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1 Introduction

In the study and applications of the Linear Complementarity Problem [3], the solution A of a matrix equation

of the form AX = Y is of interest; typically, X and Y have particular properties, e.g., they have non-positive

off-diagonal entries (Z-matrices), in which case A (under an additional assumption) is designated as a hidden

Z-matrix. In one particular instance, X and Y are invertible M-matrices with a common nonnegative vector u

such that Xu and Yu are also positive. SuchmatricesAwere introducedbyPang [12, 13],who extendednotions

by Mangasarian, Cottle and Dantzig. They were originally termed ‘hidden Minkowski matrices’ in [13]. Note

then that A = YX−1 is the product of an M-matrix and an inverse M-matrix. In that respect, A belongs to a

class of matrices that simultaneously generalizes the classes of M-matrices and inverse M-matrices.

To be more specific, recall that an M-matrix is a matrix of the form M = sI − B, where B is an entrywise

nonnegative matrix (B ≥ 0) and s ≥ ρ(B) with ρ(B) denoting the spectral radius of B. The M-matrix M is non-

singular if and only if s > ρ(B). It is known that for every nonsingular M-matrix M, there exists an entrywise

nonnegative vector u (u ≥ 0) such that Mu is entrywise positive (Mu > 0); we refer to u as a semipositivity

vector associated withM. This paper concerns matrices of the form A = M1M
−1
2 , whereM1,M2 are invertible

M-matrices possessing a common semipositivity vector u. We adopt a newer name for this class of matrices,

coined in [19], indicative of their matricial nature and origin:

Definition 1.1. We call A ∈ Mn (R) amime if

A = (s1I − B1) (s2I − B2)
−1 , (1.1)

where B1 ≥ 0, B2 ≥ 0, s1 > ρ(B1), s2 > ρ(B2), and there exists a vector u ≥ 0 such that

(s1I − B1) u > 0, (s2I − B2) u > 0.
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Read [12, Abstract and Theorem 2] and comparewith [13, Introduction] to see thatmimes coincidewith Pang’s

hidden Minkowski matrices. Notice that when B2 = 0 the matrix A in Definition 1.1 is an M-matrix, and when

B1 = 0, A is the inverse of an M-matrix. Thus, the class of mimes contains and generalizes the classes of M-

matrices and inverseM-matrices, justifying the acronym ‘mime’. For comprehensive references onM-matrices

and inverse M-matrices; see [1, 6, 8]. In particular, inverse M-matrices are entrywise nonnegative. An imme-

diate observation is that the class of mimes is indeed closed under inversion and permutational similarity.

Whereas mimes have been studied in the pioneering work of Pang and in [19], our aim herein is to review

the properties of mimes, further develop their theory, as well as provide a self-contained, matrix-theoretic

approach that unifies the theory of M-matrices and their inverses.

The presentation unfolds as follows. Section 2 contains most of the required notation, terminology and

notions. The basic properties of mimes are proven in Section 3, including that mimes are semipositive and

have positive principal minors. Schur complements, principal submatrices and principal pivot transforms of

mimes are also shown to be mimes, and some subclasses of the mimes are identified. Counterexamples to

properties that do not generalize from (inverse) M-matrices to mimes are provided in Section 4. In Section 5,

the notion of a mime is generalized to allow the first factor be a general M-matrix and the second factor be

replaced by the group inverse of a singular M-matrix.

2 Definitions and Notation

We group the contents of this section in several categories for convenience.

General notation

• Entrywise ordering of arrays of the same size is indicated by ≥ . We write X ≥ Y (X > Y) if X, Y are real

and every entry of X − Y is nonnegative (positive). When X ≥ 0 (resp., X > 0), we refer to X as nonnegative

(resp., positive).

• Given matrices Y ≥ X, the interval [X, Y] denotes the set of all matrices Z such that X ≤ Z ≤ Y.

Let n be a positive integer and A ∈ Mn (C). The following notation is used:
• 〈n〉 = {1, . . . , n}.

• For x ∈ Rn, x ∈ Rn
+ is equivalent to saying x ≥ 0.

• σ(A) denotes the spectrum of A.

• ρ(A) = max{|λ| : λ ∈ σ(A)} is the spectral radius of A.

• A is called positive stable if σ(A) lies in the open right-half complex plane.

• R(A) and N(A) respectively denote the range and nullspace of A.

• diag (d1, . . . , dn) is the diagonal matrix with diagonal entries d1, . . . , dn.

• For α ⊆ 〈n〉, |α| denotes the cardinality of α and α = 〈n〉 \ α.

• A[α, β] is the submatrix of A whose rows and columns are indexed by α, β ⊆ 〈n〉, respectively; the

elements of α, β are assumed to be in ascending order. When a row or column index set is empty, the cor-

responding submatrix is considered vacuous and by convention has determinant equal to 1. We abbreviate

A[α, α] by A[α]. Similar notation is used to denote vector partitions.

Matrix Transforms

Given A ∈ Mn (C) and α ⊆ 〈n〉 such that A[α] is invertible, A/A[α] denotes the Schur complement of A[α]

in A, that is,

A/A[α] = A[α] − A[α, α]A[α]−1A[α, α].

Definition 2.1. Given a nonempty α ⊆ 〈n〉 and provided that A[α] is invertible, we define the principal pivot

transform of A ∈ Mn (C) relative to α as the matrix ppt (A, α) obtained from A by replacing

A[α] by A[α]−1, A[α, α] by −A[α]−1A[α, α],

A[α, α] by A[α, α]A[α]−1 A[α] by A/A[α].

By convention, ppt (A, ∅) = A.
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Given A ∈ Mn (C) and α ⊆ 〈n〉, the matrix B = ppt (A, α) is the unique linear transformation which for any

pair x, y ∈ Cn related by Ax = y, relates x̂ (obtained from x by replacing x[α] by y[α]) to ŷ (obtained from y by

replacing y[α] by x[α]) via Bx̂ = ŷ. In the case α = {1, . . . , k} (0 < k < n), we have

ppt (A, α) =

[

A[α]−1 −A[α]−1A[α, α]

A[α, α]A[α]−1 A/A[α]

]

(2.2)

and

A

[

x[α]

x[α]

]

=

[

y[α]

y[α]

]

if and only if B

[

y[α]

x[α]

]

=

[

x[α]

y[α]

]

.

For the properties and history of the principal pivot transform, see [17].

Definition 2.2. For A ∈ Mn (C) with −1 ∈ ̸ σ(A), consider the fractional linear map FA ≡ (I + A)−1(I − A).

This map is an involution, namely, A = (I + FA)
−1(I − FA). The matrix FA is referred to as the Cayley transform

of A.

The Cayley transform for various matrix positivity classes is treated in [4].

Matrix classes of interest

– We call A = [aij] ∈ Mn (C) row diagonally dominant if for all i ∈ 〈n〉,

|aii| >
∑

j= ̸i

|aij|.

Note that in our terminology the diagonal dominance is strict. Due to the Geršgorin Theorem [5, Theorem

6.1.1], row diagonally dominant matrices with positive diagonal entries are positive stable.

– A matrix A ∈ Mn (C) is reducible if PAPT =

[

B 0

C D

]

for some permutation matrix P and non-vacuous

square matrices B, D. Otherwise, A is irreducible.

– A ∈ Mn (C) is a P-matrix if for all α ∈ 〈n〉, detA[α] > 0. For real matrices, denoting the Hadamard

(entrywise) product by ◦, A ∈ Mn (R) is a P-matrix if and only if

x ∈ Rn , x ◦ (Ax) ≤ 0 =⇒ x = 0.

– A singular class of real P-matrices, namely, the P#-matriceswas introduced in [10]. The idea is to use the

sign non-reversal property of the P-matrices and restrict it to vectors in the range space of A. The precise

definition is as follows: Matrix A ∈ Mn (R) is said to be a P#-matrix if

x ∈ R(A), x ◦ (Ax) ≤ 0 =⇒ x = 0.

It is interesting to note that the group inverse of a P#-matrix always exists and is also a P#-matrix. A brief

study of P#-matrices is carried out in [15].

– A ∈ Mn (R) is semipositive if there exists x ≥ 0 such that Ax > 0. We refer to x as a semipositivity vector

of A. Notice that by continuity of the map x 7→ Ax, semipositivity of A is equivalent to the existence of

u > 0 such that Au > 0.

The following notions of monotonicity are mostly classical; see [1].

– A ∈ Mn (R) ismonotone if Ax ≥ 0 =⇒ x ≥ 0.

– A ∈ Mn (R) is range monotone if x ∈ R(A), Ax ≥ 0 =⇒ x ≥ 0.

– A ∈ Mn (R) is almost monotone if Ax ≥ 0 =⇒ Ax = 0. An example of an almost monotone matrix is given

by
[

1 −1

−1 1

]

.

– A ∈ Mn (R) is called a Z-matrix if all of its off-diagonal entries are non-positive. A nonsingularM-matrix is

a positive stable Z-matrix. An inverseM-matrix is the inverse of anM-matrix and is entrywise nonnegative.
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– It is known that anM-matrix A takes the form A = sI −B, where B ≥ 0 and s ≥ ρ(B). The Perron-Frobenius

Theorem applied to B implies that A possesses a nonnegative eigenvector x corresponding to the eigen-

value s − ρ(B). When B is also irreducible, it is known that s − ρ(B) is a simple eigenvalue of A and that

x > 0.

All invertible M-matrices and inverse M-matrices are P-matrices, monotone and semipositive. See [1, 5, 6]

for general background on nonnegative matrices, Z-matrices and M-matrices.

– A ∈ Mn (C) is said to be convergent, if lim
k→∞

Ak exists and is equal to zero. Convergence is with respect to

any matrix norm. Note that A is convergent if and only if ρ(A) < 1.

– A ∈ Mn (C) is said to be semiconvergent if lim
k→∞

Ak exists.

– An M-matrix A = sI − B with B ≥ 0 and s ≥ ρ(B) is said to have “property c" if
B

s
is semiconvergent. This

notion was introduced in [14], where several properties of suchmatrices were proved. For instance, every

invertible M-matrix is semiconvergent. The M-matrix

[

0 −1

0 0

]

is not semiconvergent, while

[

1 −1

−1 1

]

is an M-matrix with “property c."

3 Basic Properties of Mimes

It has been shown in [12] that the notion of a mime A as in Definition 1.1 is tantamount to A being ‘hidden Z’

and a P-matrix at the same time. We revisit these facts in Theorem 3.1 and Proposition 3.4 below, providing

proofs that use the language and properties of M-matrices and P-matrices.

Theorem 3.1. Let A ∈ Mn (R). Then A is a mime if and only if

(1) AX = Y for some Z-matrices X and Y, and

(2) A and X are semipositive.

Proof. Clearly, if A is a mime as in Definition 1.1, then (1) holds with the roles of X and Y being played

by (s2I − B2) and (s1I − B1), respectively. That (2) holds follows from the fact that z = Xu > 0 (i.e., X is

semipositive) and Yu > 0, where u ≥ 0 is a common semipositivity vector associated with A. We then have

that Az = YX−1Xu = Yu > 0; that is, A is also semipositive.

For the converse, suppose (1) and (2) hold. Then X is an invertible M-matrix and X−1 ≥ 0 [6, Theorem 2.5.3].

As A is assumed semipositive, Ax > 0 for some x > 0. Let then u = X−1x so that Yu = Ax > 0; that is, Y is also

semipositive and so an invertible M-matrix as well. In fact, u is a common semipositivity vector of X and Y

and thus A is a mime.

Corollary 3.2. Let A ∈ Mn (R) be a mime and D = diag(d1, d2, . . . , dn) with dk > 0 (k = 1, 2, . . . , n). Then

the following matrices are also mimes:

(1) A + D, (2) AD, (3) DA.

Proof. Since A is a mime, by Theorem 3.1 there exist Z-matrices X and Y such that AX = Y where A and X are

semipositive.

To prove (1) note that (A + D)X = Y + DX, and Y + DX is a Z-matrix since Z-matrices are closed under addition

andmultiplication by a positive diagonal matrix. Also note A+D is semipositive since A is semipositive. Thus

A + D is a mime.

To prove (2) note that (AD)(D−1X) = Y. Now D−1X and Y are both Z-matrices, and AD, D−1X are semipos-

itive. Thus AD is a mime by Theorem 3.1.

To prove (3) note that (DA)X = DY where DY is a Z-matrix and DA is semipositive. Thus DA is a mime.

Corollary 3.3. Let A ∈ Mn (R) be a mime and P ∈ Mn (R) a permutation matrix. Then PAPT is also a mime.
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Proof. Since A is a mime by Theorem 3.1 there exist Z-matrices X and Y such that AX = Y where A and X are

semipositive. Then

PAPT (PXPT) = P YPT ,

where clearly PXPT , P YPT are Z-matrices, and PAPT , PXPT are indeed semipositive. Thus PAPT is a mime

by Theorem 3.1.

Proposition 3.4. Let A ∈ Mn (R) be a mime. Then A is a P-matrix.

Proof. Let A be a mime and s1, s2, B1, B2 and u ≥ 0 be as in Definition 1.1. Then, for every T ∈ [0, I], the

matrix

C = T(s2I − B2) + (I − T)(s1I − B1)

is a Z-matrix and Cu > 0 (i.e., C is a semipositive Z-matrix). This means that C is an M-matrix. In particular, C

is invertible for every T ∈ [0, I]. By [9, Theorem 3.3], we can now conclude that A = (s1I − B1)(s2I − B2)
−1 is a

P-matrix.

In order to argue next that every principal submatrix of a mime is a mime, we will need the following two

known lemmata with proofs provided for completeness.

Lemma 3.5. Let A ∈ Mn (R) be a nonsingular M-matrix and let α ⊆ 〈n〉. Then the Schur complement A/A[α] is

a nonsingular M-matrix.

Proof. Let A = sI−B ∈ Mn (R) be a nonsingularM-matrix (B ≥ 0, s > ρ(B)) and let α ⊆ 〈n〉. Note that A[α, α] ≤

0 and A[α, α] ≤ 0. Note also that A[α] = (sI − B)[α] is a nonsingular M-matrix since s > ρ(B) ≥ ρ(B[α])), the

latter inequality following by the monotonicity of the spectral radius in the order of nonnegative matrices;

see [5, Corollary 8.1.20]). Thus A[α]−1 ≥ 0 and so

A/A[α] = A[α] − A[α, α]A[α]−1A[α, α]

is a Z-matrix. A/A[α] is also a P-matrix because A is a P-matrix and Schur complementation preserves P-

matrices; see, e.g., [8, Theorem 4.3.2]). Thus, A/A[α] is a nonsingular M-matrix.

Lemma 3.6. Suppose A ∈ Mn(R) is a nonsingular M-matrix with a semipositivity vector u. Let α ⊆ 〈n〉. Then

A[α] is a nonsingular M-matrix with semipositivity vector u[α].

Proof. Let A = [aij] be a nonsingular M-matrix with a semipositivity vector u and let α = {α1, . . . , αk} ⊆ 〈n〉.

Note that A[α] is also a nonsingular M-matrix as argued in the proof of Lemma 3.5. Also, note that

A[α]u[α] =









aα1 ,α1uα1 + aα1 ,α2uα2 + · · · + aα1 ,αkuαk
...

aαk ,α1uα1 + aαk ,α2uα2 + · · · + aαk ,αkuαk









.

Since aij ≤ 0 if i = ̸ j, u > 0, and Au > 0, we get that

A[α]u[α] ≥









aα1 ,1u1 + aα1 ,2u2 + · · · + aα1 ,nun
...

aαk ,1u1 + aαk ,2u2 + · · · + aαk ,nun









> 0.

Hence, u[α] is a semipositivity vector for A[α].

Theorem 3.7. Let A ∈ Mn (R) be a mime. Then every principal submatrix of A is also a mime.

Proof. Let A ∈ Mn (R) be a mime and α ⊆ 〈n〉. Then A = M1M
−1
2 for some nonsingular M-matrices M1 and

M2 that share a common semipositivity vector u. Note that

[

A[α] A[α, α]
]

[

M2[α] M2[α, α]

M2[α, α] M2[α]

]

=
[

M1[α] M1[α, α]
]

.
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Hence it follows that

A[α]M2[α] + A[α, α]M2[α, α] = M1[α] (3.3)

and

A[α]M2[α, α] + A[α, α]M2[α] = M1[α, α]. (3.4)

Upon multiplying (3.4) from the right by M2[α]
−1M2[α, α] and subtracting the outcome from (3.3), we obtain

A[α]X = Y, where

X = M2/M2[α] and Y = M1[α] −M1[α, α]M2[α]
−1M2[α, α].

Notice that

X = M2/M2[α] and Y = W/W[α],

where

W =

[

M1[α] M1[α, α]

M2[α, α] M2[α]

]

is evidently a Z-matrix. As M1u > 0 and M2u > 0, we have Wu > 0 and so W is also an invertible M-matrix.

From Lemma 3.5, it follows that X and Y are nonsingular M-matrices.

To conclude the proof, we have shown that A[α]X = Y, where X and Y are, in particular, Z-matrices. By

Proposition 3.4, A is P-matrix and so A[α] is also a P-matrix and thus it is semipositive; see e.g., [8, Theorem

4.3.6]. Finally, X is semipositive since it is a nonsingular M-matrix. It now follows from Theorem 3.1 that A[α]

is a mime.

Given a mime A and any α ⊆ 〈n〉, it is clear from Theorem 3.7 that A[α] is invertible and so ppt (A, α) is

well-defined. It is observed in [12, 17] that ppt (A, α) is also a mime. We include a proof of this result below

that utilizes the language and the observations herein and in [9].

Theorem 3.8. Let A ∈ Mn (R) be a mime and α ⊆ 〈n〉. Then ppt(A, α) is a mime.

Proof. Let A be amime as in Definition 1.1 and denote Y = (s1I−B1), X = (s2I−B2) so that AX = Y. Let u be a

common semipositivity vector of X, Y. Let T be the matrix obtained from the identity by setting the diagonal

entries indexed by α ⊆ 〈n〉 equal to 0 and consider the matrices

U = TX + (I − T)Y , V = (I − T)X + TY .

That is, U and V are obtained from X and Y, respectively, by exchanging their rows indexed by α. Thus, on

letting B = ppt (A, α), we observe that AX = Y implies BU = V, where U and V are Z-matrices satisfying

Uu > 0 and Vu > 0. It follows that B = VU−1 is a mime.

Corollary 3.9. Let α ⊆ 〈n〉. If A ∈ Mn (R) is a mime, then the Schur complement A/A[α] is also a mime.

Proof. This follows from Theorem 3.7, Theorem 3.8 and the fact that A/A[α] is a principal submatrix of

ppt(A, α).

We proceed with more relations among mimes and other matrix classes. Included is another result from [12]

and a method for constructing entrywise nonnegative mimes, whose original proofs in [12] rely on (hidden)

Leontief matrices and principal pivot transforms. In particular, the proof of the latter construction method is

attributed to Mangasarian [11], who also used ideas from mathematical programming. The proofs presented

below are shorter and based on standard P-matrix and M-matrix theory.

It is known that P-matrices are semipositive; see e.g., [8, Theorem 4.3.6]. As a consequence of Proposition

3.4, we thus have that mimes are semipositive. A direct proof is offered below that also identifies a semiposi-

tivity vector.

Corollary 3.10. Let A ∈ Mn (R) be a mime. Then A is semipositive.
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Proof. Let A be amime as in Definition 1.1 with common semipositivity vector u ≥ 0. Letting y = (s2I −B2)u >

0, we have Ay = (s1I − B1)u > 0.

Semipositivity of mimes leads to an interesting conclusion, especially in light of Theorem 3.1 and the defini-

tion of a mime. Namely, a mime is the product of an M-matrix and an inverse M-matrix, but also the product

of a positive matrix and an inverse positive matrix.

Theorem 3.11. Let A ∈ Mn (R) be a mime. Then there exists a positive matrix Y and an invertible positive

matrix X such that A = YX−1.

Proof. By [18, Theorem 3.1], A is semipositive if and only if there exists a positive matrix Y and an invertible

positive matrix X such that A = YX−1. The result now follows by Corollary 3.10.

Theorem 3.12. Let A ∈ Mn (R) be a mime. Then A can be factored into A = BC−1, where B, C ∈ Mn (R) are
row diagonally dominant matrices with positive diagonal entries.

Proof. Suppose that A = (s1I − B1)(s2I − B2)
−1 is a mime as in Definition 1.1. By continuity, the common

semipositivity vector u can be taken to be positive, i.e., u > 0. Let then D = diag(u1, u2, . . . , un) and define

B = (s1I − B1)D and C = (s2I − B2)D so that Be > 0 and Ce > 0, where e is the all ones vector. Notice that as B

and C are Z-matrices with positive diagonal entries, they are indeed row diagonally dominant and A = BC−1.

Note that M-matrices are monotone, i.e., Ax ≥ 0 implies that x ≥ 0 by [6, 2.5.3]. Inverse M-matrices, and thus

mimes, are not necessarily monotone and it is easy to produce counterexamples (e.g., by considering mimes

that are inverse M-matrices). However, the following generalization of monotonicity holds for mimes.

Proposition 3.13. Let A ∈ Mn (R) be a mime as in Definition 1.1 and x ∈ Rn. If Ax ≥ 0, then x ∈ (s2I − B2)R
n
+.

Proof. Let A be a mime as in Definition 1.1 and suppose

Ax = (s1I − B1)(s2I − B2)
−1x ≥ 0.

As (s1I − B1) is an M-matrix and thus monotone, we have that y = (s2I − B2)
−1x ≥ 0. That is, x = (s2I − B2)y

with y ≥ 0.

Next, we show that the converse of Proposition 3.13 is not true.

Example 3.14. Let B1 =

[

2 2

0 1

]

, B2 =

[

1 0

1 1

]

, s1 = 2 and s2 = 2. Then s2I − B2 is an invertible M-matrix.

Let A = (s1I − B1)(s2I − B2)
−1 =

[

−1 −2

2 2

]

. Then A is not a P-matrix and so by Proposition 3.4, A is not a

mime. We claim that

Ax ≥ 0 =⇒ x ∈ (s2I − B2)R
n
+ .

Let Ax ≥ 0. Then −x1 − 2x2 ≥ 0 and x1 + x2 ≥ 0. Adding, we get x2 ≤ 0. Also, x1 ≥ −x2 ≥ 0. Thus,

Ax ≥ 0 =⇒ x2 ≤ 0, x1 + x2 ≥ 0 and x1 ≥ 0. Now, set u =

[

x1
x1 + x2

]

≥ 0. Then

(s2I − B2)u =

[

1 0

−1 1

][

x1
x1 + x2

]

=

[

x1
x2

]

= x,

showing that x ∈ (s2I − B2)R
n
+, as was claimed.

Nevertheless, we have the following characterization.

Proposition 3.15. Let A ∈ Mn (R) and let s2I − B2 be invertible. Then

Ax ≥ 0 =⇒ x ∈ (s2I − B2)R
n
+ .
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if and only if A is invertible and (s2I − B2)
−1A−1 ≥ 0.

Proof. First, we show the forward implication. Let Ax = 0. Then x = (s2I − B2)u, u ≥ 0. We have A(−x) = 0.

So −x = (s2I − B2)v, v ≥ 0.

It follows by invertibility of s2I − B2 that u = −v and so u = 0. Thus x = 0, proving that A is invertible.

Next, let x ≥ 0 and y = (s2I − B2)
−1A−1x. Then A(s2I − B2)y = x ≥ 0 and so (s2I − B2)y ∈ (s2I − B2)R

n
+. By

the invertibility of s2I − B2, one has y ≥ 0. Since a matrix maps every x ≥ 0 into a nonnegative vector if and

only if it is itself nonnegative, we get (s2I − B2)
−1A−1 ≥ 0 as desired.

Conversely, suppose that Ax ≥ 0. Then 0 ≤ u = (s2I − B2)
−1A−1Ax = (s2I − B2)

−1x. So x = (s2I − B2)u ∈

(s2I − B2)R
n
+ .

Definition 3.16. The semipositive cone of a semipositive matrix A ∈ Mn (R) is defined as

K+(A) = {x ∈ Rn : x ≥ 0 and Ax ≥ 0}.

This set is studied in [16] and [18], where it is shown (see [16, Corollary 3.4]) that K+(A) is a proper polyhedral

cone of Rn. Also, when A is invertible,

AK+(A) = K+(A
−1).

The following holds for mimes.

Theorem 3.17. Let A = M1M
−1
2 ∈ Mn (R) be a mime, where M1 and M2 are invertible M-matrices. Then

K+(A) = M2K+(M1) ∩Rn
+ .

Proof. Let A = M1M
−1
2 and let x ∈ M2K+(M1) ∩ Rn

+. Note that M
−1
2 x ∈ K+(M1) and thus Ax = M1M

−1
2 x ≥ 0.

Also, since x ∈ Rn
+, we have x ≥ 0 and hence x ∈ K+(A). Thus, M2K+(M1) ∩Rn

+ ⊆ K+(A).

Now assume x ∈ K+(A). Thus, x ≥ 0 and Ax ≥ 0. Clearly, x ∈ Rn
+. Next notice M1M

−1
2 x ≥ 0. Further, since

M−1
2 ≥ 0, M−1

2 x ∈ K+(M1) and hence x ∈ M2K+(M1). Thus, we have shown that x ∈ M2K+(M1) ∩Rn
+ .

Next, we turn our attention to necessary or sufficient conditions for a matrix to be a mime, starting with

the Cayley transform. The following result fits into the investigations done in [4].

Theorem 3.18. Let A ∈ Mn (R) be a mime and let F = C(A) be the Cayley transform of A. Then I + F and I − F

are mimes.

Proof. Suppose that A ∈ Mn (R) is a mime. Notice that since A is a P-matrix by Proposition 3.4, −1 is not an

eigenvalue of A (see [8, Theorem 4.4.2]) and hence F = C(A) = (I + A)−1(I − A) exists. Next, notice that

I + F = I + (I + A)−1(I − A)

= (I + A)−1(I + A) + (I + A)−1(I − A)

= 2(I + A)−1

and

I − F = (I + A)−1(I + A) − (I + A)−1(I − A)

= 2(I + A)−1A

= 2(I + A−1)−1.

It follows from Corollary 3.2, and the fact that inverses of mimes are mimes, that I + F and I − F are mimes.

The following is a large class of mimes mentioned by Pang [13, p. 238] for which we give a different proof.

Theorem 3.19. Let A ∈ Mn (R) be a triangular P-matrix. Then A is a mime.
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Proof.We prove the claim by induction on the order n of A. If n = 1 the result is obviously true. Assume the

claim is true for n = k − 1; we will prove it for n = k. For this purpose, consider the triangular P-matrix

A =

[

A11 a

0 a22

]

,

where A11 is a (k − 1) × (k − 1) P-matrix, a ∈ Rk−1 and a22 > 0. By the inductive hypothesis and Theorem 3.1,

there exist Z-matrices X11, Y11 and nonnegative vector u1 ∈ Rk−1 such that A11X11 = Y11, Y11u1 > 0, and

X11u1 > 0. Consider then the Z-matrix

X =

[

X11 −X11u1
0 x22

]

,

where x22 > 0 is to be chosen. Then let

Y = AX =

[

A11X11 −Y11u1 + x22a

0 a22x22

]

.

Notice that x22 > 0 can be chosen so that Y is a Z-matrix. Let also uT = [uT1 u2]. Choosing u2 > 0 small

enough, we have that Xu > 0 and Yu > 0. Thus A is a mime by Theorem 3.1. The case of a lower triangular

matrix is similar.

Remark 3.20. In view of Proposition 3.4 and Theorem 3.19, it is natural towonder if every P-matrix is amime.

The answer is in the negative, as shown by the construction of a counterexample in Pang [13]; see Example

4.2.

Next is a remarkable method for constructing nonnegative mimes. A proof can be found in [12, Corollary 3]

and is attributed to Mangasarian [11] who used ideas from mathematical programming. We include here a

shorter proof that is based on standard M-matrix and P-matrix theory.

Proposition 3.21. Let B ≥ 0 with ρ(B) < 1. Let {ak}
m
k=1 be a sequence such that 0 ≤ ak+1 ≤ ak ≤ 1 for all

k = 1, . . . ,m − 1. Then

A = I +

m
∑

k=1

akB
k

is a mime. If m is infinite, under the additional assumption that
∑∞

k=1 ak is convergent, we can still conclude

that A is a mime.

Proof. Consider the matrix C = A(I − B) and notice that C can be written as

C = I − G, where G ≡ B −

m
∑

k=1

ak(B
k − Bk+1).

First we show that G is nonnegative: Indeed, as 0 ≤ ak+1 ≤ ak ≤ 1, we have

G ≥ B −

m
∑

k=1

akB
k +

m−1
∑

k=1

ak+1B
k+1 + amB

m+1

= B −

m
∑

k=1

akB
k +

m
∑

k=2

akB
k + amB

m+1

= B − a1B + amB
m+1 = (1 − a1)B + amB

m+1 ≥ 0.

Next we show that ρ(G) < 1. For this purpose, consider the function

g(z) = z −

m
∑

k=1

ak(z
k − zk+1)

= z(1 − a1) + z
2(a1 − a2) + . . . + z

m(am−1 − am) + amz
m+1,
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in which all the coefficients are by assumption nonnegative. Thus |g(z)| ≤ g(|z|). However, for |z| < 1, we have

g(|z|) = |z| −

m
∑

k=1

ak(|z|
k − |z|k+1) ≤ |z|.

That is, for all |z| < 1,

|g(z)| ≤ g(|z|) ≤ |z|.

We can now conclude that for every λ ∈ σ(B),

|g(λ)| ≤ |λ| ≤ ρ(B) < 1;

that is, ρ(G) < 1. We have thus shown that

A = (I − G)(I − B)−1,

where B, G ≥ 0 and ρ(B) < 1, ρ(G) < 1. Also, as B ≥ 0, we may consider its eigenvector u ≥ 0 corresponding

to ρ(B), as guaranteed by the Perron-Frobenius Theorem. By construction, u is also an eigenvector of G corre-

sponding to ρ(G), because σ(G) = {g(λ) : λ ∈ σ(G)}, as is well known [5, Theorem 1.1.6]. That is, there exists

a vector u ≥ 0 such that

Bu = ρ(B) u < u and Gu = ρ(G) u < u .

Thus A is a mime. It is clear how to adapt this proof to the case that m is infinite.

Proposition 3.22. Let B ≥ 0. Then etB is a mime for every t ∈ [0, 1/ρ(B)).

Proof. It follows from Proposition 3.21, taking m =∞ and ak =
1
k!
.

We conclude this section by a special case of mimes.

Proposition 3.23. Let A = (s1I − B) (s2I − B)
−1, where B ≥ 0 and s1, s2 > ρ(B). The following hold:

(a) If s1 = s2, then A = I is both an M-matrix and an inverse M-matrix.

(b) If s1 > s2, then A is an inverse M-matrix.

(c) If s1 < s2, then A is an M-matrix.

Proof. Observe that

A = (s1I − B)(s2I − B)
−1

= (s1I − s2I + s2I − B)(s2I − B)
−1

= (s1 − s2)(s2I − B)
−1 + I

(a) If s1 = s2, then A = I.

(b) Since (s2I − B)
−1 is an inverse M-matrix, which is preserved under positive scaling and positive diagonal

shift (see [6, pp. 119-120] or [8, Section 5.2]), we conclude that A is also an inverse M-matrix.

(c) Applying the same argument as in (b) to A−1, it follows that A−1 is an inverse M-matrix and hence A is an

M-matrix.

Remark 3.24. The original designation of a mime A as a ‘hidden Minkowski matrix’ is surely indicative of

the non-trivial effort required to detect them, namely, discover whether or not AX = Y for some invertible

M-matrices X and Y. In that respect, a finite procedure to recognize mimes is proposed in [13].

4 Counterexamples

In this section, we use counterexamples to examine certain features of mimes, as well as to disprove some

properties that hold for either M-matrices or inverse M-matrices, but not generally for mimes.
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It is evident in our analysis that the common semipositivity vector in the definition of a mime plays a

crucial role in establishing many of its properties. What if we remove that condition? First, the conclusion

that the product of an M-matrix and an inverse M-matrix is a P-matrix may fail, as shown in the following

example.

Example 4.1 (Necessity of a common semipositivity vector).

Let A = (s1I − B1) (s2I − B2)
−1, where B1 =

[

2 2

0 1

]

and B2 =

[

1 0

1 1

]

. Take s1 = 3 > 2 = ρ(B1) and s2 = 2 >

1 = ρ(B2). Clearly s1I−B1 and s2I−B2 donot have a commonsemipositivity vector. In this case,A =

[

−1 −2

2 2

]

is not a P-matrix.

Example 4.2 (Counterexample to every P-matrix being a mime).

In Pang [13, p. 239], the following matrix which is a P-matrix but not a mime is given.

M =







2 −1 2

−3 2 −2

−4 3 5







.

Example 4.3 (Counterexample to Hadamard-Fischer for mimes).

The Hadamard-Fischer inequalities hold for A ∈ Mn (R) if for every α ⊆ 〈n〉,

det(A) ≤ det(A[α]) det(A[α]).

M-matrices and inverseM-matrices satisfy these inequalities [6, Theorem 2.5.4 and Exercise 9, p. 127]. Let now

B1 =











1 2 1 1

1 0 1 0

1 0 0 1

1 0 0 0











, B2 =











1 0 1 1

1 1 1 0

1 0 0 1

1 0 1 0











and consider

A = (5I − B1) (3I − B2)
−1 =











1.5 −1 −0.125 0.125

2.25 2.5 1.6875 1.3125

1 0 2.25 0.75

1.5 0 1.375 2.625











.

Since ρ(B1) = 2.855 < 5 and ρ(B2) = 2.4142 < 3, and because for u = [ 1.01 1.01 1 1 ]T we have

(5I − B1) u =











0.02

3.04

2.99

3.99











> 0 and (3I − B2) u =











0.02

0.01

0.99

0.99











> 0,

we conclude that A is a mime. However, for α = {2, 3}, we have

det(A) − det(A[α]) det(A[α]) = 23.9375 − (5.625 × 3.75) > 0.

Thus the Hadamard-Fischer inequality does not generally hold for mimes.

Example 4.4 (Scalability to diagonally dominance).

Let A ∈ Mn (R) be an invertibleM-matrix. It is known that the columns of A can be scaled by positive numbers

so that the resulting matrix is row diagonally dominant; i.e., there exists diagonal matrix D with positive

diagonal entries such that AD is row diagonally dominant. As a consequence, we then have that its inverse

D−1A−1 = [cij] is an inverse M-matrix that is (strictly) diagonally dominant of its column entries, namely, |cii| >
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|cji| for all i = 1, 2, . . . , n and all j ≠ i; see [6, Definition 2.5.11 and Theorem 2.5.12]. In the following example

we display a mime A such that AD is not row diagonally dominant for any diagonal matrix D with positive

diagonal entries. Nevertheless, A−1 is strictly diagonally dominant of its column entries.

Let

B1 =











1 8 4 6

8 9 9 3

4 6 6 1

8 3 8 1











and B2 =











3 6 5 4

9 6 10 1

2 8 2 7

2 2 10 8











.

The spectral radii are aprroximately ρ(B1) = 21.75 and ρ(B2) = 21.37. Let s1 = 25 and s2 = 21.5 and u =

[ 5 6.8 5.44 5.9 ]T . It can be shown that (s1I−B1)u > 0 and (s2I−B2)u > 0. Thus A = (s1I−B1)(s2I−B2)
−1

is a mime. Using Matlab, we find that

A =











3.2493 2.7460 3.2780 2.4214

0.6437 1.8610 0.9705 0.6096

9.4889 13.4914 16.6768 12.3841

9.0804 13.0951 15.5598 13.5063











.

Note that A = [aij] satisfies aii <
∑

j= ̸i aij for all i ∈ {1, 2, 3, 4}. Thus there cannot exist a diagonal matrix D

with positive diagonal entries such thatAD is a rowdiagonally dominantmatrix. To see this, let F = AD = [fij],

where D = diag(d1, d2, d3, d4), dj > 0 for j = 1, 2, 3, 4. Let dm = min{d1, d2, d3, d4}. Then

|fmm| = fmm = dmamm <
∑

j≠m

dmamj ≤
∑

j≠m

djamj =
∑

j≠m

fmj =
∑

j≠m

|fmj|.

We also find that

A−1 =











0.7265 −0.0641 −0.1401 0.0011

−0.0687 0.9112 −0.0875 0.0514

−0.3083 −0.5303 0.5364 −0.4127

−0.0667 −0.2294 −0.4390 0.4989











,

which is strictly diagonally dominant of its column entries.

Example 4.5 (Counterexample to positive stability).

The eigenvalues of an M-matrix and its inverse lie in the open right-half of the complex plane; that is every

M-matrix and its inverse is a positive stablematrix. This is not true, in general, formimes. To see this, consider

B1 to be the adjacency matrix of the directed 5-cycle and B2 = BT
1 ; that is,

B1 =















0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0















Then ρ(B1) = ρ(B2) = 1. Let s1 = s2 = 1.1. Then e =
[

1 1 1 1 1
]T

serves as the common semipositivity

vector for (s1I − B1) and (s2I − B2). Thus A = (s1I − B1)(s2I − B2)
−1 is a mime. However, the eigenvalues of

A are approximately λ1 = 1, λ2 = 0.826 − 0.562i, λ3 = 0.826 + 0.562i, λ4 = −0.182 − 0.983i and λ5 =

−0.182 + 0.983i, so that λ4 and λ5 lie on the left half-plane. Hence this mime A is not positive stable.

Remark 4.6. Note that, in contrast to Example 4.5, every symmetric mime is indeed positive stable. This

follows from the facts that, by Theorem3.4, everymime is aP-matrix and that symmetric P-matrices are indeed

positive definite and hence positive stable [5, Theorem 7.2.1]. Another instance of a positive stable mime A is

when B1 = B2. Then, by Proposition 3.23, A is either an M-matrix or an inverse M-matrix and therefore A is

positive stable [6, Theorem 2.5.3].
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5 Generalizing Mimes By Allowing Singularity

To further our theoretical understanding of mimes, we initiate a generalization in which the M-matrix factors

in the definition of amime are not (necessarily) invertible.We delay the formal definition of “singularmimes"

until Definition 5.6 in order to introduce notation, notions and results that justify our considerations.

– For a singular matrix or even a rectangular matrix A ∈ Mm,n(R), there are many ways that a generalized

inverse for A has been defined in the literature. The Moore-Penrose inverse of A, is the unique solution

X ∈ Mn,m(R) that satisfies the equations AXA = A, XAX = X, (AX)T = AX and (XA)T = XA. However,

the most pertinent generalized inverse for our discussion is the group inverse. The group inverse of A ∈

Mn (R), if it exists, is the unique solution X to the matrix equations AXA = A, XAX = X and XA = AX.

When the group inverse exists, it is denoted by A#. A necessary and sufficient condition for A# to exist is

that rank(A2) = rank(A). This is equivalent to the statement N(A2) = N(A). For instance, if

A =

[

1 0

0 0

]

,

then A# exists and is equal to A, whereas if

A =

[

0 −1

0 0

]

,

then A# does not exist. By using, for instance, the core-nilpotent decomposition of a matrix, it can be

shown that the group inverse of a matrix is a polynomial in that matrix.

The following are useful facts. We refer the reader to [2] for proofs and more details.

– Let E be an idempotent matrix (i.e., E2 = E). Then E# exists and E# = E. In particular, if A is a square

matrix such that A# exists, and if B = AA#, then B is idempotent and so one has B# = B. One of the results

proved in [15], that will be useful later, is that every idempotent matrix E is a P#-matrix. For the sake of

completeness, let x ∈ R(E) so that x = Ey for some y ∈ Rn. Now Ex = E2y = Ey = x. Thus xi(Ex)i = x2i ≤ 0

for all i implies x = 0.

– The following hold: R(A) = R(AA#) = R(A#) and N(A) = N(A#A) = N(A#). Also, AA#x = x if and only if

x ∈ R(A).

Remark 5.1.

(a) Invertible matrices are not almost monotone. This is because a matrix is almost monotone if and only if

R(A) ∩Rn
+ = {0}. But for an invertible matrix R(A) ∩Rn

+ = Rn
+.

(b) Let A =

[

1 0

0 0

]

. Then A is a group invertible matrix that is not almost monotone. If A =

[

1 1

−1 −1

]

, then

A is an almost monotone matrix whose group inverse does not exist, since A2 = 0.

The following result will be needed subsequently.

Lemma 5.2. Let A ∈ Mn (R) be almost monotone. The following hold:
(a) If A# exists, then A# and AA# are almost monotone.

(b) If C ∈ Mn (R) is invertible and C−1 ≥ 0, then CA is almost monotone.

Proof. (a) Let A be almost monotone and let A#y ≥ 0. Then

0 ≤ A#y = A#AA#y = A(A#A#y).

By almost monotonicity of A, we then have AA#A#y = 0. Rearranging, one has A#y = A#AA#y = 0, proving

that A# is almost monotone. Furthermore, suppose that AA#x ≥ 0. If we set y = A#x, then Ay ≥ 0 and so

Ay = 0. Thus AA#x = 0, proving the almost monotonicity of AA#.



M-matrix and inverse M-matrix extensions | 199

(b) Let CAy ≥ 0. Then Ay ≥ 0, since C−1 ≥ 0. Since A is almost monotone, Ay = 0 and hence CAy = 0.

Next, we recall certain notions that are useful in understanding the properties that the group inverse of

a singular irreducible M-matrix possesses.

Theorem 5.3. ([1, Chapter 6, Theorem 4.16]) Let A ∈ Rn×n be a singular irreducible M-matrix. Then

(a) A has rank n − 1.

(b) There exists x > 0 such that Ax = 0.

(c) A has “property c."

(d) Each proper principal submatrix of A is a nonsingular M-matrix.

(e) A is almost monotone.

Theorem 5.4. ([14, Theorem 2]) Let A be a Z-matrix. Then the following statements are equivalent:

(a) A is an M-matrix with “property c".

(b) A# exists and A# is nonnegative on R(A).

Remark 5.5. Note that if A ∈ Mn (R) is a Z-matrix such that Au ≥ 0 for some u > 0, then A is an M-matrix

with “property c"; see [1, Exercise 4.14, Chapter 6].

To generalize mimes, we propose a representation

A = (sI − B1)(ρ(B2)I − B2)
#,

where B1 and B2 are nonnegative, in which we require the first factor sI − B1 be an M-matrix whose group

inverse is nonnegative on its range space. In view of Theorem 5.4, we must thus assume that sI − B1 is an M-

matrix with “property c." The second factor in a nonsingular mime is the inverse of an M-matrix and so it is a

nonnegative matrix. Motivated by this, we require that the second factor (ρ(B2)I − B2)
# above is nonnegative

on its range space. Now, if we also assume that B2 is irreducible, then by Theorem 5.3 and Theorem 5.4, it

follows that the group inverse (ρ(B2)I−B2)
# exists and is nonnegative on its range space. These considerations

culminate in the following formal definition.

Recall that according to [5], if A ∈ Mn (R) is a nonnegative irreducible matrix, then there exists a unique

vector x > 0 so that Ax = ρ(A)x and
∑n

i=1 xi = 1. Then ρ(A) is called the Perron root of A and x is its Perron

vector.

Definition 5.6 (A singular mime). Let B1 ≥ 0, B2 ≥ 0 with B2 irreducible. Let p be the Perron vector of B2.

Suppose that (sI − B1) p ≥ 0. Then A = (sI − B1)(ρ(B2)I − B2)
# is called a singular mime.

Furthermore, a singular mime will be referred to as type I if the first factor (sI − B1) is an invertible M-

matrix; otherwise it is a singular mime of type II.

A few more clarifying remarks on the above definition are in order.

Remark 5.7.

– The condition (sI −B1)p ≥ 0with p > 0 and B1 ≥ 0 implies that ρ(B1) ≤ s. Here is a sketch of proof: By the

Perron-Frobenius theorem, B1 and hence BT
1 has ρ(B1) as an eigenvalue and x ≥ 0 is the Perron vector

associated to BT
1 . Hence, 0 ≤ xT((sI − B1)p) = sxTp − xTB1p = sxTp − ρ(B1)x

Tp = (s − ρ(B1))x
Tp. Since

xTp > 0, the claim follows.

– If (sI−B1) p > 0, then sI−B1 is an invertible M-matrix. This is due to the fact that a semipositive Z-matrix

is an M-matrix.

– If (sI − B1) p ≥ 0, then (sI − B1) is an M-matrix with “property c"; see Remark 5.5.

– To reiterate, a singular mime of type II has a representation given by A = (ρ(B1)I − B1)(ρ(B2)I − B2)
#,

where B1, B2 are nonnegative and B2 is irreducible.
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Analogously to Proposition 3.13, we obtain below Proposition 5.9 for singular mimes; a preliminary result is

needed for its proof. Note that this lemma applies to any matrix X that satisfies the condition AXA = A and

the group inverse A# is one such matrix.

Lemma 5.8. [2] Let A ∈ Mn (R) be group invertible. If b ∈ Rn , then the linear equation Ax = b has a solution

if and only if AA#b = b. In such a case, the general solution is given by x = A#b + z for some z ∈ N(A).

Proposition 5.9. Let A ∈ Mn (R) be a singular mime of type I as in Definition 5.6. The following implication
holds:

Ax ≥ 0 =⇒ x ∈ (ρ(B2)I − B2)R
n
+ + α p for some α ∈ R.

Proof. We know A = (sI − B1)(ρ(B2)I − B2)
#. Let Ax ≥ 0. Set y = (ρ(B2)I − B2)

#x. Since (sI − B1)
−1 is an

inverse M-matrix, it is nonnegative and hence 0 ≤ (sI − B1)
−1Ax = y. We view this as a linear system with the

right hand side vector y and invoke Lemma 5.8, to find the general solution. The general solution is given by

x = ((ρ(B2)I − B2)
#)#y + N((ρ(B2)I − B2)

#). We make use of the fact that for any matrix X, for which X# exists,

one has (X#)# = X. Also, N(X#) = N(X). By hypothesis, B2 is irreducible and nonnegative; and therefore

N(ρ(B2)I − B2) = {u : (ρ(B2)I − B2)u = 0} = Rp. These remarks imply the claimed representation for x.

In the rest of the discussion, we set B1 = B2. We have the following characterization of a singular mime of

type II, motivated by Theorem 3.1.

Theorem 5.10. A ∈ Mn (R) is a singular mime of type II if and only if there exists a Z-matrix X ∈ Mn (R) such
that

(a) X is irreducible;

(b) AX = X and AXX# = A;

(c) there exists u > 0 such that Xu = 0.

Proof. Necessity: Let A = (ρ(B)I − B)(ρ(B)I − B)#, where B is irreducible. Define X = (ρ(B)I − B) so that

A = XX#. Thus, AX = XX#X = X. Clearly AXX# = (XX#)2 = XX# = A. Also since B is irreducible, so is X and

by Theorem 5.3, there exists u > 0 such that Xu = 0. Thus the conditions are necessary.

Sufficiency: Suppose that conditions (a)-(c) hold. Observe that due to condition (c) and in view of Remark

5.5, it follows that X is a singularM-matrix with “property c", so that X# exists. Wemaywrite X = rI−C, where

C ≥ 0 and r = ρ(C). Since X is irreducible, it follows that C is irreducible. As AX = X, one has XX# = AXX# = A,

showing that A is a singular mime of type II.

Theorem 5.11. Let A = (sI−B)(ρ(B)I−B)# be a singularmime as in Definition 5.6 (for the case B1 = B2 =: B ≥ 0

irreducible and s ≥ ρ(B)). Then:

(a) One has A# = (ρ(B)I − B)(sI − B)#. If A is a singular mime of type II, then A = A#.

(b) A has rank n − 1.

(c) If A is of type II, then A is idempotent and hence a P#-matrix.

(d) A and A# are almost monotone. If A is of type II then, A and A# are range monotone.

Proof. (a) Set X = (ρ(B)I − B)(sI − B)#. We show that X satisfies the three conditions for the group inverse of

A.

First, consider the case s = ρ(B). Then X = A = (ρ(B)I − B)(ρ(B)I − B)#, an idempotent matrix, as was noted

earlier. So, A# = A, in this case.

Next, we consider the case s > ρ(B). Here, one has (sI −B)# = (sI −B)−1 and so X = (ρ(B)I −B)(sI −B)−1. Thus,

XA = (ρ(B)I − B)(ρ(B)I − B)#,
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so that upon pre-multiplying by A, one has

AXA = (sI − B)(ρ(B)I − B)#(ρ(B)I − B)(ρ(B)I − B)#

= (sI − B)(ρ(B)I − B)#

= A.

Further, upon post-multiplying by X, the expression for XA, one has

XAX = (ρ(B)I − B)(ρ(B)I − B)#(ρ(B)I − B)(sI − B)−1

= (ρ(B)I − B)(sI − B)−1

= X.

Finally, using the fact that (ρ(B)I − B)# is a polynomial in B, one observes that the matrices (sI − B), (ρ(B)I −

B), (ρ(B)I − B)# and (sI − B)−1 mutually commute. Hence, one has

AX = (sI − B)(ρ(B)I − B)#(ρ(B)I − B)(sI − B)−1

= (ρ(B)I − B)(ρ(B)I − B)#

= XA.

This proves (a).

(b) By Theorem 5.3 we know that ρ(B)I − B has rank n − 1. As was noted earlier, this equals the rank of

(ρ(B)I − B)#, as well. If s > ρ(B), then sI − B is nonsingular and thus (sI − B)(ρ(B)I − B)# again has rank n − 1.

Thus, independent of its type, A has rank n − 1.

(c) If A is of type II, then A = (ρ(B)I − B)(ρ(B)I − B)#, which we know is idempotent. We had proved earlier

that any idempotent matrix is a P#-matrix.

(d) By Theorem 5.3 again, the almostmonotonicity of ρ(B)I−B follows. By item (a) of Lemma 5.2, then (ρ(B)I−

B)# and (ρ(B)I −B)(ρ(B)I −B)# are almost monotone. Also, if s > ρ(B), then (sI −B)−1 is a nonnegative matrix

and so by item (b) of Lemma 5.2, then (sI − B)(ρ(B)I − B)# is almost monotone. Thus, independent of its type,

A is almost monotone, and by (a) of Lemma 5.2 again, A# is almost monotone.

Next, assume A is of type II. Let x ∈ R(A) and Ax ≥ 0. Since x = Au for some u ∈ Rn, we have Ax = AAu =

Au = x by the idempotency of A proved in (c). So, x ≥ 0, showing that A is range monotone. Since A = A# as

shown in (a), we see that A# is also range monotone.

The following example illustrates the above theorem.

Example 5.12. Let B =







1 0 1

1 1 0

0 1 1







so that B is irreducible and ρ(B) = 2.

(a) Take s = 3 > 2 = ρ(B). Then

A = (sI − B)(ρ(B)I − B)# =
1

3







3 −2 −1

−1 3 −2

−2 −1 3







and

A# = (ρ(B)I − B)(sI − B)−1 =
1

7







3 −1 −2

−2 3 −1

−1 −2 3







.

If x = [x1 x2 x3]
T , then

Ax =
1

3
[(3x1 − 2x2 − x3) (−x1 + 3x2 − 2x3) (−2x1 − x2 + 3x3)]

T .
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Suppose that Ax ≥ 0. Then one has the following inequalities:

3x1 − 2x2 − x3 ≥ 0; −x1 + 3x2 − 2x3 ≥ 0; −2x1 − x2 + 3x3 ≥ 0.

Adding any two of the above inequalities, one obtains the other inequality reversed. Thus Ax = 0 and so A

is almost monotone. We have shown that R(A) ∩ Rn
+ = {0}, which also means that R(A#) ∩ Rn

+ = {0} (due to

R(A) = R(A#)), showing that A# is almost monotone, as well.

(b) Take s = ρ(B) = 2. In this case,

A = (ρ(B)I − B)(ρ(B)I − B)# =
1

3







2 −1 −1

−1 2 −1

−1 −1 2







.

Then A is an idempotent matrix and hence (as noted earlier in the beginning of this section) A = A#. Let

x = [x1 x2 x3]
T be such that Ax ≥ 0, i.e.,

1

3
[(2x1 − x2 − x3) (−x1 + 2x2 − x3) (−x1 − x2 + 2x3)]

T ≥ 0.

In an entirely similar manner, it follows that Ax = 0. Range monotonicity follows in a similar manner, too.

Let x ∈ R(A). Then x = [(−x2 − x3) x2 x3]
T and so

Ax = [(−x2 − x3) x2 x3]
T .

One has

x1(Ax)1 = (x2 + x3)
2; x2(Ax)2 = x22; x3(Ax)3 = x23.

If xi(Ax)i ≤ 0 for all i, then one must have x2 = x3 = 0 and hence x = 0. Thus A is a P#-matrix.

Remark 5.13. While we have indicated the importance of the assumption on the irreducibility of B, it is

interesting to observe what happens when this supposition is dropped: Consider B =







1 1 1

0 2 1

0 0 3







. Then B is

reducible and ρ(B) = 3. Take s = 4. We then have

A = (sI − B)(ρ(B)I − B)# =







3
2

1
2 −2

0 2 −2

0 0 0







and

A# = (ρ(B)I − B)(sI − B)−1 =
1

6







4 −1 −3

0 3 −3

0 0 0







.

We observe that A[1 0 0]T = [ 32 0 0]T , which however is a nonzero vector. Hence A is not almostmonotone.

By Lemma 5.2, A# cannot be almost monotone, otherwise A = (A#)# would be.

Let x = [1 16 0]T . Then one may verify that x = A[−2 8 0]T so that x ≥ 0 and x ∈ R(A). However,

x̃ = A#x = [−2 8 0]T � 0. So, x̃ ∈ R(A#) = R(A), Ax̃ = x ≥ 0, but x̃ � 0. Thus, A is not range monotone. In

this example A# is range monotone. This is because any vector x in R(A) = R(A#) is of the form x = [α β 0]T

for some α, β ∈ R. Thus A#x = 1
6 [4α − β 3β 0]T ≥ 0 gives β ≥ 0 and 4α ≥ β ≥ 0, so that x ≥ 0.

For the case when s = ρ(B), from the proof Theorem 5.11, we see that the irreducibility of B is used only to

show that A is almost monotone. So dropping the irreducibility of B does not affect the range monotonicity

of A or the fact that A is a P#-matrix. However, the above example with s = ρ(B) can be used to show that if
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B is not irreducible, then A need not be almost monotone.

A = (3I − B)(3I − B)# =







1 0 −1

0 1 −1

0 0 0







is not almost monotone because A[1 0 0]T = [1 0 0]T ≥ 0, which however is nonzero.

Remark 5.14. In item (c) of Theorem 5.11, we have shown that if A is a singular mime of type II, then A is a

P#-matrix. We believe that this should be that case for type I singular mimes, as well.
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