(S,Q), (a=1,00).

The fidelity-based measure stands apart from the
distance-based measures in the following sense. While
Dp(P,Q) is a symmetric measure (Dp(P,Q) =
Dp(Q, P)), it does not satisfy the triangle inequality and
is therefore not a metric.

Finally, we note that the variational distance and fi-
delity are related as follows:

1-F(P,Q) <D (P,Q) < /1—-(F(P,Q))?

= V DF(PvQ)

In our discussions below, we also make use of two well-
known distance measures between quantum states that
are obtained as generalizations of the classical variational
distance and fidelity measures [9]. The trace-distance
between quantum states p and o is defined as

1
Di(p,a) = 5trlp— o,

where, |p| = \/pTp is the positive square-root of pfp. The
fidelity of states p and o is defined to be

F(p,0) = try/p'/20p/2.

Similar to their classical analogues, the quantum trace-
distance and fidelity are also related as

1 - F(p,0) < Di(p,0) < /1= (Flp,0))".

B. Distance-based incompatibility measures

In the first three sections of this paper we will work
within the framework of standard quantum theory, and
restrict our attention to observables A and B which
are self-adjoint operators with purely discrete spectra,
and spectral decompositions A = >, a;P* and B =
Zj bjPJB. Let PrpB ~ {pf(j)} denote the probability
distribution over the outcomes of a measurement of ob-
servable B in state p. Let PrfﬁB ~ {q}}75(j)} denote
the probability distribution over the outcomes of a B
measurement when it follows a measurement of A on the
same state p. These probabilities are given by

Prf :pf(j) = tr [PJ-Bp] , (1)

PJB <Z PiApPiA>

PrfﬂB : q;‘%B(j) = tr




If A and B commute, their corresponding eigen-
projectors commute, and hence a measurement of A does
not affect the distribution of the outcomes of a subse-
quent measurement of B on the same state. The two
probability distributions defined in Eq. (1) above are
identical for all states p in this case. For a general pair of
observables A and B, the distance between the probabil-
ity distributions Pr;‘_’B and Prf can thus be regarded as
a measure of how much an intervening measurement of
A disturbs the statistics of the outcomes of a subsequent
measurement of B on the same state p. Maximizing this
distance between probability distributions over all states
in the system gives a measure of the mutual incompati-
bility of the observable A with B.

Corresponding to the three distance measures dis-
cussed above, we can thus define the following three mea-
sures of incompatibility of observable A with B:

(i) L;-distance based incompatibility measure:

Q1(A— B)= sgp Dy (Pr?_}B,Prf) .

(i) Fidelity-based incompatibility measure:

Qrp(A— B) = Sl;p [1- FQ(PerB,Prf)] .

(ili) Loo-distance based incompatibility measure:

Qx(A— B) = Sl;p Doo(PrfﬂB, Prf).
All three incompatibility measures defined above sat-
isty,

0<Q,(A—=B)<1, ae{l,F oo} (2)

Furthermore, the lower bound is attained if and only if
the observables A and B commute. We state and prove
this important property in the following Lemma.

Lemma 1. For a pair observables A and B with purely
discrete spectra, Qo(A — B) = 0 (a € {1,F,00}), if
and only if A and B commute.

Proof. Recall that the distance D, (Pr;‘_’B, Prf) =0 if

and only if the probability distributions Prf_)B and Prf
are identical. It is well known that these two probability
distributions coincide for all states p if and only if the
observables A and B commute [10, 11]. This proves the
Lemma for Q7 and Q.

Similarly, recalling that the fidelity F' (Pr/' 7% PrY) =

0 if and only if the distributions Pr2~? and Pr? are
identical, the Lemma is proved for Qp as well. |

The incompatibility measures defined here are not
symmetric in general. We show in Appendix B, via an
explicit example, that there do exist observables A, B,
such that,

Qn(A = B) # Qn(B — A).

It is thus natural to define the incompatibility Q, (A, B)
of the pair of observables A, B, as some kind of average of
the incompatibilities Q. (A — B) and Q,(B — A). This
ensures that Q,(A, B) is large when both Q,(A — B)
and Q,(B — A) are large, and vice-versa.

We therefore propose to define the incompatibility of
a set of N observables {A1, Aa,..., Ay} in terms of the
pairwise incompatibilities { Qo (A; — A;)}, in the follow-
ing manner:

1
Qu(A1, Az, ..., AN) = N2 Z Qa(A; = 45),  (3)
0

where Q,(A; — A;) = 0. In particular, the incompati-
bility of a pair of observables A and B, is thus defined
as,

Qa(AvB)EQa(A%B)IQa(BaA). )

Incidentally, we may note that an L..-distance based
measure has been used in [12] to characterize approxi-
mate joint measurability of general quantum observables.

Furthermore, there has been renewed interest in the
issue of quantifying measurement-induced changes in
probabilities, specifically in the context of the so-called
Heisenberg error-disturbance relations [13-17] for posi-
tion and momentum observables. For successive approx-
imate measurements of position and momentum on the
same system, these error-disturbance relations seek to
provide a trade-off between the “error”, or precision of
the position measurement, and “disturbance”, or change
in the statistics of a subsequent measurement due to the
intervening position measurement. To quantify this dis-
turbance several approaches have been considered, for
example, the rms distance between the original momen-
tum operator and the “disturbed” measurement opera-
tor [13], or, the difference between the standard deviation
of the momentum operator in the original system state
and the modified state after an intervening position mo-
mentum [14]. A more interesting approach is that of
Busch et al. [15-17], who use the Wasserstein-2 distance
between the probability distribution of the momentum
outcomes after the position measurement and the proba-
bility distribution of the outcomes of an ideal momentum
measurement.

To place our work in the context of these recent dis-
cussions, a few remarks are in order. We are seeking to
quantify the notion of incompatibility between any pair of
observables A, B with purely discrete spectrum, for which
a canonically well-defined collapse or change in the state
of the system due to measurement exists. We propose
to quantify the incompatibility of observable A with an-
other observable B in terms of the change in the statistics
of the outcomes of B due to an earlier measurement of
A. This change in statistics is best measured in terms of
the distance between the corresponding probability dis-
tributions. Accordingly, in this paper we have considered



three well-known measures of distance between probabil-
ity distributions to give quantitative measures of incom-
patibility of any pair of observables.

II. INCOMPATIBILITY AND DISTURBANCE

With any observable A having a purely discrete spec-
trum, there is associated a measurement channel E4. €4
is a completely positive trace-preserving (CPTP) map
that describes the post-measurement transformation of
state p after a measurement of A, as follows:

EA(P) = Z PiApPiA'

Both the trace-distance D, (5 A(p), p) and the fidelity
F(E4(p), p) are valid measures of the disturbance caused
to state p by a measurement of A [9]. The mazimal dis-
turbance due to the measurement A can therefore be es-
timated by either of the following measures:

max 1
D™ (4) = sup Str [£4(p) = p]
P
DEI(A) = 1 [Fmin)(4))2

= 1= [f P(EX(p), p)]* (5)
Both these measures of disturbance satisfy,
0< D™ (A) <1, 0<DM™(4)<1

Here we prove an important property of our class of
incompatibility measures, namely that the incompatibil-
ity of A with B is always upper bounded by the maximal
disturbance due to observable A.

Lemma 2. For a pair of observables A and B with purely
discrete spectra, the mutual incompatibility Q,(A —
B) (a € {1,F,00}) is bounded above by the mazimal
disturbance due to the observable A. Specifically,

Qu(A— B) < D{™(4), a=1,00.
Qr(A— B) < DW™(4) =1—[F™M ()2 (6)

Proof. We first prove the result for « = 1,00 and then
fora=F.
(i) From the definition of Q;(A — B), we see that,

1
Qi(A = B)=sup 5 > |g; () = py (7)]
P j

- o3 o (o) - wie
J

1
< —t PApPA —
_s%pQrEi PP —p

1 max
= sup 3tr[€”(p) — p| = D" (4), (7)
P

The inequality above follows from the fact that the quan-
tum trace distance between two states is an upper bound
on the classical distance between probability distribu-
tions obtained by performing measurements on those
quantum states. That is,

Di(po)= max Di(Pr}.P}).  (8)

where the maximization is over all positive-operator
valued measures (POVMs) M ~ {M;}. Pr™M(p) ~
{tr[M;p]} and Pr'*(c) ~ {tr[M,;o]} are the probability
distributions arising from the POVM measurement M
on the states p and o.

Note that the quantum trace distance also satisfies

Di(p, 0) = max tr(P(p — ), (9)

where the maximization is taken over all projectors P.
Using this relation we can easily see that,

Quo(A — B) = sup max ¢/ (p) — 7 (p)
p

PP (Z_ 1%-%&-/*)

sup Dy (Z PApPA p) = ngax) (A). (10)
p -

3

tr

—tr[Pf ]

sup max
P J

IN

(ii) A relation similar to Eq. (8) holds for the quan-
tum fidelity between states and the classical fidelity be-
tween probability distributions induced by measurements
on the states. In particular,

— mi M M
F(p,0) —r%lnF(Prp ,Prit). (11)

Using this, we can relate the classical fidelity between
PrfﬁB and Prf and the quantum fidelity between the

states p and E4(p) = 3°, PApPA, as follows:
F(Pr) 75 Prb)

X e (o)
F(Z PZApPzA7 p)

tr[Pf p]

J

Y

This implies,

Qp(A— B) = sup [l — F2(PrA_’B,Prf)]

< 1-inf F(E%p), p)
= 1 — [F™in)(4))2, (12)



III. TIGHT UPPER BOUNDS ON
INCOMPATIBILITY IN FINITE DIMENSIONS

In this section we focus on the fidelity-based incom-
patibility measure Qp(A, B). We obtain non-trivial up-
per bounds for observables in a finite-dimensional Hilbert
space, and show that the bounds are attained when the
observables are totally non-degenerate and correspond to
mutually unbiased bases (MUBs).

Theorem 3. For a pair of observables A and B in a
d-dimensional Hilbert space Hgq, the incompatibility of A
with B is bounded by

Qr(A— B) < (1—é>. (13)

The upper bound in Eq. (13)is attained when A and B
are non-degenerate observables associated with mutually
unbiased bases.

Proof. We have already shown in Section II that the
Qr (A — B) measure is bounded from above by the max-
imal disturbance due to observable A. It only remains
to prove an upper bound on this maximal disturbance.
Concavity of the quantum fidelity implies

inf F2(y " PAppA
inf 123 PpP), p)

mﬂﬁgywwwmﬂwwn

>
|) (

= inf PAY))? = inf 27 H(A0)0D
g, (IR = nf
1

> 7 (14)

where, in the final step we have used the definition of the
second order Rényi entropy Ha(A;[¥){(1]) of the proba-
bility distribution arising from a measurement of observ-
able A on state |¢), and the fact that this Hy entropy is
always bounded from above by logd. Putting together
Eqns. (12) (14) we have,

Qr(A— B) = 1—inf F? (Pry—P, Prf)

1~ inf F2(£4(p), p)
P

IN

< 1— inf 2~ H2(AllB) (%))
o [) (]
1
<1 (15)

Finally, to see the bound is tight for mutually unbiased
observables, recall that two non-degenerate observables
A and B are said to be mutually unbiased iff the cor-
responding orthonormal eigenbases A ~ {|a;)(a;|} and
B ~ {|b;)(b;|} satisty,

1.,
(ai|bs)* = — Vij=1,....d

Then, a simple calculation shows that the upper bound
proved above is attained for an eigenstate of B, that is,
for p = [Y) (| = |b;){b;|, for some i =1,2,...,d. [ |

This result immediately gives an upper bound on
Qr (A, B), the mutual incompatibility of A and B.

Or(A B) = Qr(A— B) 1- Qr(B — A)

g;@fgy (16)

where the upper bound is attained for a pair of non-
degenerate observables associated with mutually unbi-
ased bases.

A simple corollary of Theorem 3 is a non-trivial upper
bound on the average pairwise mutual incompatibility of
more than two observables.

Corollary 4. The mutual incompatibility of a set of N
observables { Ay, Aa, ..., AN} in Hq satisfies,

Qr(Ar, Ao, Ay) < (1—%) (1—5). (17)

The bound is attained when the observables are mon-
degenerate and associated with mutually unbiased bases.

Proof. The result simply follows from the definition

of Qp(A1,As,...,AN), and, the upper bound on the
incompatibility of each pair of observables in the set
{A1,As,..., AN}.
1
Qr(A1, Az, ..., AN) = N2 Z Qr(A; — Aj)
ij
N(N-1) 1
< _Z
S ()

Note that, both the lower and upper bounds on the mu-
tual incompatibility for a set of N observables obtained
here are the same as those obtained for the incompat-
ibility measure Q defined in Eq. (A2), as shown in [5].
However, as we will see in Sec. IIT B below, the measures
Q and Qp do yield different values for specific pairs of
observables.

A. Q; and Q for a pair of MUBs

For comparison, we also evaluate the measures
Q1(A — B) and Q. (A — B) for a pair of mutually
unbiased observables: A ~ {|a;)(a;|} and B ~ {|b;)(b;|}.
The probability distribution Pr?HB : {qﬁﬁB(j)}, over
the outcomes of a B measurement when it follows a mea-
surement of A on the same state p is now given by,

a; 7P (G) =D ailpla)l(ailbs)]

%

2_ 1
7



The Q; incompatibility measure is therefore given by,

sup 5 Z 4,2 () = py ()]

(bjlplbs)

1
=1 7 (18)
The final step simply follows from the upper bound on
the distance between any other d-dimensional probabil-
ity distribution (in this case, {p(j)}) and the uniform
distribution. The bound is indeed attained when {pZ(j)}
is a delta distribution, namely,

Py (j) =0, ¥j # jo;

for some jo € [1,d]. The state p that induces this distri-
bution is simply a basis state of B, that is, p = |bj,)(bj, |,
jo € [1,d]. For a pair of mutually unbiased bases the
measure Q1 is indeed symmetric, so that,

(-3)

A similar calculation yields,

pf(] = .]0) =1,

Ql(AvB) =

Qoo(A,B)—%<1—$),

for a pair of mutually unbiased observables A and B in
a d-dimensional space.
The above observations lead us to conjecture that both
the 9, and the Q. measures are also bounded above by
$(1 — 1), for any pair of observables in a d-dimensional
space

B. Observables that commute on a subspace

Finally, we present a simple scenario where our ap-
proach to quantifying incompatibility goes significantly
beyond the standard entropic uncertainty relations for-
malism. Consider a pair of non-degenerate observables
A, B that commute over a subspace of dimension d..
Specifically, we assume that they share d. common eigen-
vectors, and are mutually unbiased in the (d—d.) dimen-
sional subspace where they do not commute.

|ai> = |bi>,Vi:1,...,dc
0 fori <d.,j>d.
|<ai|bj)| = 0 fori > d.,j <d. (19)
dl_d fori,j > d.

For such a pair of observables, our formalism allows us
to derive an expression for their mutual incompatibility
in terms of the dimension d. of the commuting subspace.

Theorem 5. Consider a pair of non-degenerate observ-
ables A and B in Hg which are such that they have d.
common eigenvectors, and their remaining eigenvectors
are mutually unbiased (as in Eq. (19)). The mutual in-
compatibility of such a pair A and B is given by,

%( d_ldc). (20)

The proof of this theorem is given in Appendix A. In
the same section, we also evaluate the mutual incompat-
ibility of the same pair of observables A and B as quan-
tified by the measure Q defined in [5]. We show that,

dc:;l). (21)

This example thus highlights clearly the difference be-
tween the measures Q and Qp. Comparing Eq. (20)
and Eq. (21), we see that Qr and Q coincide when
d. = 0 (A and B are mutually unbiased observables)
and d. = (d — 1) (A and B commute), but do take on
different values for 0 < d. < d — 1.

Qr(A,B) =

(A, B) < %(

IV. QUANTIFYING DISTURBANCE AND
INCOMPATIBILITY FOR GENERAL
MEASUREMENTS

In this section, we show how the measures of incompat-
ibility and disturbance defined in Sec. I and Sec. II can be
extended beyond the class of projective measurements. A
general observable A with discrete outcomes is described
by a collection of positive operators {0 < A; < I} that
satisfy >, A; = I. The probability of obtaining outcome
i when measuring observable A in state p is given by
tr[pA;]. In order to define the class of incompatibility
measures Q,, we also need to specify how the state p
transforms under a measurement of A.

In standard quantum theory, there is a canonical as-
sociation (via the so called Von Neumann - Liiders col-
lapse postulate) between an observable characterized by
a self-adjoint operator with purely discrete spectrum
(A=Y, a;P#), and an associated projective measure-
ment (E4(p) = Y, PApPA). For more general observ-
ables given by positive operator valued (POV) measures
A ~ {A;}, there is no such canonical specification; the as-
sociated measurement transformation can now be chosen
as any instrument ®* implementing the POV measure
A [18].

An instrument &4 implementing a measurement of A
is a collection of completely positive linear maps <I>g4 such
that, the state p transforms to ®(p) when outcome i is
realized. The probability of realizing outcome i is given
by tr[®(p)] = tr[pA;], for all states p. The overall trans-
formation of state p by instrument ®* is described by a
quantum channel, that is, a completely positive trace-



preserving (CPTP) map (also denoted by ®4):
() =Y 1 (p).

The same observable can indeed be implemented by
several different instruments. Omne simple implemen-
tation of a measurement of observable A ~ {A;} is
given by the Liders instrument @f, in which the post-
measurement, state after a measurement of observable A
on state p € Hq is given by

A(p) =Y APpAl”,
=1

We can now extend our measures of incompatibility and
disturbance, for general observables A, B described by
discrete POV measures. However, now the measures in-
deed crucially depend on the choice of associated instru-
ments ®* and ®B. The probability distribution over the
outcomes of B in state p is given by,
B B, .
Pr;b :pf (1) = tr[pBy].

When the measurement of B is preceded by a measure-
ment of A4 on the same state p, the probability distribu-

. . . A B
tion is modified as Pr®" —?® o

Pr;bAHq)B : q;bAHCPB (1) = tr Z A}/2pA;/2 B;
J

We can define the incompatibility of &4 with ®8 as

Qu (@ = @F) = sup Do (Pr?”" 7" Pr?%). (22)
P

As before, we have, 0 < Q, < 1. Similarly, the maximal
disturbance due to a measurement of ®4 can be defined
as

D™ (@) = sup Do (24(p), p), (23)

where once again, 0 < D, (@A) <1.

Then, using the relation between the classical and
quantum distance measures, it is easy to see that
Lemma 2 also holds for general quantum measurements.
In other words, the incompatibility of ®4 with ®5,
Q4 (®4 — ®B) is always bounded from above by the
maximum disturbance D8 (®4) due to the channel ®:

Qu (P4 — B) < Dmax(pA), (24)

We now show that there exists a non-trivial upper
bound on the maximal disturbance due to the Liiders
channel corresponding to a discrete POV measure with a
finite number of outcomes. This in turn gives us a non-
trivial upper bound on the fidelity-based incompatibility
measure Qp (B4 — ®B) for such a pair of POV measures
A and B.

Theorem 6. The incompatibility of a pair of general
observables A and B, with finite number of outcomes N 4
and Np respectively, and corresponding Liders channels:

NA NB
OA(p) =Y APpAl? @B(p) = B pB)?,
i=1 j=1
is bounded by
1
Qp(dF - d8) <1 - —. (25)
Na

Proof. The result follows once we prove an upper bound
on the maximal disturbance D2#*(®4). Note that,

inf F? (@7 (1) (1), [¢)(¥])

[} (4]
Na )
= inf A2 )2
o, D14
NA NA
A 2
> inf Ail)? = inf Pz (;
- \w><w\izl<w| Y= 5L, gt {p'w()}
—ms (P2 1
= inf 2 2< W) > —. (26)
[) (Y] A
Therefore,

D%lax((l)é) = 1- II;f F2((I)Z4(p)7 p)

_ in 2(HA
<1 \w><€MF (@2 (1) (&), [¥) ()

1
< 1—-— 27
<1-o @)
The upper bound on Qp(®7 — ®%) now follows from
the extension of Lemma 2 given in Eq. (24). [ |

Note that, while we have proved a non-trivial (strictly
less than one) upper bound on the maximal disturbance
due to a Liiders instrument with a finite number of out-
comes, there does not exist such a non-trivial upper-
bound for the maximal disturbance due to more general
instruments. For example, consider the instrument ®»
corresponding to a Z-channel, namely,

% (p) =pZpZ + (1 —p)p. (0<p<1)

It is easy to check that the minimal fidelity
inf, F2(®%»(p),p) = 1 — p, and therefore the maximal
disturbance DB (9%r) = p < 1.

V. CONCLUSIONS

To summarize, we have proposed a novel approach to
quantify the mutual incompatibility of quantum observ-
ables, in terms of the change caused by a measurement
of one observable on the statistics of the outcomes of a



subsequent measurement of the other observable. We use
a class of distance measures between classical probability
distributions to quantify this change in statistics, thus
leading to a class of incompatibility measures.

In particular, we take a closer look at one such measure
based on the classical fidelity between probability distri-
butions. We obtain a tight, non-trivial (strictly less than
one) upper bound for the fidelity-based incompatibility
of a pair of projective measurements in finite dimensions,
and show that this bound is attained for a pair of mu-
tually unbiased bases. Interestingly, the upper bound
derived here coincides with that for a different measure
of incompatibility, based on the cryptographic notion of
accessible fidelity, proposed recently [5]. The formalism
presented here is however completely general and extends
beyond projective measurements. In particular, we use
our measure to obtain a non-trivial bound on the mutual
incompatibility of a pair of Liiders instruments with a
finite number of outcomes.

Our analysis here brings to light an elegant quantita-
tive connection between operationally motivated notions
of disturbance and incompatibility for general quantum
measurements. Furthermore, since our class of measures
vanish if and only if the observables in question com-
mute, this approach goes beyond uncertainty relations
in quantifying incompatibility. Interestingly, even opti-

mal entropic uncertainty relations formulated for the suc-
cessive measurement scenario yield only a trivial (zero)
bound for observables that share a single common eigen-
vector [19].

We note that the class of measures presented here is
indeed distinct from the incompatibility measure defined
in [5] based on the accessible fidelity, though both mea-
sures coincide for the limiting cases of commuting and
mutually unbiased observables. While the operational
setting motivating the new class of measures introduced
here is a commonly encountered one in the context of
quantum cryptography, it remains to be seen if these
measures can play a direct role in analyzing the security
of quantum cryptographic protocols. Another interest-
ing line of investigation would be to check whether the
measures defined here can be computed efficiently using
convex optimization techniques.
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Appendix A: Incompatibility of observables that
commute on a subspace

Here we prove Theorem 5 and obtain an expression for

the mutual incompatibility of the pair of observables A
and B described in Eq. (19).
Proof: We first prove an upper bound on Qr(A — B),
the incompatibility of A with B. For the pair of observ-
ables defined in Eq. (19), the fidelity between the two
relevant probability distributions is given by,

F(Priyy i) Priy )
Z \/Z [{ai|¥)[2[{ailb;)|?|(bj|v) |2
7 7

V1= Yica, (@il ?
Vd—d.

D Kaglo)P + D 1bsl))

j<dc j>de



Since 37 g, (050N = /22554, [(0514)[2, and |a;) = [b))

for 7 < d., we obtain,

F(Pr{yy) Priy )
_Z‘<d |<bj|¢>|2
[{a;¥)|* + =L
J;c ’ Vi — de
Vd=ded g [(bl0)]2 + (1 -
Ja—d.

Y

ngdc |<ba|¢>|2)

1

> .
T Vd—d.

(A1)

The bound on Qr(A — B) follows immediately:

1
d—d,

Qr(A—B)<1-

This maximal value is attained for eigenstates of A that

span the non-commuting subspace, that is, for states
[¢) = |a;) (i > d.), and hence,

1
d—d.

QF (A — B) =1-
Similarly, we can show, that the incompatibility of B
with A is given by,

1
d—d,

Together, we get the desired result on the mutual incom-
patibility of A and B stated in Eq. (20). B

We now consider the mutual incompatibility of the
same pair of observables A and B as quantified by the
measure Q defined in [5]. For a set of N non-degenerate
observables {AM, AR AMY in a d-dimensional
Hilbert space Hq with associated eigenvectors {|a§-z)), Jj=

Ly, det €47 (p) = 37 (Ja”) (e (e
denote the post-measurement state associated with a
measurement of observable A® on state p. Then, it was
shown in [5] that Q(AM AP . AMN)) maybe defined
as the complement of the best possible average fidelity an

eavesdropper can obtain in a quantum key distribution
(QKD) protocol.

The measure Q defined in [5] can be evaluated as

QAM, A®), ..,

1 ©)
= 1- sup 3 m ; Amax [(Z EA (|§m><€m|)>

{1€m) (Em [

AN (A2)

)

where, Apax[®] denotes the maximum eigenvalue of ®.
The supremum is taken over all positive operator valued
measures (POVMs) comprising (non-normalized) rank-

one operators {|&m)(&m|} such that Y- [&m)(Em| = L
Thus, Q(A, B) is given by,

1
Q(AvB) =1- S;l(p ‘}ﬁz)\max [EA(|§m><§m|)+8B(|§m><§m|)}

{l€m) (&

{|€m><

While the supremum is to be taken over all POVMs
{€m){€m}, choosing [€,) = [bm), Vm = 1., d provides
a lower bound on the second term. For the observables

1- o} 2dz)‘max Z| ail&m) | |a;) al|—|—Z| bjl&m) | 1b;)(bs]

A and B defined in Eq. (19
evaluated:

), this lower bound is easily
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Appendix B: Asymmetry of Qr(A — B)

As we will see below, the asymmetry of the incompat-
ibility measure for a pair of observables manifests clearly
when one of the observables has a degenerate spectrum.
We first obtain an expression for the maximal distur-
bance due to a measurement of an observable with a de-
generate spectrum.

Consider the observable C' with a spectral decomposi-
tion

C = i O[Z'Pl-c,
=1

where, each PC is a projector on to a d;-dimensional
subspace (0 < d; < d) with >!_, d; = d. Further, let
{|e;}} be an orthonormal basis of eigenvectors of C', such

that,

di+...di—1+d;
PC =

: 2

k=di+...+d;—1+1

lex) (ck |-

For such an observable C, we evaluate the disturbance
Dwax(C') defined in Eq. (5).

First, note that for any state [¢), the fidelity with the
post-measurement state is bounded by

> (W|PE)?

i=1

— o-maCle) > 1 gy
o’

F2EC(|9) (), [4) (]

where Ha(C||4)) is the Ha-entropy of the probability dis-
tribution resulting from a measurement of observable C'
on state [1). The minimum value in Eq. (B1) is attained
for any state which satisfies (Yopt|PC|thopt) = + for all

i=1,...,r. For example, the state
1
[tbopt) = 7 [ler) + leay+1) + - + [ca—a,+1)]

Qu
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(A3)

yields this lower bound. The maximum disturbance due
to a measurement of observable C' is therefore given by

1
DR () =1 — ~.
(C) =1 -~

We now present an example of a pair of observables
A and B such that Qp(A — B) # Qp(B — A). We
choose A to have a totally non-degenerate spectrum in a
d-dimensional Hilbert space:

d
A= Z ai|ai)<ai|,
i=1

but choose B to be an observable with a degenerate spec-
trum. Specifically, let {|b;),j = 1,...,d} be a basis that
is mutually unbiased with respect to {|a;)}. Choose ob-
servable B to have a spectral decomposition

B =P+ BaPy,

where, PP = 37" |b;)(bs], (0 < m < d).
As shown above, the maximal disturbance due to a

measurement of B is then given by D**(B) = 1. Hence,
max 1
Qp(B — A) < Dy (3)257

for all A.
To evaluate Qr(A — B), note that

F2[Pr) " Prl]]

9 1/2
> (Z |<ai|¢>|2<ai|szlai>> (WIPZ )
k=1

2

K2

Choosing |¢) = |b;) for some j = 1,...,
<(li|1/1> = 1/\/87 and7

m, we have,

WIPY ) =05 (ai|PPlai) =
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Therefore, for [¢) = |b;), Hence,
F2[Pry P Prl)

= Z|<ai|¢>|2<ai|PlB|ai> = % Qr(A— B)= sup (1 —Fz[Prﬁ_)B,Prff]) >—. (B2)

1) (¥l

N | =

Choosing m < %, we get,

1 Thus, we have a pair of observables A, B such that,
m{p‘FﬁprgﬁB,Prg] <3 Qr(B — A) # Qp(A — B).



