AKCE International Journal of Graphs and Combinatorics

m-Bonacci graceful labeling

Kalpana Mahalingam \& Helda Princy Rajendran

To cite this article: Kalpana Mahalingam \& Helda Princy Rajendran (2021) m-Bonacci graceful labeling, AKCE International Journal of Graphs and Combinatorics, 18:1, 7-15, DOI: 10.1080/09728600.2021.1876505

To link to this article: https://doi.org/10.1080/09728600.2021.1876505

© 2021 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 03 Feb 2021.

Submit your article to this journal ar

Article views: 238

View related articles

View Crossmark data \nearrow
(h) Check for updates

m-Bonacci graceful labeling

Kalpana Mahalingam and Helda Princy Rajendran
Department of Mathematics, Indian Institute of Technology, Chennai, India

Abstract

We introduce new labeling called m-bonacci graceful labeling. A graph G on n edges is m-bonacci graceful if the vertices can be labeled with distinct integers from the set $\left\{0,1,2, \ldots, Z_{n, m}\right\}$ such that the derived edge labels are the first $n \mathrm{~m}$-bonacci numbers. We show that complete graphs, complete bipartite graphs, gear graphs, triangular grid graphs, and wheel graphs are not m bonacci graceful. Almost all trees are m-bonacci graceful. We give m-bonacci graceful labeling to cycles, friendship graphs, polygonal snake graphs, and double polygonal snake graphs.

KEYWORDS

m-Bonacci number; graceful graph

1. Introduction

In 1964, Ringel conjectured that given a tree T with n vertices, the complete graph $K_{2 n+1}$ can be decomposed into $2 n+$ 1 edge-disjoint copies of T [12]. To address this problem, in 1966, Rosa introduced the concept of graceful labeling of graphs as β-valuations [13]. Rosa showed that Ringel's conjecture holds if all the trees are graceful. From this, the famous Ringel-Kotzig conjecture was formed. The conjecture states that all trees are graceful, which is still open. Several researchers ($[1,5]$, to name a few) have worked on this conjecture and have some partial results.

Golumb in [7], introduced the term graceful. A graceful labeling of a graph $G=(V, E)$ on n edges is defined as follows: G is said to be graceful if there exists a function f : $\{0,1,2, \ldots, n\} \rightarrow V$ such that the function $g: E \rightarrow\{1,2$, $\ldots, n\}$ defined by $g(e=u v)=|f(u)-f(v)|$ is a bijection. In 1985, Lo defined edge graceful labeling by assigning labels to the edges of the graph G on p vertices and n edges, from the set $\{1,2,3, \ldots, n\}$ such that the derived vertex labeling is a bijection from $V(G)$ to $\{0,1,2, \ldots, p-1\}$ [10]. Several researchers ($[4,14]$ to name a few) are working on in this edge graceful labeling.

In [9], Koh et al. defined a tree on $n+1$ vertices to be a Fibonacci tree if the vertices can be labeled with the first $n+1$ Fibonacci numbers so that the induced edge labeling should be the first n Fibonacci numbers, which were later called as Super-Fibonacci labeling (See [6] for more information). In [2], Bange et al. modified the definition of Koh et al. by relaxing the vertex labels to the set of distinct integers from $\left\{0,1,2, \ldots, F_{n}\right\}$, where F_{n} is the n-th Fibonacci number. A new group of graphs called Fibonacci graceful graphs was obtained from this definition. A graph on n edges is said to be Fibonacci graceful if there exists a vertex labeling with distinct elements from the set $\left\{0,1,2, \ldots, F_{n}\right\}$
such that the induced edge labels form a bijection on to the first n Fibonacci numbers. For all other types of graceful labeling, we refer the reader to [6].

In this paper, we extend the concept of Fibonacci graceful to m-bonacci graceful graphs by replacing the Fibonacci numbers with m-bonacci numbers.

The paper is arranged as follows. In Section 2, notations, definition of m-bonacci number and definition and example of m-bonacci graceful labeling are given. Some basic properties of m-bonacci graceful labeling is discussed in Section 3. In Section 4, we find some special graphs which are not m bonacci graceful. In Section 5, m-bonacci graceful labeling of some special classes of graphs are given. We end the paper with a few concluding remarks.

2. Preliminaries

We refer the reader to [3] for basic concepts and definitions of graphs. By $G(p, n)$, we denote a simple graph on p vertices and n edges. In this paper, we use the following definition for an m-bonacci number. The m-bonacci sequence $\left\{Z_{n, m}\right\}_{n \geq-(m-2)}$ is defined by

$$
Z_{i, m}=0, \quad-(m-2) \leq i \leq 0, Z_{1, m}=1
$$

and for $n \geq 2$,

$$
Z_{n, m}=\sum_{i=n-m}^{n-1} Z_{i, m}
$$

Each $Z_{i, m}$ is called an m-bonacci number. For example, when $m=5$, the sequence is

$$
\left\{Z_{n, 5}\right\}_{n=-3}^{\infty}=\{0,0,0,0,1,1,2,4,8,16,31 \ldots\}
$$

In [2], Bange et al. defined a new labeling called Fibonacci graceful labeling. We generalize the definition to
any m. We define a new labeling called m-bonacci graceful labeling as follows:

Definition 1. Let $G(p . n)$ be a graph on p vertices and n edges. $G(p, n)$ is called m -bonacci graceful if there exists a labeling l of its vertices with distinct integers from the set $\left\{0,1,2, \ldots, Z_{n, m}\right\}$ which induces an edge labeling l^{\prime} defined by $l^{\prime}(u v)=|l(u)-l(v)|$, is a bijection onto the set $\left\{Z_{1, m}\right.$, $\left.Z_{2, m}, \ldots, Z_{n, m}\right\}$.

When $m=2$, the above labeling is the Fibonacci graceful labeling. For $m=3$, Figure 1 shows a 3-bonacci graceful labeling of C_{6}.

Note that, not all graphs are m-bonacci graceful. Also, if a graph G is m-bonacci graceful for some m, then it does not necessarily imply that G is m-bonacci graceful for all m. For example, consider the graph C_{6}. It was shown in [2], that C_{6} is Fibonacci graceful and one can see from Figure 1 that C_{6} is also 3-bonacci graceful. However, C_{6} is not 4 bonacci graceful. Infact we show that (see Theorem 3) C_{6} is m-bonacci graceful for all $m \geq 2$ and $m \neq 4$. We also give a labeling of the Butterfly graph (see Figure 4) such that it is Fibonacci graceful. But one can verify (see Proposition 1)

Figure 1. C_{6} with tribonacci graceful labeling.

Figure 2. m-bonacci graceful labeling for $m \geq 3$.
that Butterfly graph is not m-bonacci graceful for all $m \geq 3$. We also give an example of a tree (Figure 2) which is m bonacci graceful for any $m \geq 3$, whereas it is not Fibonacci graceful. The famous" Ringel-Kotzig conjecture" states that all trees are graceful. But, the conjecture does not hold for m-bonacci graceful labeling. Some trees are m-bonacci graceful for some m, whereas some trees are not m-bonacci graceful for any m. In Figure 3, one can see that T_{1} is 3bonacci graceful, whereas T_{2} is not m-bonacci graceful for any m. In fact, we show that (Proposition 2) $K_{1, n}, n \geq 3$, is not m-bonacci graceful for any m. If a graph G is not graceful, it is not necessarily true that G is not m-bonacci graceful for any m. For example, Figure 4 shows that the butterfly graph is Fibonacci graceful. But in [13], Rosa showed that any Eulerian graph with edge count congruent to 1 or $2(\bmod 4)$ is not graceful. Thus, both the butterfly graph as well as C_{6}, are not graceful. We see that the butterfly graph is Fibonacci graceful (see Figure 4) but not m-bonacci graceful for all $m \geq 3$ (see Proposition 1) and C_{6} is m-bonacci graceful for all $m \geq 2$ and $m \neq 4$ (see Proposition 1). Hence, we conclude the following.

Observation 1. The following are true.

- There exists a graph that is Fibonacci graceful but not mbonacci graceful for all $m \geq 3$
- There exists a graph that is m-bonacci graceful for all m ≥ 3 but not Fibonacci graceful
- There exists a graph that is graceful but not m-bonacci graceful for any $m \geq 2$
- There exists a graph that is m-bonacci graceful for all $m \geq 5$ but not graceful.

3. Properties of \boldsymbol{m}-bonacci graceful graphs

In this section, we study some basic properties of m-bonacci graceful graphs. From the definition, it is clear that, for a graph to be m-bonacci graceful, one of its edges must have the label $Z_{n, m}$, which is only possible when 0 and $Z_{n, m}$ are the labels for its incident vertices. Moreover, any vertex adjacent to the vertex labeled with 0 must have an m bonacci number as its label. We first recall some well known properties of m-bonacci numbers $[8,11]$.

Figure 4. Fibonacci graceful labeling of Butterfly graph.

(a)

(b)

Figure 3. (a) T_{1}, (b) T_{2}.

Lemma 1. For $m \geq 2$, we have the following.

1. $2 Z_{k, m} \geq Z_{k+1, m}$ for all $k \geq 1$.
2. If the sum of m-bonacci numbers equals another m bonacci number, then those $m+1$ numbers must be consecutive.
3. The first $2 m+1$ terms of the m-bonacci sequence are $Z_{i, m}=0, \quad-(m-2) \leq i \leq 0, Z_{1, m}=Z_{2, m}=1, Z_{j, m}=$ $2^{j-2}, 3 \leq j \leq m+1, Z_{m+2, m}=2^{m}-1$.

Based on the observations in Lemma 1, we deduce the following.

Corollary 1. For $m \geq 2$, such that $0<n<m+1$ and $t>0$, the following is true.

$$
\sum_{i=t+1}^{t+n} \delta_{i} Z_{i, m} \neq 0, \delta_{i}= \pm 1
$$

Proof. Let $0<n<m+1$ and $t>0$. Then, we have

$$
\begin{aligned}
Z_{t+n, m} & =\sum_{i=t+n-m}^{t+n-1} Z_{i, m} \\
& >\sum_{i=t+1}^{t+n-1} Z_{i, m}(\text { since } t>0, n<m+1)
\end{aligned}
$$

Hence, the result.
We first observe that similar to Fibonacci graceful graphs [2] the labeling of an m-bonacci graceful graph need not be unique, i.e., the graph can have several distinct labeling.
Observation 2. Let $G(p, n)$ be an m-bonacci graceful graph for some $m \geq 2$, with vertex labels from the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then, replacing each vertex labels a_{i} with $Z_{n, m}-a_{i}$ also gives an m-bonacci graceful labeling.

It was also observed in [2] that the cycle structure of Fibonacci graceful graphs is dependent on Fibonacci identities. We observe here that the result is also true for any $m \geq 3$.

Lemma 2. Let $G(p, n)$ be an m-bonacci graceful graph and let C be a cycle of length k in $G(p, n)$. Then there exists a sequence $\left\{\delta_{i}\right\}_{i=1}^{k}$ with $\delta_{i}= \pm 1$ for all $i=1,2, \ldots, k$ such that

$$
\sum_{i=1}^{k} \delta_{i} Z_{j_{i}, m}=0
$$

where $\left\{Z_{j_{i}, m}\right\}_{i=1}^{k}$ are the derived m-bonacci numbers for the edges of C.

The following corollary is a direct observation from the above Lemma and the fact (See Lemma 1) that if the sum of any $m m$-bonacci numbers is another m-bonacci number, then these numbers must be consecutive. The corollary gives an edge labeling for cycles of a particular length.

Corollary 2. Let G be an m-bonacci graceful graph such that G has a cycle C of length $k m-(k-2), 1 \leq k \leq 3$. Then, the edges of C must be labeled with m-bonacci numbers $Z_{j, m}$ for $i \leq j \leq i+k m, \quad$ and $\quad j \neq i+t m \quad$ for $\quad 1 \leq t \leq k-1 \quad$ for some $i \geq 1$.

Thus, from Lemma 2 and Corollary 2, we observe the following, which provides a condition for the edge labels for any cycle in an m-bonacci graceful graph.

Corollary 3. Let $G(p, n)$ be an m-bonacci graceful graph and C be a cycle in $G(p, n)$. If $Z_{k, m}$ is the largest m-bonacci number appearing as an edge label of C, then $Z_{k-1, m}, Z_{k-2, m}, \ldots$, $Z_{k-(m-1), m}$ should also appear as edge labels on C.

The following result gives conditions on the number of edges in any Eulerian m-bonacci graceful graph.

Theorem 1. Let $G(p, n)$ be an Eulerian m-bonacci graceful graph. Then,

$$
n \equiv 0,2,3, \ldots, \quad m-1 \text { or } m(\bmod (m+1))
$$

Proof. Let G be an Eulerian m-bonacci graceful graph. Then, G can be decomposed into edge-disjoint cycles. From Lemma 2 , it is clear that the sum of all the edge labels around any cycle is even and hence, $Z_{1, m}+Z_{2, m}+\cdots+Z_{n, m}$ is even. But by Lemma $1, Z_{1, m}+Z_{2, m}+\cdots+Z_{n, m}$ is odd only when $n \equiv$ $1(\bmod m+1)$ for $m \geq 2$. Hence, the result.

The following result gives a partial information about the cycles of any m-bonacci graceful graph.

Proposition 1. Any m-bonacci graceful graph can have at most one cycle of length less than or equal to m. From this, we get that, for $m \geq 3$, the only maximal outerplanar m bonacci graceful graph is C_{3}.

Proof. Let G be an m-bonacci graceful graph and let C be a cycle of G of length n such that $n \leq m$. Let the vertices of C be m-bonacci gracefully labeled with labels from the set $\{0\} \cup\left\{Z_{i, m}: 2 \leq i \leq n\right\} \quad$ (since $n \leq m$, by Lemma 1 , $\left.Z_{i+1, m}-Z_{i, m}=Z_{i-1, m}, 1 \leq i \leq n\right)$. Suppose there exists another cycle C^{\prime} of length $t \leq m$ in G whose vertices are labeled such that $Z_{k, m}$ with $k>n$ is the largest edge label of C^{\prime}. Now, by Corollary $3, Z_{k-1, m}, Z_{k-2, m}, \ldots, Z_{k-(m-1), m}$ are also edge labels of C^{\prime}. Since $t \leq m, Z_{k, m}, Z_{k-1, m}$, $Z_{k-2, m}, \ldots, Z_{k-(m-1), m}$ are the only edge labels and the length of C^{\prime} is m. By Lemma 2, there exists a sequence $\left\{\delta_{i}\right\}$ with $\delta_{i}= \pm 1$ such that,

$$
\begin{equation*}
\sum_{i=1}^{m} \delta_{i} Z_{k-(i-1), m}=0 \tag{1}
\end{equation*}
$$

Note that, the labels are m consecutive m-bonacci numbers. By Corollary 1, Equation (1) does not hold true. Thus, an m bonacci graceful graceful graph can have a maximum of only one cycle of length less than or equal to m. Hence, the result.

4. Forbidden graphs

In this section, we discuss some special graphs that are not m-bonacci graceful. We start this section with the tree graph. Except K_{1} and K_{2}, any tree with the number of edges at most three cannot be m-bonacci gracefully labeled, as there does not exist enough integers between 0 and $Z_{n, m}$ to label $n+1$ vertices.

In [2], Bange et al. proved that any graph which has a 3edge connected subgraph is not Fibonacci graceful. One can observe that the result also holds when $m \geq 3$. We omit the proof as it is similar to the proof given by Bange et al.

Theorem 2. If G has a 3-edge connected subgraph, then G is not m-bonacci graceful for $m \geq 2$.

The above result cannot be improved further as cycles are 2 -edge connected, and most of them are m-bonacci graceful. The following corollary is a direct observation from Theorem 2.

Corollary 4. The following graphs are not m-bonacci graceful for $m \geq 2$.

- Complete graph $K_{n}, n \geq 4$
- The wheel graph $W_{n}, n \geq 3$
- The Generalized Petersen graph
- The Fence graph
- The Circular ladder graph

We now discuss the case for complete bipartite graphs. One can easily verify that both $K_{1,1}$ and $K_{2,2}$ are m-bonacci graceful for all $m \geq 3$. $K_{1,1}$ is Fibonacci graceful but $K_{2,2}$ is not Fibonacci graceful. In the following result we show that complete bipartite graphs $K_{t, n}$ except for $K_{1,1}$ and $K_{2,2}$ are not m-bonacci graceful for $m \geq 2$.

Proposition 2. Complete bipartite graphs, except for $K_{1,1}$ and $K_{2,2}$, are not m-bonacci graceful for $m \geq 2$.

Proof. Let $t, n \geq 3$. Then, $K_{t, n}$ is 3 -edge connected. By Theorem 2, $K_{t, n}$ is not m-bonacci graceful for $m \geq 2$.
$K_{1, n}, n \geq 2$ is not m-bonacci graceful. At most either $Z_{1, m}$ or $Z_{2, m}$ will appear as one of the edge labels (Note that, $Z_{1, m}=Z_{2, m}=1$).

Now, the only case left is $K_{2, n}, n \geq 3$. Let u, v be the two vertices that are adjacent to other n vertices. Let $l(u)$ $=0$. Then, all the n vertices should be labeled with m bonacci numbers. Since $n \geq 3$, it is impossible to give a label to v distinct from other $n+1$ vertices such that the graph is m-bonacci graceful. The proof is similar if a vertex from the other partite set with n vertices gets 0 as vertex label.

The following result shows that gear graphs are not m bonacci graceful. Gear graph is obtained by replacing each edge in the perimeter of the wheel graph W_{n} by a path of length 2 . We denote gear graphs by G_{n}. G_{n} has $2 n+1$ vertices. G_{4} is shown in Figure 5. G_{3} is Fibonacci graceful but not m-bonacci graceful $\forall m \geq 3$.
Proposition 3. Gear graphs $G_{t}, t \geq 4$ are not m-bonacci graceful for all $m \geq 2$.

Proof. Let G_{t} be a gear graph. Suppose G_{t} is m-bonacci graceful for some $m \geq 2$ and $t \geq 4$. Recall that, a gear graph is a subdivision of wheel graph. Let v be the single universal vertex of G_{t}. Let u_{1} and u_{2} be the end vertices of the edge with $Z_{n, m}$ as edge label. Note that at least one of the vertices

Figure 5. Gear graph G_{4}.
u_{1} and u_{2} is of degree greater than 2 . Now, we have two different cases.

- Case 1: If either u_{1} or u_{2} is v, then we get three edge disjoint paths from u_{1} to u_{2}. So we get a cycle which does not contain the edge with edge label $Z_{n-1, m}$. This is a contradiction to Corollary 3.
- Case 2: If both $u_{1}, u_{2} \neq v$, then $l(v) \neq 0$. We have the following two subcases:
$m \geq 3$: Let u_{1} be the vertex of degree 3 . Let u_{3} be the vertex of degree 3 such that u_{2} is adjacent to u_{3} and u_{3} is adjacent to v. Now we have two cycles: $v u_{1} u_{2} u_{3} v$ and the outer perimeter cycle from u_{2} to u_{2}. Note that, these two cycles have only two edges in common i.e., $u_{1} u_{2}$ and $u_{2} u_{3}$. Also, the edge label of $u_{1} u_{2}$ is $Z_{n, m}$ and we get a cycle which does not contain either the edge with $Z_{n-1, m}$ as edge label or the edge with $Z_{n-2, m}$ as edge label. Thus for $m \geq 3$, in either case, it is a contradiction to Corollary 3.
- $m=2$: Without loss of generality, let v and u_{1} are adjacent. Let u_{3} be the vertex adjacent to u_{2} and v. Let f_{k} denote the k-th Fibonacci number. Consider the cycle C : $v u_{3} u_{2} u_{1} v$. Since f_{n} is an edge label of C, by Corollary 3, f_{n-1} must be an edge label of one of the edges of C. Now, by Lemma 2, we get that f_{n-3} and f_{n-4} are the remaining edge labels (otherwise it will give contradiction to Lemma 2). If the edge label of $v u_{3}$ is f_{n-1}, then by Corollary 3 and Lemma 2, the cycle of length four different from the cycle C, which has $v u_{3}$ as one of its edge, must have $f_{n-2}, f_{n-4}, f_{n-5}$ as edge labels. This is not possible (since f_{n-4} is one of the edge labels of the cycle $C: v u_{3} u_{2} u_{1} v$). The same contradiction arises for f_{n-1} to be the edge label of $v u_{1}$. So, f_{n-1} is the edge label of $u_{2} u_{3}$. Without loss of generality, let $l^{\prime}\left(v u_{1}\right)=f_{n-3}$ and $l^{\prime}\left(v u_{3}\right)=f_{n-4}$, where l^{\prime} is the derived edge labeling. Now consider the cycles C_{1} and C_{2} which have $v u_{1}$ and $v u_{3}$ as one of its edges, respectively. Clearly, C_{1} and C_{2} does not share any edge (since we consider only $G_{t}, t \geq 4$). To satisfy Lemma 2 and Corollary 3, the only possible remaining edge labels of C_{1} are $f_{n-2}, f_{n-5}, f_{n-6}$. This implies that, the largest edge label in C_{2} is f_{n-4}. By Corollary 3, f_{n-5} should be an edge label of one of the edges of C_{2}, which is not possible.

Thus, $G_{t}, t \geq 4$, is not m-bonacci graceful for all $m \geq 2$.

4.1. Triangular grid graph

Triangular grid graph is a graph with vertex set $V=$ $\{(i, j, k): i+j+k=n, i, j, k \geq 0\} \quad$ and two vertices $\left(i_{1}, j_{1}, k_{1}\right)$ and $\left(i_{2}, j_{2}, k_{2}\right)$ are adjacent if and only if $\left|i_{1}-i_{2}\right|+$ $\left|j_{1}-j_{2}\right|+\left|k_{1}-k_{2}\right|=n$. We denote such graphs by $T G_{n}$. The graph $T G_{n}$ has $\frac{(n+1)(n+2)}{2}$ vertices and $\frac{3 n(n+1)}{2}$ edges. Note that, when $n=0, T G_{n}$ is K_{1} and when $n=1, T G_{n}$ is K_{3}. The graph $T G_{3}$ is given in Figure 6. In the following result, we show that $T G_{n}, n \geq 2$, is not m-bonacci graceful $\forall m \geq 2$.

Proposition 4. The triangular grid graph $T G_{n}$ is not mbonacci graceful for all $m \geq 2, n \geq 2$.

Proof. Let $m \geq 3$. Then, by Proposition $1, T G_{n}, n \geq 2$, is not m-bonacci graceful. Let $m=2$ and $N=\frac{3 n(n+1)}{2}$ denote the number of edges in $T G_{n}$. Let f_{k} denote the k-th Fibonacci number. To the contrary, assume that there exists an n such that $T G_{n}$ is Fibonacci graceful. Then, f_{N} is an edge label of some edge $u v$ in $T G_{n}$. At most one vertex of u and v can have degree 2 . Now, we have two cases.

- Case 1: If $\operatorname{deg}(u), \operatorname{deg}(v) \neq 2$, then the edge $u v$ lies in two different cycles. But, at most one of the two cycles can have f_{N-1} as one of its edge labels. This is a contradiction to Corollary 3.
- Case 2: If $\operatorname{deg}(u)=2$, then let w be another vertex which is adjacent to both u and v in $T G_{n}$. By Lemma 2 and Corollary $3, f_{N-1}$ and f_{N-2} are the other two edge labels of the cycle $u v w u$. If f_{N-1} is the edge label of $v w$, then another triangle which has $v w$ as one of its edge labels can not have f_{N-2} as one of its edge labels, which is a contradiction to Corollary 3. Hence, the edge label of $u w$ and $v w$ is f_{N-1} and f_{N-2} respectively. Now, consider the triangle $v w t v, t$ is another vertex of $T G_{n}$ adjacent to v and w. Now, by Lemma 2 and Corollary 3, the edge labels are f_{N-3} and f_{N-4}. Without loss of generality, let f_{N-3} be the edge label of the edge $v t$. Now, the triangle different from $v t w v$ and $u v w u$ which has $v t$ as one of its edge can not have f_{N-4} as one of its edge labels, which is a contradiction to Corollary 3.

Hence, the result.

5. m-Bonacci graceful graphs

In this section, we discuss some special graphs which are m bonacci graceful. We start the section with cycles. We begin by answering for what values of n and m, C_{n} is m-bonacci graceful. The following theorem gives a characterization for all cycles C_{n} that are m-bonacci graceful. In [2], Bange et al found the values of n for which C_{n} is Fibonacci graceful. The following theorem is the generalization of the result to any m.

Theorem 3. Let $m \geq 2$. The cycle C_{n} with n vertices is m bonacci graceful if and only if $n \equiv 0,2,3, \quad \ldots, m-1$ or $m(\bmod (m+1))$.

Figure 6. Triangular grid graph $T G_{3}$.
Proof. Consider a cycle C_{n} of length n. Let $n \equiv 0,2,3$, ..., $m-1$ or $m(\bmod (m+1))$. Then, $n=k(m+1)+t$ for some $t \in\{0,2,3, \ldots, m\}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of C_{n}. We give a labeling for C_{n} as follows:

$$
l\left(v_{j}\right)= \begin{cases}0 & j=1 \tag{2}\\ Z_{n, m} & j=2 \\ l\left(v_{j-1}\right)-Z_{n-(j-2), m} & 3 \leq j \leq m+1\end{cases}
$$

For $1 \leq i \leq k$,
$l\left(v_{i(m+1)+j}\right)= \begin{cases}l\left(v_{i(m+1)}\right)+Z_{n-i(m+1), m} & j=1 \\ l\left(v_{i(m+1)+1}\right)-Z_{n-(i(m+1)-1), m} & j=2 \\ l\left(v_{i(m+1)+(j-1)}\right)-Z_{n-(i(m+1)+(j-2)), m} & 3 \leq j \leq m+1\end{cases}$

Here $l\left(v_{2}\right)=Z_{n, m}>l\left(v_{3}\right)>\cdots>l\left(v_{m+1}\right)=l\left(v_{m}\right)-Z_{n-(m-1), m}=$ $Z_{n-(m-2), m}>0$. Again $l\left(v_{m+2}\right)=Z_{n-(m-2), m}+Z_{n-(m+1), m}>$ $l\left(v_{m+3}\right)>\ldots>l\left(v_{2(m+2)}\right)>0$. Here $l\left(v_{m+1}\right)<l\left(v_{m+2}\right)$ and $l\left(v_{m+3}\right)=Z_{n-(m-2), m}+Z_{n-(m+1), m}-Z_{n-m, m}<Z_{n-(m-2), m}=$ $l\left(v_{m+1}\right)$. Hence, all the labels are distinct and positive integers. Proceeding in the same way, we get that all the labels are distinct. The difference of each adjacent vertex label is distinct m-bonacci numbers (clear from the construction of labels). Hence, C_{n} is m-bonacci graceful.

Conversely, suppose C_{n} is m-bonacci graceful for some m. One can easily observe that by Theorem $1, C_{n}$ is not m bonacci graceful if $n \equiv 1(\bmod (m+1))$. From Equations (2) and (3), C_{n} is graceful for $n \equiv 0,2,3, \ldots, m-1$ or $m(\bmod (m+1))$. Hence, the result.

The following corollary gives the vertex label of particular vertices of C_{n}.

Corollary 5. Let $C_{n}: v_{1} v_{2} v_{3} \ldots v_{n} v_{1}$ be an m-bonacci graceful cycle for some $m \geq 2$, and labeled as given in Theorem 3. Then, $l\left(v_{i(m+1)}\right)$ is an m-bonacci number for all $i \geq 1$.

Proof. We prove this result by induction on i. By Theorem 3 , we have the following:

$$
\begin{aligned}
l\left(v_{m+1}\right) & =Z_{n, m}-Z_{n-(m-1), m}-Z_{n-(m-2), m}-\cdots-Z_{n-1, m} \\
& =Z_{n-m, m}
\end{aligned}
$$

Therefore, the result is true for $i=1$. Assume that $l\left(v_{i(m+1)}\right)$ is an m-bonacci number. Let $l\left(v_{i(m+1)}\right)=Z_{s, m}$ for some s. By construction, it is easy to verify that $s=n-(i(m+1)-$ 1). By Theorem 3, we have,

Figure 7. 4-bonacci graceful labelling of a caterpillar.

Figure 8. m-bonacci graceful labelling of trees with 4 edges, $m \geq 3$.

$$
\begin{align*}
l\left(v_{(i+1)(m+1)}\right)= & l\left(v_{i(m+1)}\right)+Z_{n-i(m+1), m}-Z_{n-(i(m+1)-1), m} \\
& -Z_{n-(i(m+1)+1), m} \\
& -Z_{n-(i(m+1)+2), m}-\cdots-Z_{n-(i(m+1)+m-1)), m} \\
= & l\left(v_{i(m+1)}\right)+Z_{n-(i(m+1)+m), m}-Z_{n-(i(m+1)-1), m} \\
= & Z_{n-(i(m+1)+m), m} \tag{4}
\end{align*}
$$

From Equation (4), $l\left(v_{(i+1)(m+1)}\right)$ is an m-bonacci number. By induction, the result is true for all i.

The next simple special class of graph is the tree. For any m, we can give graceful labeling to K_{1} and K_{2}. For $n=4$ and $m \geq 3$, the only tree which cannot be m-bonacci gracefully labeled is $K_{1,4} . K_{1, n}$ is not m-bonacci graceful for any $m \geq 2$ (refer Proposition 2). For $m \geq 3$, except $K_{1,4}$ all trees with five edges are m-bonacci graceful.

The following theorem provides m-bonacci graceful labeling for any tree with edges more than 5 . We omit the proof as it is similar to the proof given by Bange et al. Few examples are shown in the Figures 7-9.

Theorem 4. All trees T_{n} with $n \geq 6$, where n denotes the number of edges, except for $K_{1, n}$, are m-bonacci graceful for all $m \geq 2$.

5.1. Friendship graph

The Friendship graph $F r_{n}^{t}$ is obtained by joining n copies of C_{t} with a common vertex. An example of Fr_{8}^{4} is given in Figure 10. By Proposition 1, $F r_{n}^{t}, n>1, t \leq m$, is not m bonacci graceful for all $m \geq 2$. In the following result, we find values of t such that the Friendship graph $F r_{n}^{t}$ is m bonacci graceful for all $m \geq 2$.
Theorem 5. Let $m \geq 2$. The friendship graph $\mathrm{Fr}_{n}^{k(m+1)}$ is m bonacci graceful for all $k \geq 1$
Proof. Let v be the common vertex with vertex label 0 . We denote by $A_{1}, A_{2}, \ldots, A_{n}$ the distinct cycles in $\operatorname{Fr}_{n}^{k(m+1)}$. Let the vertices of each $A_{i}, 1 \leq i \leq n$, be $v, v_{2}^{i}, v_{3}^{i}, \ldots, v_{k(m+1)}^{i}$ in that order. We label the vertices of cycle A_{i} in a similar way
as given in Theorem 3 with the starting label $l\left(v_{2}^{i}\right)=$ $Z_{(n-(i-1)) k(m+1), m}$. By Corollary 5, $l\left(v_{k(m+1)}^{i}\right)$ is an m-bonacci number. The derived edge labels of A_{i} are: $Z_{(n-(i-1)) k(m+1), m}$, $Z_{(n-(i-1)) k(m+1)-1, m}, \ldots, Z_{(n-(i-1)) k(m+1)-m, m}$. Thus, the vertex labels and edge labels are distinct and hence the result.

3-bonacci graceful labeling of $F r_{8}^{4}$ is shown in the Figure 10.

Another variant of Friendship graph denoted by $\bar{F} r_{n}^{k}$ is obtained by joining n copies of F_{k} with a common vertex, where F_{k} is a fan on $k+1$ vertices. When $k=2, \bar{F} r_{n}^{k}$ is nothing but Fr_{n}^{3} which is Fibonacci graceful. Thus, we take $k>2$. Note that, by Proposition 1, the fan graph F_{k} for $k>2$ and $\bar{F} r_{n}^{k}$ are not m-bonacci graceful for all $m \geq 3$. The following result gives a Fibonacci graceful labeling of $\bar{F} r_{n}^{k}$ for $k \geq 2$.
Theorem 6. The friendship graph $\bar{F} r_{n}^{k}$ is Fibonacci graceful for all $n \geq 1$ and $k \geq 2$.

Proof. Let v be the common vertex and let $A_{1}, A_{2}, \ldots, A_{n}$ denote the n copies of the fan graph F_{k} respectively. Let the vertices of A_{i} be $u_{i 1}, u_{i 2}, \ldots, u_{i k}$ such that $u_{i j}$ is adjacent with vertex v for all $1 \leq j \leq k$ and $u_{i j}$ is adjacent with vertex $u_{i(j+1)}$ for all $1 \leq j \leq k-1$. Label the vertex v as 0 .

For $1 \leq j \leq k$, we label the vertices of A_{i} as follows:

$$
l\left(u_{i j}\right)= \begin{cases}f_{2(i-1) k-i+2 j} & : i \text { odd } \\ f_{2(i-1) k-i+2(j-1)} & : i \text { even }\end{cases}
$$

Clearly, the vertex labels and edge labels are distinct. Thus, $\bar{F} r_{n}^{k}$ is Fibonacci graceful.

A Fibonacci graceful labeling of $\bar{F} r_{4}^{5}$ is given in Figure 11.

5.2. Polygonal snake graph

A polygonal snake graph is obtained from a path P_{t} by replacing each edge of P_{t} by C_{n} i.e., for each edge in the path P_{t} a cycle of length n is adjoined. It is denoted by $P S_{t, n}$ where t denotes the number of vertices of the path and n denotes the number of edges of the cycle C_{n}. Hence, $P S_{t, n}$ has $t(n-1)-(n-2)$ vertices and $n(t-1)$ edges. An example is shown in Figure 12.

Theorem 7. The Polygonal snake graph $P S_{t, m+1}$ is m-bonacci graceful for all $t \geq 1$ and $m \geq 2$.

Proof. Let $P S_{t, m+1}$ denote the polygonal snake graph with tm $-(m-1)$ vertices and $N=(m+1)(t-1)$ edges and let $A_{1}, A_{2}, \ldots, A_{t-1}$ be the cycles of $P S_{t, m+1}$ in that order. Denote the vertices of A_{i} by $u_{i 1}, u_{i 2}, \ldots, u_{i(m+1)}$ for all $1 \leq i \leq t-1$. Note that, $u_{i(m+1)}=u_{(i+1) 1}$ for all $1 \leq i \leq t-2$. We label the vertices of A_{1} as follows:

$$
\begin{aligned}
& l\left(u_{11}\right)=0, \quad l\left(u_{12}\right)=Z_{N, m} \\
& l\left(u_{1 j}\right)=l\left(u_{1(j-1)}\right)-Z_{N-(j-2), m}, 3 \leq j \leq m+1
\end{aligned}
$$

Here, $l\left(u_{12}\right)>l\left(u_{13}\right)>\ldots>l\left(u_{1(m+1)}\right)$. Thus, the vertex labels of A_{1} are all distinct. Now, we have the following:

Figure 9. 5-bonacci graceful labeling of a non-caterpillar.

Figure 10. Tribonacci graceful labeling of Fr_{8}^{4}.

$$
\begin{align*}
l\left(u_{1(m+1)}\right) & =l\left(u_{1 m}\right)-Z_{N-(m-1), m} \\
& =Z_{N, m}-\sum_{i=N-(m-1)}^{N-1} Z_{i, m} \tag{5}\\
& =Z_{N-m, m}
\end{align*}
$$

Thus, the derived edge labels are $Z_{N, m}, Z_{N-1, m}, \ldots, Z_{N-m, m}$. We have $u_{i 1}=u_{(i-1)(m+1)}, 2 \leq i \leq t-1$. We now label the vertices of $A_{i}, 2 \leq i \leq t-1$ inductively as follows:

$$
\begin{aligned}
l\left(u_{i 2}\right) & =l\left(u_{i 1}\right)-Z_{N-(i-1) m-1, m} \\
l\left(u_{i j}\right) & =l\left(u_{i(j-1)}\right)+Z_{N-(i-1) m-(j-1), m}, \quad 3 \leq j \leq m+1
\end{aligned}
$$

Clearly, for a given $A_{i}, 2 \leq i \leq t-1$,

$$
\begin{equation*}
l\left(u_{i(m+1)}\right)>l\left(u_{i m}\right)>l\left(u_{i(m-1)}\right)>\cdots>l\left(u_{i 2}\right) \tag{6}
\end{equation*}
$$

and for $2 \leq j \leq m+1$, we have the following:

$$
\begin{align*}
l\left(u_{i j}\right) & =l\left(u_{i(j-1)}\right)+Z_{N-(i-1) m-(j-1), m} \tag{7}\\
& =l\left(u_{i 1}\right)-Z_{N-(i-1) m-1, m}+M_{1}
\end{align*}
$$

where,

Figure 11. Fibonacci graceful labeling of $\bar{F} r_{4}^{5}$.

Figure 12. 4-bonacci graceful labeling of $P S_{4,5}$.

$$
M_{1}=\sum_{a=N-(i-1) m-(j-1)}^{N-(i-1) m-2} Z_{a, m}
$$

Since M_{1} adds at most $m-1$ consecutive m-bonacci numbers, from Equation (7), we have

$$
l\left(u_{i j}\right)<l\left(u_{i 1}\right), 2 \leq j \leq m+1
$$

Thus, all vertices of the polygon A_{i} for $2 \leq i \leq t-1$, have distinct labels. We now show that for any two A_{p} and A_{q}, $2 \leq p, q \leq t-1$, such that $p \neq q$ the vertex labels of A_{p} and A_{q} are all distinct. We first prove the following claim.

Claim: For $i \geq 2$, we have $l\left(u_{i(m+1)}\right)>l\left(u_{(i+1)(m+1)}\right)$ and $l\left(u_{(i+1) 2}\right)>l\left(u_{i m}\right)$

From Equation (7), we get that $l\left(u_{i 1}\right)>l\left(u_{i(m+1)}\right) \forall i \geq 2$. Since $u_{i(m+1)}=u_{(i+1) 1}$, we have $l\left(u_{i(m+1)}\right)>l\left(u_{(i+1)(m+1)}\right)$. The only thing left to prove is $l\left(u_{(i+1) 2}\right)>l\left(u_{i m}\right)$. We have that,

$$
\begin{align*}
l\left(u_{(i+1) 2}\right)= & l\left(u_{(i+1) 1}\right)-Z_{N-i m-1, m}\left(\text { vertex labeling of } A_{i+1}\right) \\
= & l\left(u_{i(m+1)}\right)-Z_{N-i m-1, m}\left(\text { since } u_{i(m+1)}=u_{(i+1) 2}\right) \\
= & l\left(u_{i 1}\right)-Z_{N-(i-1) m-1, m} \\
& +\sum_{a=N-i m}^{N-(i-1) m-2} Z_{a, m}-Z_{N-i m-1, m} \text { (From Eq. 7) } \tag{8}
\end{align*}
$$

Also we have,

$$
\begin{equation*}
l\left(u_{i m}\right)=l\left(u_{i 1}\right)-Z_{N-(i-1) m-1, m}+\sum_{a=N-(i-1) m-(m-1)}^{N-(i-1) m-2} Z_{a, m} \tag{9}
\end{equation*}
$$

From Equations (8) and (9), we get $l\left(u_{(i+1) 2}\right)-l\left(u_{i m}\right)=$ $Z_{N-i m, m}-Z_{N-i m-1, m}>0$ since $N-i m>2$. Hence, $l\left(u_{(i+1) 2}\right)>l\left(u_{i m}\right)$ and the claim holds.

By claim and Equation (6), it is clear that the vertex labels of $A_{2}, A_{3}, \ldots, A_{t-1}$ are all distinct. We now show that the vertex labels of A_{1} and A_{i} for $2 \leq i \leq t-1$ are distinct. In A_{1} we have,

$$
\begin{equation*}
l\left(u_{12}\right)>l\left(u_{13}\right)>\cdots>l\left(u_{1(m+1)}\right)=l\left(u_{21}\right) \tag{10}
\end{equation*}
$$

We have from Equation (6), $l\left(u_{21}\right)>l\left(u_{2 j}\right), 2 \leq j \leq m+1$. Hence, by the above claim and Equation (10), the vertex labels of $P S_{t, m+1}$ are all distinct from each other. By

Figure 13. $D\left(P S_{4,3}\right)$.
calculation, we get that $l\left(u_{i(m+1)}\right)-l\left(u_{i 1}\right)=Z_{N-i(m+1), m}$. By construction, other edge labels are distinct m-bonacci numbers. Hence, $P S_{t, m+1}$ is m-bonacci graceful.

A 4-bonacci labeling of $P S_{4,5}$ is given in Figure 12.

5.3. Double polygonal snake graph

The double polygonal snake graph denoted by $D\left(P S_{t, n}\right)$ is obtained from the path with edges $e_{1}, e_{2}, \ldots e_{t-1}$ by adjoining two different cycles of length n to each e_{i} as the common edge for all $1 \leq i \leq t-1$.

Note that, $D\left(P S_{t, n}\right)$ has $(t-1)(2 n-3)+1$ vertices and $(t-1)(2 n-1)$ edges. An example of such a graph is given in Figure 13.

Theorem 8. The double polygonal snake graph $D\left(P S_{t, m+1}\right)$ is m-bonacci graceful for all $m \geq 2$.

Proof. The graph $D\left(P S_{t, m+1}\right)$ has $(t-1)(2 m-1)+1$ vertices and $N=(t-1)(2 m+1)$ edges. Let A_{i} and B_{i} denote the two different cycles associated with edge e_{i} of the path $P_{t}, 1 \leq i \leq t-1$. Let $u_{i j}$ and $w_{i j}$ denote the vertices of cycles A_{i} and B_{i} respectively, $1 \leq j \leq m+1$. For each i such that $1 \leq i \leq t-1$, we have $u_{i 1}=w_{i 1}, u_{i(m+1)}=w_{i(m+1)}$. We label the vertices of A_{1} as follows:

$$
\begin{align*}
l\left(u_{11}\right) & =0, \quad l\left(u_{12}\right)=Z_{N, m} \tag{11}\\
l\left(u_{1 j}\right) & =l\left(u_{1(j-1)}\right)-Z_{N-(j-2), m}, \quad 3 \leq j \leq m+1
\end{align*}
$$

Clearly the vertex labels are distinct as $l\left(u_{12}\right)>l\left(u_{13}\right)>$ $\cdots>l\left(u_{1 m}\right)>l\left(u_{1(m+1)}\right)$. Also, we have the following:

$$
\begin{align*}
l\left(u_{1(m+1)}\right) & =l\left(u_{1 m)}\right)-Z_{N-(m-1), m} \\
& =Z_{N, m}-\sum_{i=N-(m-1)}^{N-1} Z_{i, m} \tag{12}\\
& =Z_{N-m, m}
\end{align*}
$$

From Equations (11) and (12), the derived edge labels of the edges of A_{1} are $Z_{N, m}, Z_{N-1, m}, \ldots, Z_{N-m, m}$. We now label the vertices of B_{1} as follows:

$$
\begin{align*}
l\left(w_{1 m}\right) & =l\left(u_{1(m+1)}\right)-Z_{N-m-1, m} \\
l\left(w_{1 j}\right) & =l\left(w_{1(j+1)}\right)-Z_{N-2 m+(j-1), m}, \quad 2 \leq j \leq m-1 \tag{13}
\end{align*}
$$

Figure 14. 3-bonacci labeling of $D\left(P S_{4,4}\right)$.

We have, $l\left(u_{1(m+1)}\right)>l\left(w_{1 m}\right)>l\left(w_{1(m-1)}\right)>\cdots>l\left(w_{12}\right)>$ $l\left(w_{11}\right)=l\left(u_{11}\right)$. Hence, the label of vertices of A_{1} and B_{1} are distinct. By the definition of $l\left(w_{12}\right)$, we have the following:

$$
\begin{align*}
l\left(w_{12}\right) & =l\left(w_{13}\right)-Z_{N-2 m+1, m} \\
& =Z_{N-m, m}-\sum_{i=N-2 m+1}^{N-m-1} Z_{i, m} \tag{14}\\
& =Z_{N-2 m, m}
\end{align*}
$$

From Equations (13) and (14), the derived edge labels of B_{2} are $Z_{N-m, m}, Z_{N-m-1, m}, \ldots, Z_{N-2 m, m}$, where $Z_{N-m, m}$ is the edge label of the edge $e_{1}=u_{11} u_{1(m+1)}$.

We now label the vertices of A_{i} and $B_{i}, i \geq 2$ as follows:

$$
\begin{align*}
l\left(u_{i 2}\right) & =l\left(u_{i 1}\right)-Z_{N-(i-1)(2 m+1), m} \\
l\left(u_{i j}\right) & =l\left(u_{i(j-2)}\right)+Z_{N-(i-1)(2 m+1)-(j-2), m}, 3 \leq j \leq m+1 \\
l\left(w_{i m}\right) & =l\left(u_{i(m+1)}\right)+Z_{N-(i-1)(2 m+1)-(m+(m-2)), m} \\
l\left(w_{i j}\right) & =l\left(u_{i(j+1)}\right)+Z_{N-(i-1)(2 m+1)-(m+(j-1)), m}, 3 \leq j \leq m \tag{15}
\end{align*}
$$

From Equation (15), we have, $l\left(u_{i 2}\right)<l\left(u_{i 3}\right)<\cdots<$ $l\left(u_{i m}\right)<l\left(u_{i(m+1)}\right)<l\left(w_{i m}\right)<l\left(w_{i(m-1)}\right)<\cdots<l\left(w_{i 2}\right)$. The edge label of $u_{i 1} u_{i(m+1)}$ is

$$
\begin{align*}
l\left(u_{i 1}\right)-l\left(u_{i(m+1)}\right)= & l\left(u_{(i-1) m}\right)+Z_{N-(i-2)(2 m+1)-(m-1), m} \\
& -\left[l\left(u_{i m}\right)+Z_{N-(i-1)(2 m+1)-(m-1), m}\right] \\
= & Z_{N-m-(i-1)(2 m+1), m} \tag{16}
\end{align*}
$$

Similarly, we get that $l\left(u_{i 1}\right)-l\left(w_{i 2}\right)=Z_{N-2 m-(i-1)(2 m+1), m}$. Thus, the derived edge labels are distinct m-bonacci numbers. The proof that the vertex labels are distinct is as same as that of Theorem 7. Hence, the result.

A 3-bonacci graceful labeling of $D\left(P S_{4,4}\right)$ is given in Figure 14.

6. Conclusion

We defined new graceful labeling called m-bonacci graceful labeling and gave labeling for some special class of graphs. We also found some particular classes of graphs that are not
m-bonacci graceful. It will be interesting to look into the m bonacci graceful labeling of $G * H$, where G and H may or may not be m-bonacci graceful and ${ }^{*}$ is a graph operation.

Funding

The second author wishes to acknowledge the fellowship received from Department of Science and Technology under INSPIRE fellowship (IF170077).

References

[1] Aldred, R. E. L, McKay, B. D. (1998). Graceful and harmonious labellings of trees. Bull. Inst. Comb. Appl. 23: 69-72.
[2] Bange, D. W, Barkauskas, A. E. (1983). Fibonacci graceful graphs. Fib. Quat 21(3): 174-188.
[3] Bondy, J. A, Murty, U. S. R. (2008). Graph Theory. New York: Springer.
[4] Daoud, S. N. (2017). Edge odd graceful labeling of some path and cycle related graphs. AKCE Int. J. Graphs Combin 14(2): 178-203.
[5] Fang, W. A computational approach to the graceful tree conjecture. arXiv:1003.3045v1[cs.DM].
[6] Gallian, J. A. (2018). A dynamic survey of graph labeling. Electron. J. Combin. 21:1-553.
[7] Golomb, S. W. (1972). How to number a graph. In: Read, R. C., ed. Graph Theory and Computing. Cambridge, MA: Academic Press, pp. 23-37.
[8] Kappraff, J. (2002). Beyond Measure: A Guided Tour through Nature, Myth and Number. Chapter 21. Singapore: World Scientific.
[9] Koh, K. M., Lee, P. Y, Tan, T. (1978). Fibonacci trees. SEA Bull. Math. 2(1): 45-47.
[10] Lo, S. P. (1985). On edge-graceful labelings of graphs. Congr. Num. 50: 231-241.
[11] Mahalingam, K, Rajendran, H. P. (2019). On m-bonacci-sum graph. Lecture Notes in Computer Science. CALDAM, pp. 65-76.
[12] Ringel, G. (1964). Problem 25. Theory of graphs and its applications. Proc. Symposium Smolenice, 1963. Prague, 162.
[13] Rosa, A. (1966). On certain valuations of the vertices of a graph. In Theory of Graphs. International Symposium Rome, pp. 349-355.
[14] Wang, T. M, Zhang, G. H. (2018). On edge-graceful labeling and deficiency for regular graphs. AKCE Int. J. Graphs Combin. 15(1): 105-111.

