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ABSTRACT
Combustion noise has been traditionally thought of as stochastic fluctuations present in the
background of the dynamics in combustors amongst the flow, heat release and the chamber
acoustics. Through a series of determinism tests, we show that these aperiodic fluctuations are in
fact chaotic of moderately high dimensions (d0 ≅ 8–10). These chaotic fluctuations then
transition to high amplitude combustion instability when the operating conditions are varied
towards leaner equivalence ratios. Precursors to such a transition from chaos to dynamics
dominated by periodic oscillations are of interest to designers and operators of combustors in
estimating the boundaries of operability. We introduce a test for chaos, known as 0–1 test for
chaos in the literature, as a measure of the proximity of the combustor to an impending
instability. The measure is robust and shows a smooth transition for variation in flow conditions
towards instability enabling thresholds to be set for operational boundaries.

NOMENCLATURE
Re – flow Reynolds number
φ – equivalence ratio
m· – mass flow rate
D1 – characteristic dimension for the computations of Reynolds number
D0 – diameter of the burner
p(t) – unsteady pressure measurement
µ – dynamic viscosity
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T – dominant time period during combustion instability
τopt – optimum time delay for embedding
I – average mutual information
pi – point in phase space at time instant ti
d – embedding dimension
d0 – optimum embedding dimension
n(i, d) – index of the nearest neighbor
a(i, d), E(d), E1(d) – measures used to compute optimum embedding dimension
E*(d), E2(d) – measures used to check for determinism in Cao’s method
N – length of the time signal
H – translation horizon
Vl – resultant of vectors through a hypercube
nj – number of vectors in the hypercube of index j
Λ – a measure of determinism
cd0

– a constant involved in the computation of Λ
qc, rc – translation variables
Γ – gamma function
c – a random variable
Mc – mean square displacement
ncut – threshold value in the computation of Mc
Dc – modified mean square displacement
ξ – vector of time steps
∆ – vector of mean square displacements
Kc – correlation of ξ and ∆
K – median of Kc

1. INTRODUCTION
A large class of systems exists for which transition to instability is associated with the
generation of well-defined oscillatory behaviour from a background of seemingly noisy
signals. More often than not, such oscillations are unwanted and lead to a decreased
performance and reduced lifetime of such systems.

The occurrence of such instabilities in combustors remains a challenging problem to
the industry as they may be driven by a variety of flow and combustion processes which
are usually coupled with one or more of the acoustic modes of the combustor [1]. Since
only a small fraction of the available energy from combustion is sufficient to drive such
instabilities and the corresponding attenuation in the combustion chambers is weak,
large amplitude pressure oscillations are easily established in these systems resulting in
performance losses, reduced operational range and structural degradation due to
increased heat transfer [2, 3]. There is hence a need for reliable and robust warning
signals that presage impending combustion instability.

The methodologies available in the literature to prevent large-amplitude oscillations
in combustors mostly focus on suppression of an incipient instability, i.e., an instability
that has already begun. The operational parameters are modified based on a feedback
signal acquired from the combustor, in order to suppress the incipient instability. At
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other times, modifications are made at the design stage based on operational experience
as a passive control strategy. Poinsot et al. [4] proposed a technique for the active
monitoring of combustion instability through modulations of the pressure in the fuel
line to suppress instabilities. This requires external actuators and/or modification of
combustor configuration and knowledge of frequency response for an arbitrary input
which limits its applicability to fielded systems. Further, the detection and control
strategy requires the system to reach instability before control can take over. Hence, it
would be more desirable to look for early warning signals to an impending instability –
through active monitoring – so that instability is avoided in combustors altogether.

Hobson et al. [5] analyzed combustor stability in terms of the bandwidth of
combustor casing vibration and dynamic pressure measurements in combustion
chambers. They observed that bandwidth which is indicative of the damping decreases
towards zero as the combustors approach their stability limits. However, the presence
of noise in the combustion chamber could make the technique untenable in practice as
it relies on a frequency domain analysis. Johnson et al. [6] presented a technique to
determine the stability margin using exhaust flow and fuel injection rate modulation.
The technique is again limited in its scope as its applicability to practical combustors is
restricted by the need for acoustic drivers and pulsed fuel injectors.

Lieuwen [7] used the autocorrelation of the acquired signal to characterize the
damping of the system and tracked the stability margin as the operating parameter value
at which the damping goes to zero. This method again has the disadvantage that the
dynamics of the system prior to onset cannot adequately be described using linear data
processing techniques. The method, for instance, may not be effective for combustors
exhibiting pulsed instabilities or a noise-induced transition to instability. Also, the
presence of multiple frequencies often seen in the frequency spectrum at the onset
makes the estimation of damping unclear.

The current solution adopted by combustion designers is thus to incorporate
sufficient stability margin into the design to prevent instabilities from occurring even in
the worst possible scenario. Setting such conservative estimates on operational regimes
leads to increased levels of NOx emissions making it more difficult to meet the
demanding emission norms. It is desirable to have measures that predict the instability
well before it happens because after the onset it may often be too late to take adequate
control action to save the combustor from wear and tear or fatigue failure. There is thus
a need for precursors to an impending instability so that appropriate stability margins
may be devised to prevent the combustors from entering a regime of instability. Also,
in order that these early warning signals are sensitive to operating conditions, such as
ambient temperature or fuel composition, online stability monitoring seems like the
optimal solution as a prevention methodology.

There are studies where precursors to nonlinear instabilities are identified by forcing
the system with broadband noise [8, 9]. When the operating conditions are sufficiently
close to the onset, the noise gets selectively amplified at the instability frequencies. The
width of the peak corresponding to the dominant frequency in the spectrum is then used
as an indicator of the proximity of the system to instability [8]. Further, it has also been
shown that there is a reduction in the width of the hysteresis zone for triggered
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instabilities when the noise levels are increased [9]. However, as noted earlier, an
analysis in the frequency domain is often insufficient and external stochastic forcing
can modify the dynamics of the system itself resulting in detrimental noise-induced
transitions [10].

Traditionally, unsteady measurements acquired from combustors are treated as
signals modulated by random noise perturbations. The irregular low amplitude pressure
fluctuations and flow turbulence are often treated as stochastic background to the
dynamics and are either averaged out or neglected [11–16]. Linear stability of the
system is then estimated from the averaged equations. Despite the progresses made in
the understanding of combustion instabilities, considerable difficulties still exist in the
prediction of the boundaries of stable operation, i.e., the stability margins [17]. This
difficulty could be a consequence of the traditional ‘signal plus noise’ paradigm
assumed in the analysis of such oscillations. Hence, it behooves researchers in the field
to estimate the levels of determinism in the measurements made at operating conditions
classified as combustion noise in the literature.

A good understanding of how the dynamics of the combustors transition from low
amplitude, combustion amplified, turbulence noise to high amplitude, periodic
instabilities is required in order that appropriate precursors are found that presage the
onset of instabilities. Through a systematic variation of operating conditions in a bluff-
body and backward-facing step combustors, Chakravarthy et al. [18, 19] identified that
a ‘lock-on’ mechanism between the vortex shedding and duct acoustics was responsible
for the transition from stable to unstable operation. Whereas the non- lock-on regime is
characterized by low-amplitude broadband noise generation, the onset of lock-on is
characterized by the excitation of high-amplitude, tonal oscillations. In another
experimental study where the equivalence ratio was varied [20], the transition of the
dynamics was reported to vary from stochastic fluctuations to periodic oscillations
through low dimensional chaotic oscillations.

The principal aim of the current study is to understand whether the measured signals
during regimes of combustion noise shows signs of determinism. The presence of
determinism allows for measures to be defined that can predict the onset of combustion
instability. Techniques from nonlinear time series analysis have already been applied to
predict lean blowout in gas turbines [21]. In a similar vein, the present study tries to
identify precursors to impending combustion instability, through active monitoring,
allowing for quick and efficient prevention of oscillations and thereby extend the
boundaries of operability of combustors.

2. EXPERIMENTAL CONFIGURATION
The determinism in combustion noise data was assessed on the unsteady pressure
signals acquired from two combustors – a swirl-stabilized backward facing step
combustor and a bluff-body stabilized backward facing step combustor – operating at
high Reynolds numbers. The schematic of the setups is shown in Fig. 1. It comprises a
plenum chamber, a shaft of diameter 10 mm housed in a burner of 40 mm diameter that
supports the vane swirler or bluff-body and a combustion chamber of length 300 mm
with two extension ducts of lengths 300 mm and 100 mm. The swirler, has 8 blades at
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an angle of 45° with a swirl number of 0.7, and a center-body for flame stabilization
which was placed so that it grazes the edge of the burner. For experiments using the
bluff-body, a circular disk of diameter 47 mm and thickness 10 mm was used. The bluff-
body was placed at a distance of 50 mm from the backward facing step using a traverse
of least count 1 mm. The burner was provided with a flashback arrestor which was a
circular disk of thickness 2 mm with 300 holes of diameter 1.7 mm located 30 mm
downstream of the fuel-injection location. The combustion chamber has a square
geometry of cross-section 90 × 90 mm2 which provided a sudden expansion from the
burner exit. The fuel-air mixture was ignited using a spark plug with a step-up
transformer which was mounted in the dump plane. Fuel was delivered using the central
shaft through four radial injection holes of diameter 1.7 mm.
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Figure 1: The combustors used in the current study. (a) A swirl-stabilized backward
facing step combustor. (b) A bluff-body stabilized backward facing step
combustor. The fuel (LPG) is injected through four radial holes in 
the central shaft. The fuel injection location was 100 mm upstream from
the swirler and 160 mm upstream from the bluff-body. The length of the
combustion chamber is 700 mm with three extension ducts of lengths 
300 mm, 300 mm and 100 mm respectively. The location of the bluff-
body is 50 mm from the rearward-facing step. The design of combustor
was adapted from [23].



To control the flow rates of air and fuel, mass flow controllers (Alicat Scientific,
MCR Series) with digital logging and monitoring capabilities were used with an
uncertainty of ± (0.8% of reading + 0.2% of full scale). Unsteady pressure
measurements were made using a piezoelectric transducer (sensitivity 72.5 mV/kPa,
resolution 0.48 Pa and uncertainty of ± 0.64%) mounted on specially made pressure
ports flush-mounted on the combustor walls and placed 90 mm from the rearward
facing step. To ensure near-adiabatic boundary conditions, wall cooling was not
provided and the operation of the combustor was restricted to short durations. A Teflon
adapter was used to protect the transducer from excess heating and the mount was
designed to ensure integrity in the measured signals. A 16-bit A-D conversion card (NI-
643) with an input voltage range of ± 5 V and a resolution of ± 0.15 mV was used to
acquire the signals from the transducers.

The ambient temperature was measured to be (27±1)0C using a dry bulb
thermometer and the relative humidity was measured to be (85±1)% on a hygrometer
for all the experiments. The fuel used was LPG (60% C4H10 and 40% C3H8). The flow
Reynolds number was calculated using the formula Re = 4m·D1/πµD2

0, where m· is the
mass flow rate of the fuel-air mixture, D1 is the characteristic dimension (diameter of
the swirler/bluff-body), µ is the dynamic viscosity of the fuel-air at the experiment
conditions and D0 is burner diameter. Viscosity corrections were made for Reynolds
number calculations for changes in the fuel-air ratio, using the formula of viscosity for
binary mixtures given in [22].

The decay rates of the combustion chamber were measured multiple times for both
the combustors prior to the experiments to ensure that the ambient conditions and the
acoustic damping of the system did not change between the experiments. To obtain
these decay rates, the combustors were forced with a loudspeaker placed at the exit at
the cold natural acoustic fundamental frequency (133 Hz for the swirl-stabilized
combustor and 135 Hz for the bluff-body stabilized combustor). Then the exponential
fall-off of the signal was measured when the forcing was switched off. The decay rate
was then obtained as the slope of a semi-log plot of the amplitude decay with time.
These decay rates had an average value of –37s–1 with a variation of less than 3%
including the configuration change from swirler to bluff-body.

Unsteady pressure measurements were made in a sequential manner for increases in
flow Reynolds numbers from stable combustion to combustion instability. The time
series was acquired at 10 kHz for a duration of 3s.

3. PHASE SPACE RECONSTRUCTION
The amount of experimental data available at the disposal of an experimental researcher
is often just a few variables and in extreme cases just one. Recent developments in the
field of nonlinear time series analysis [24] can provide valuable insights into the system
dynamics which can then yield a better understanding of the underlying mechanisms of
transitions useful in eventual modelling. The application of nonlinear time series analysis
to signals acquired from thermoacoustic systems has been demonstrated by [25].
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3.1. Methodology
The dynamics of a combustor at different operating conditions can be visualized by
reconstructing the mathematical phase space of evolution of the time series data of
unsteady pressure measurements acquired at those conditions. In such a reconstructed
phase space [26], limit cycle oscillations would correspond to a closed loop around a
fixed point. Such a reconstruction, also known as delay-embedding, entails converting
the measured time series into a set of delay vectors each of which has a one-to-one
correspondence with one of the dynamic variables involved in the combustor dynamics.
That is, we construct the vectors [p(t), p(t + τ), p(t + 2τ),..., p(t + d – 1)τ] from the
measured pressure data p(t) such that these vectors in combination provide us with
maximum information on the combustor dynamics. The elements of these vectors are
the coordinates in the d-dimensional phase space of evolution of the time signal. For
instance, pi(d)= [p(ti), p(ti+τ), p(ti+2τ),..., p(ti+d–1)τ] is the point in the d-dimensional
phase space at time instant ti. To accomplish an appropriate reconstruction, we need to
obtain the optimum time lag (τopt) amongst the delay vectors and the least embedding
dimension (d) for the phase space composed of these delay vectors such that the
dynamics is faithfully captured.

The optimum delay τopt may be estimated as that value of τ for which the average
mutual information [24] between the delay vectors reaches its first minimum. The
average mutual information of a signal p(t) is given by the expression:

(1)

where, P(S) represents the probability of the event S
To compute the average mutual information for various time lags τ, we first

normalize the time signal p(t) to lie between 0 and 1 and then sort the data in bins. The
probability distributions p(t) and p(t + τ) are then obtained by normalizing the
histograms on these bins. Similarly, the joint probability distribution P(p(t), p(t + τ)) is
obtained by normalizing a two dimensional histogram obtained on a two dimensional
bin in p(t) and p(t + τ).

Average mutual information, which is a function of the time distance between the
data points of a time series, is an indicator of the amount of information shared by two
sets of data. The location of the minimum would, therefore, correspond to a set of
vectors that would provide more information about the system than either of them in
isolation.

To obtain a suitable dimension d in which the attractor dynamics unfold, we use the
technique developed by Cao [27]. This is an optimized version of the False Nearest
Neighbors method [24] wherein one tracks the number of false neighbours to each point
in the phase space as the embedding dimension is progressively increased. A false
neighbour to a point in phase space is one that moves away from it once the embedding
dimension is increased. Mathematically, once the optimum time lag has been obtained,
we can construct a measure a(i, d) of the form:
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(2)

where i = 1, 2,..., (N–dτ) and n(i, d) is the index of the nearest neighbouring point in
phase space to the point pi. ||...|| represents the Euclidean distance between two points.
The dependency on the index i is removed by taking the average a(i, d) obtained at
different values of i as:

(3)

Here, E(d) is a function only of the dimension d and the optimum time lag τopt. The
variation of E(d) on increasing the dimension from d to d+1 is determined by defining
E1(d) as:

(4)

If E1(d) stops changing when the value of d is greater than d0, then d0+1 is chosen
as the minimum embedding dimension for the time series. Since the acquired time
signal is limited, it is often difficult to distinguish a stochastic signal from a
deterministic signal merely by observing the variation of E1(d) for various values of d.
Whereas E1(d) saturates beyond a value of d for a deterministic signal, it always
increases with increasing d for random signals. To clearly distinguish deterministic
signals from stochastic signals, we define an additional measure E2(d) from the time
series p(t) as:

(5)

where

(6)

Since future values are independent of past values for random signals, E2(d) equals
1 for all values of d (independent of d) [27]. For deterministic signals on the other hand,
E2(d) is dependent on d, because of which there must exist some values of d for which
E2(d) is not equal to 1.

3.2. Delay embedding of combustion noise
The technique of phase space reconstruction detailed above was applied to the unsteady
pressure signals acquired from the two combustors. The signals are varying in
amplitudes and appear rather aperiodic (Fig 2 a, d). The average mutual information for
the two sets of data have their first minimum at τopt = 1.2 ms and τopt = 1.1 ms
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respectively. These values correspond approximately to T/4 where T is the time period
of oscillation at combustion instability. This time period was discerned from the FFT of
the pressure signal at combustion instability. The delay vector p(ti+τopt) can thus
alternately be seen to be related to the acoustic velocity in a one-to-one fashion since
the acoustic pressure and velocity differ in phase by approximately 90° for a standing
wave pattern in the duct. The small deviations from 90° are due to damping.

The least embedding dimension for the two combustors can be taken to be d0 = 8 as
the measure E does not vary significantly after d = 7. Also, the value of the measure
E2(d) is not equal to 1 for all values of d. Hence, we see that combustion noise is
deterministic and possibly chaotic with a moderately high dimensional attractor.
Although, Cao’s method to determine the least embedding dimension provides us with
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Figure 2: Phase space reconstruction of combustion noise data from (a) combustor
with a swirl-stabilized flame (φ = 1.0, Re = 1.6 × 104), and (d) combustor
with a bluff-body stabilized flame (φ = 1.1, Re = 1.8 × 104). The average
mutual information for the two signals are shown in (b) and (e)
respectively. The optimal delay are τopt = 1.2 ms and τopt = 1.1 ms.
Results on applying Cao’s method of obtaining the embedding dimension
are shown in (c) and (f). The plot of E1(d) saturates around d = 7 for the
data from swirl-stabilized combustor and d = 8 for the data from bluff-
body stabilized combustor. Also, the values of E2(d) do not equal 1 for all
values of d. This indicates that combustion noise is deterministic and
possibly chaotic with moderately high dimensions (d0 ≈ 8–10).



information as to whether the signal is deterministic or not, additional tests for
determinism are often performed to confirm the finding. One of such methods is
described below.

4. TESTS FOR DETERMINISM
4.1. The local flow test for determinism
The local flow test for determinism is a discrete adaptation [28] of a technique
devised by Kaplan and Glass [29] for continuous dynamical systems. After delay-
embedding the time series, one selects points in the phase space that are close to each
other. These points are then evolved in time for a short duration known as the
translation horizon. Points in the phase space that are close to each other tend to move
in the same direction for deterministic signals and in random directions for stochastic
signals. Hence, for a given translation horizon, we construct vectors that connect the
initial and final points, which are then normalized and averaged. These averaged
vectors would then be larger for deterministic signals. The process is then repeated
for various translation horizons. For deterministic signals, although the deterministic
structure is preserved for short horizons, it is lost once the translation horizon is made
too large. Hence, the average vector lengths will be small once the translation horizon
is made large.

To construct a measure of determinism, we first cover the phase space with a grid of
non-overlapping hypercubes (cubes in d dimensions). The number of points in each
cube is nj with time indices tj,1 tj,2,...,tj,nj

. If H is the translation horizon, the change in
state from time tj,k to tj,k +H for each of the nj points in the cube j is given by:

(7)

where k = 1, 2, …, nj. Note that here we have explicitly written out the index in terms
of time to distinguish different points within the same hypercube. Points near the edge
of a cloud of points will have a directional bias towards the middle of the cloud [28].
To correct for this, ∆pi,k is mapped onto a sine function as:

where λ is the characteristic length of the embedded attractor in phase space. Summing
up all vectors through hypercube of index j, we obtain the resultant vector Vj
normalized by the number of vectors passing through the cube nj in the following
fashion:
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We can then define a measure Λ that quantifies local flow in phase space by
averaging over the vectors Vj based on the number of vectors present in the hypercube
(say, l), as:

(9)

Here, Vl represents the norm of Vl (the replaced index in the subscript indicative of
the new ordering) and cE is a constant defined as [29]:

(10)

with Γ being the standard gamma function. The measure Λ retains values close to 1 for
deterministic signals and has values close to 0 for stochastic signals [29].

Although Λ quantifies local flow, it is insensitive to whether the source is
determinism or directional preference due to autocorrelations. The method of surrogate
data helps to circumvent this uncertainty.

4.2. Surrogate data analysis
Interpretation of results from experimentally acquired data can sometimes pose
problems because filtered noise data can sometimes give the impression of chaos
and low-dimensional dynamics. The technique of surrogate data analysis provides an
efficient method to avoid such misinterpretations. One starts the analysis with a null
hypothesis (or the default position in the absence of evidence to the contrary) that
the experimental data can be described by a linear stochastic model. Surrogate data
sets are generated from a measured signal such that they retain certain characteristics
of the original data (such as number of data points, mean and standard deviation)
while ensuring that the data is sufficiently randomized so that any deterministic
structure that may be present in the original data is destroyed [30]. Techniques like
the determinism tests are then applied to both the original data and the surrogate
data. If the results are similar for the experimental and surrogate data sets; i.e., if the
predictions of the tests are equally good or bad, then one cannot reject the null
hypothesis that a linear stochastic model is sufficient to describe the experimental
data.

One of the techniques of surrogate generation involves randomly shuffling the data
values in the signal, without adding or subtracting data [31]. Such a random shuffling
destroys any correlation originally present among the data points. This produces a random
time signal that has the same mean and standard deviation as the original time series.
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4.3. Determinism in combustion noise
Surrogate data sets were constructed from unsteady pressure measurements acquired
during combustion noise with the same mean and standard deviation as the original
data. Then the local flow test for determinism was applied on both the original and
surrogate data sets and the results are shown in Fig. 3. Whereas the levels of
determinism remain fairly high for the original data over a range of translation horizons,
they remain at a low value for the surrogate data sets. The occasional spikes correspond
to those values of translation horizon which are multiples of τopt (in time steps). This
happens because the delay vectors partially overlap after moving over a distance τopt
which also happens to be the optimum delay chosen for embedding. Hence, we have
convincing evidence that combustion noise is deterministic. Thus, the traditional signal
plus noise paradigm often implicitly assumed in models and analysis of experimental
data sets [11–16] needs to be reexamined if one wishes to capture the onset of
instabilities in combustors because these irregular fluctuations may contain useful
information of prognostic value.

5. THE 0-1 TEST FOR CHAOS [32]
5.1. Computational procedure
The motivation behind the test is that when the combustor encounters limit cycle
oscillations, the dynamics transitions from chaotic to regular. The signal p(t) is measured
ensuring that the acquired value at each instant provides essentially little information
about future values at stable operation. This can be done by sampling at a time interval
corresponding to the minimum of the average mutual information. Typically, this would
correspond to a sampling time of τopt = T/4 where T is the period of oscillations in the
combustion chamber during instability. Typically, the time period of oscillations at
instability is itself an unknown. However, the detector is robust for various values of
sampling interval as long as the consecutive values are poorly correlated. For example,
comparable results can be obtained for values of τopt corresponding to the first zero
crossing of the autocorrelation of p(t). The time period corresponding to the dominant
frequency in the FFT during stable operation of the combustor can also be utilized as a
suitable measure of T to obtain the sampling time.

From the measured signal p(t) for t = (1, 2, …, N) and ti + 1 – ti = τopt, translation
variables qc and rc can be created as follows:

(11)

(12)

where c � (π/5, 4π/5). The mean square displacement of these translation variables may
then be computed for different values of c as following:
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Figure 3: Results on applying the local flow method of determinism on the
combustion noise data from (a) combustor with a swirl-stabilized flame
(φ = 1.0, Re = 1.6 × 104, τopt = 1.2 ms), and (d) combustor with a bluff-body
stabilized flame (φ = 1.1, Re = 1.8 × 104, τopt = 1.1 ms). Whereas the original
data shows high levels of determinism, it is lost when the data values are
randomly shuffled. The embedding dimension was maintained as d0 = 10 for
all the data sets. τopt for the surrogate sets was maintaned the same as that
for original data for the sake of comparison. The spikes in the surrogate data
correspond to those values of translation horizon H that are multiples of the
optimum time delay τopt non-dimensionalized by the sampling time.



(13)

with n « N. It is seen that n ≤ ncut where ncut = N/10 yields good results.
The mean square displacement is indicative of the diffusive nature of the translation

variables. If the dynamics is regular, then the mean square displacement is a bounded
function in time and for chaotic dynamics, it scales linearly with time.

A modified mean square displacement Dc may be defined to ensure better
convergence properties but with the same asymptotic growth rate as [32]:

(14)

where

(15)

and

(16)

Hence by defining vectors ξ = (1, 2,..., ncut) and ∆ = (Dc(1), Dc(2),...,Dc(ncut)), the
correlation Kc given by:

(17)

essentially allows one to distinguish between the two types of behavior possible in such
systems.

To ensure robustness of the measure to outliers and spurious resonances, the median
value of Kc (say K) may be taken which is obtained for different random values of c. This
value of K would lie close to 1 for chaotic signals and close to 0 for regular dynamics. If
the system is inherently turbulent, the transition to instability would be associated with a
decrease in the value of K from 1 to a value depending on the turbulent intensity, i.e., higher
the intensity of turbulence at instability higher the departure of K from 0 at instability.

5.2. Prediction of impending combustion instability
The 0–1 test for chaos was applied on the pressure measurements acquired sequentially
at various Reynolds numbers starting from low amplitude combustion noise to high
amplitude combustion instability. The measure K remains fairly close to 1 during the
initial stages which indicates that combustion noise is chaotic. The value of K gradually
starts decreasing as the flow Reynolds numbers are increased, eventually reaching
values close to 0 at the onset of instabilities. Since this loss of chaos happens in a
smooth manner, we can use the measure K as a precursor to impending instability. By
choosing a threshold value of K that corresponds to the initial stages of loss of chaos
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(say, 0.9), operators get to know well in advance of an impending instability so that
appropriate control action may be taken through modification of control parameters to
prevent the onset. The precursor is thus an objective measure of proximity of the
combustor to unstable operating regimes and is independent of the details of geometry,
fuel composition and flame stabilization.
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Figure 4: The results on applying the 0–1 test for chaos on (a) the swirl-stabilized
backward facing step combustor and (b) the bluff-body stabilized
backward facing step combustor for signals acquired at various Reynolds
number. Whereas the values lie fairly close to 1 for chaotic combustion
which is stable, departure from 1 indicates the onset of impending
combustion instability which happens as the Reynolds number is
increased. The results presented are for the entire 3s data which brings in
some graininess due to amplitude modulations. By setting threshold at a
value of say 0.9 for K, operators can be informed of an impending
instability so that appropriate control measures can be taken.



We successfully devised a controller [33] that determines the proximity of
combustors to instability that utilizes the 0–1 test for chaos. Although we used the entire
3s data in the analysis results presented in Figure 4, the test performs robustly even with
a sampling rate as poor as 1 kHz with 500 samples of data (data acquisition for 500 ms)
for an instability frequency around 250 Hz.

Since the measure falls smoothly as the operating conditions approach onset,
suitable control action may be taken by modifying operational parameters to prevent
high amplitude oscillations. Thus, the stability margins of practical fielded systems can
safely be estimated without encountering instabilities.

6. CONCLUDING REMARKS
Combustion noise was shown to be deterministic by performing the Kaplan-Glass test
for determinism on unsteady pressure data acquired from two different combustors
operating at turbulent Reynolds numbers. The present study further identifies
precursors to impending combustion instability, using the departure from chaos as an
early warning signal to impending instability, thereby improving the operational
boundaries of practical fielded combustors. Combustion noise is thus shown to be
deterministic chaos, which is in stark contrast with the current description of the
phenomenon where it is often assumed to be a stochastic background to the dynamics.
This signal plus noise paradigm which involves decomposing the data into a signal and
accompanying noise often overlooks the prognostic value of the irregular fluctuations
that, as this study shows can forewarn an operator of impending combustion instability.
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