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Local stability and Hopf bifurcation analysis

for Compound TCP
Debayani Ghosh, Krishna Jagannathan and Gaurav Raina

Abstract

We conduct a local stability and Hopf bifurcation analysis for Compound TCP, with small Drop-tail buffers, in

three topologies. The first topology consists of two sets of TCP flows having different round trip times, and feeding

into a core router. The second topology corresponds to two queues in tandem, and consists of two distinct sets of TCP

flows, regulated by a single edge router and feeding into a core router. The third topology comprises of two distinct

sets of TCP flows, regulated by two separate edge routers, andfeeding into a common core router. For each of these

cases, we conduct a detailed local stability analysis and obtain conditions on the network and protocol parameters

to ensure stability. If these conditions get marginally violated, our analysis shows that the underlying systems would

lose local stability via a Hopf bifurcation. After exhibiting a Hopf, a key concern is to determine the asymptotic

orbital stability of the bifurcating limit cycles. We present a detailed analytical framework to address the stabilityof

the limit cycles, and the type of the Hopf bifurcation by invoking Poincaré normal forms and the center manifold

theory. We conduct packet-level simulations to highlight the existence and stability of the limit cycles in the queue

size dynamics.

Index Terms

Compound TCP, Drop-Tail, Stability, Hopf bifurcation

I. I NTRODUCTION

Network performance, and end-to-end latency are affected by a combination of the choice of TCP, the size of

router buffers, and the choice of queue management implemented in Internet routers [1], [5], [10]. A major portion

of Internet traffic is controlled by the Transmission Control Protocol (TCP) [7], [11]. There have been proposals for

different flavours of TCP and queue management strategies. However, Compound TCP [15] is the default protocol

in Windows, and a simple Drop-Tail queue management is commonly implemented in Internet routers. It has been

argued that the default large buffer dimensioning rule for router buffers, combined with Drop-Tail, leads to excessive

delays in the Internet [5].

In our recent work [6], we conducted a performance evaluation of Compound TCP, in a small buffer regime,

with particular emphasis on buffer thresholds. One of the key insights obtained therein was the two-fold advantage
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of having small router buffers. In particular, our analysisshowed that small buffers are favourable for ensuring

the stability of the system, in addition to reducing queuingdelays. Furthermore, our analysis identified that the

underlying dynamical systems undergo a Hopf bifurcation, and transit from a locally stable into an unstable regime

as the buffer size increases. The Hopf bifurcation alerts usto the emergence of isolated periodic orbits, termed as

limit cycles, as a parameter crosses a certain critical value. In addition, we repeatedly observed limit cycles in the

queue size dynamics, in numerous packet-level simulations. Fig. 1 portrays one such instance; indeed, it captures

the emergence of limit cycles in the queue size of the core router in a single bottleneck topology. This motivates

us to develop an analytical framework under which the emergence of these non-linear oscillations can be better

understood. To that end, in this paper, we provide a completeanalytical characterisation of the type of the Hopf

bifurcation, and prove the orbital stability of the emergent limit cycles.

We consider three different topologies, and focus on analysing the dynamical properties of a fluid model of

Compound TCP in conjunction with small Drop-Tail buffers. Our fluid model takes the form of a non-linear, time-

delayed dynamical system. The first topology is a generalisation of the single bottleneck topology studied in [6], and

consists of two sets of TCP flows having different round trip times, and feeding into a core router (see Fig. 2(a)).

The second topology corresponds to two queues in tandem, andconsists of two distinct sets of TCP flows, regulated

by a single edge router and feeding into a core router (see Fig. 2(b)). The third topology comprises of two distinct

sets of TCP flows, regulated by two separate edge routers, andfeeding into a common core router (see Fig. 2(c)).

For each of these cases, we first conduct a local stability analysis and outline necessary and sufficient conditions

for local stability, with two simplifying assumptions. In the first scenario, we assume that the network parameters

are the same, and that both sets of Compound TCP flows have equal round trip times. In the second scenario, we

assume the network parameters to be heterogeneous, and the round trip time of one set of TCP flows to be much

larger as compared to the other. If the local stability conditions get marginally violated, our analysis shows that the

underlying systems would lose local stability via a Hopf bifurcation. Motivated by this insight, we then analyse

only the third topology in greater detail, to better understand the impact of heterogeneous system parameters on

local stability. We numerically show through DDE-BIFTOOL [3], [4] that, even in the presence of heterogeneous

network parameters and different round trip times, the dynamical system undergoes a Hopf bifurcation which leads

to the emergence of limit cycles.

As argued in [6], the emergence of limit cycles in the system dynamics could have a number of detrimental

consequences – for example it could lead to the synchronisation of TCP windows, result in a loss in link utilisation,

and cause the downstream traffic to be bursty. Hence, it becomes imperative to study these limit cycles in further

detail. To that end, an important contribution of this paperlies in providing an analytical framework to determine

the asymptotic orbital stability of the emerging limit cycles. Using Poincaré normal forms and the center manifold

theory, we show that the Hopf bifurcation is indeed supercritical, and hence leads to the emergence of orbitally

stable limit cycles. To corroborate our analytical insights, we conduct some packet-level simulations in NS2 [16],

to highlight the existence and stability of the limit cyclesin the queue size dynamics. Notably, instead of treating

any particular system parameter as the bifurcation parameter, we choose a suitably motivated exogenous, non-
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Fig. 1: Long-lived flows. 60 long-lived Compound flows over a 2 Mbps link, and feeding into a core router with

link capacity 100 Mbps. Observe the emergence of limit cycles in the queue at the core router, for larger buffer

thresholds, and larger round trip times.

dimensional parameter as the bifurcation parameter to aid our analysis. The two main advantages of this are: first,

it enables us to capture the effects of different system parameters on the system stability in a unified manner and

secondly, we need not be concerned about the dimension of thebifurcation parameter.

The rest of the paper is as organised as follows. In section II, we outline the governing fluid models for the three

cases we consider. Section III deals with local stability analysis of the fluid models. In Section IV, we provide an

analytical framework to determine the asymptotic orbital stability of the bifurcating limit cycles, and to characterise

the type of the Hopf bifurcation. Packet-level simulationsare presented in Section V to corroborate some of the

analytical insights. Finally, in section VI, we summarise our contributions.

II. M ODELS

In this section, we consider two distinct sets of TCP flows having different round trip timesτ1 andτ2 in three

topologies. For our analysis of these models, we primarily focus on long-lived flows. We assume that both sets

of TCP flows can be of different flavours and hence, can have different increase and decrease rules to govern the

evolution of the corresponding window sizes. Let the average window sizes of the two sets of flows bew1(t)

andw2(t) respectively. For each acknowledgement received, the average window sizes increase byi1(w1(t)) and

i2(w2(t)), and for each packet loss detected, the average window sizesdecrease byd1(w1(t)) and d2(w2(t))

respectively. Note that, the increase and decrease functions for a particular TCP flavour depend on the protocol

parameters. Further, the loss probability at the routers isgoverned by the corresponding AQM strategy.

A. Fluid models for TCP

Now, we briefly outline the fluid models for the evolution of the average window sizes of the two sets of TCP

flows in the congestion avoidance phase for three topologies.

April 20, 2016 DRAFT
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Case I

This model consists of a single bottleneck link with two distinct sets of TCP flows feeding into a common core

router, as shown in Fig. 2(a). The core router has a buffer size of B, with link capacityC. Thus, for generalised

TCP flows, the non-linear, time-delayed, fluid model of the system is given by the following equations:

dwj(t)

dt
=

wj(t− τj)

τj

(

ij (wj(t))
(

1− q(t, τ1, τ2)
)

− dj ((wj(t)) q(t, τ1, τ2)

)

, j = 1, 2, (1)

whereq(t, τ1, τ2) represents the packet loss probability at the core router, and depend on the sending rates of both

sets of TCP flows.

Case II

This model consists of two distinct sets of TCP flows, regulated by a single edge router and feeding into a

common core router, as shown in Fig. 2(b). The buffer sizes ofthe core router and the edge routers areB1 andB2,

with link capacitiesC1 andC2 respectively. Thus, for generalised TCP flows, the non-linear, time-delayed, fluid

model of the system is given by the following differential equations:

dwj(t)

dt
=

wj(t− τj)

τj

(

ij (wj(t))
(

1− q1(t, τ1, τ2)− q2(t, τ1, τ2))
)

− dj ((wj(t)) (q1(t, τ1, τ2) + q2(t, τ1, τ2))

)

,

(2)

for j = 1, 2, andq1(t, τ1, τ2) andq2(t, τ1, τ2) denote the packet loss probabilities at the edge router and the core

router respectively.

Case III

This model consists of two distinct sets of TCP flows, regulated by two edge routers and feeding into a common

core router, as shown in Fig. 2(c). The buffer size at the corerouter isB, with link capacityC. The buffer sizes

for the edge routers areB1 andB2, with link capacitiesC1 andC2 respectively. Thus, for generalised TCP flows,

the non-linear, time-delayed, fluid model of the system is given by the following equations:

dwj(t)

dt
=

wj(t− τj)

τj

(

ij (wj(t))
(

1− pj(t− τj)− q(t, τ1, τ2)
)

− dj ((wj(t))
(

pj(t− τj) + q(t, τ1, τ2)
)

)

, (3)

for j = 1, 2. The loss probabilities at the two edge routers arep1(t) and p2(t). The loss probability at the core

router is denoted byq(t, τ1, τ2). Recall that, the increase and decrease functions are specific to the choice of a

particular flavour of TCP. Specifically, [13] has summarisedthe increase and decrease functions for different TCP

flavours including Compound. Since our primary focus is on Compound TCP, we state the increase and decrease

functions for Compound as follows:

i(w(t)) = α (w(t))
k−1

, and d(w(t)) = βw(t). (4)

April 20, 2016 DRAFT
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Fig. 2: Schematic diagrams of three topologies.(a) Case I, a single bottleneck topology (b) Case II, two routers in

tandem and (c) Case III, two routers feeding into one core router.

Here,α, k are the increase parameters andβ is the decrease parameter. The default values of these parameters are

α = 0.125, k = 0.75 andβ = 0.5 [15].

B. Packet loss probability

In this paper, we mainly focus on small buffers with Drop-Tail queue policy for the local stability analysis of

the non-linear fluid models of TCP given by (1), (2) and (3). Wefirst consider the scenario where alarge number

of long-lived TCP flows having a common round trip time ofτ feed into a router having a buffer size ofB. The

bottleneck link has a capacityC. In this scenario, we can approximate the packet loss probability of the router by

the blocking probability of anM/M/1/B queue [13]. This gives rise to the following fluid model:

p(t) =

(

w(t)

Cτ

)B

, (5)

wherew(t) represents the average window size of the TCP flows. Using (5), we can then obtain the functional

forms of packet loss probabilities for the three scenarios,which we briefly outline as follows:

Case I: The fluid model for the loss probability at the core router is given by

q(t) =

(

w1(t)/τ1 + w2(t)/τ2
C

)B

. (6)

Case II: The fluid models for the loss probabilities are:

q1(t) =

(

w1(t)/τ1 + w2(t)/τ2
C2

)B2

and, q2(t) =

(

w1(t)/τ1 + w2(t)/τ2
C1

)B1

. (7)

Case III: Using (5), we can approximate the loss probabilities at various routers as below:

p1(t) =

(

w1(t)

C1τ1

)B1

, p2(t) =

(

w2(t)

C2τ2

)B2

, and

q(t) =

(

w1(t)/τ1 + w2(t)/τ2
C

)B

. (8)

Using these functional forms, we now proceed to perform a local stability and bifurcation analysis for the systems

given by (1), (2) and (3). This would enable us to understand the dynamical properties of the coupled system of

Compound TCP with Drop-Tail queue policy to a greater detail.

April 20, 2016 DRAFT
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III. L OCAL STABILITY ANALYSIS

Note that, to perform a local stability and bifurcation analysis for the non-linear models (1), (2) and (3), we need

to choose an appropriate bifurcation parameter. It can be easily seen that both protocol and network parameters

affect the stability of the systems. To that end, instead of treating any of the system parameters as a bifurcation

parameter, we introduce an exogenous non-dimensional parameterκ as the bifurcation parameter. We choose the

non-dimensional parameter in such a manner that it does not affect the equilibrium of the system. Recall that, to

conduct the local stability analysis, we primarily focus onCompound TCP with Drop-Tail queues in the small

buffer regime. For mathematical tractability, we assume that both sets of TCP flows in all three topologies are

regulated by Compound with identical protocol parameters.Further, we consider two simplifying assumptions as

briefly outlined below:

Scenario 1:All network parameters are the same,i.e., B1 = B2 = B, andC1 = C2 = C. Further, the round

trip times of both TCP flow sets are identical,i.e., τ1 = τ2 = τ.

Scenario 2:In this scenario, we assume that all network parameters are distinct and the round trip time of one set

of TCP flows is negligible and much smaller as compared to the round trip time of the other set,i.e, τ1 >> τ2 and

τ2 ≈ 0. Under this assumption, the dynamics of the second set of TCPflows appear almost instantaneous.

We now proceed to conduct a detailed local stability analysis to obtain bounds on network, and protocol parameters

to ensure stability, for the systems given by (1), (2) and (3).

Case I

The schematic diagram of the topology is presented in Fig. 2(a).

Scenario 1:With this assumption, the first model reduces to a single bottleneck link with only one set of TCP

flows having round trip timeτ1 = τ2 = τ . Hence, with the non-dimensional bifurcation parameterκ, system (1)

reduces to the following non-linear, first-order, time-delayed differential equation:

dw(t)

dt
= κ

w(t − τ)

τ

(

i (w(t))
(

1− q(w(t − τ))
)

− d ((w(t)) q(w(t − τ))

)

, (9)

wherew(t) is the averagewindow size of the TCP flows. The non-trivial equilibriumw∗ of system (9) satisfies

the following equation

i(w∗) = d(w∗)q(w∗). (10)

Note that, under the first assumption, the fluid model for the packet loss probability at the core router, given by (6)

reduces to

q(w∗) =

(

w∗

Cτ

)B

, (11)

April 20, 2016 DRAFT
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at equilibrium. A necessary and sufficient condition for this model, with Compound TCP in the small buffer regime

is [13]

κα (w∗)
k−1

√

B2 − ((k − 2) (1− q(w∗)))
2
< cos−1

(

(k − 2) (1− q(w∗))

B

)

. (12)

Scenario 2:With the introduction of the non-dimensional parameterκ, system (2) becomes

ẇ1(t) = κ
w1(t− τ1)

τ1

(

i (w1(t)) (1− q(t, τ1, τ2))− d ((w1(t)) q(t, τ1, τ2)

)

,

ẇ2(t) = κ
w2(t)

τ2

(

i (w2(t)) (1− q(t, τ1, τ2))− d ((w2(t)) q(t, τ1, τ2)

)

. (13)

Suppose(w∗

1 , w
∗

2) is a non-trivial equilibrium of (13) and letu1(t) = w1(t)−w∗

1 andu2(t) = w2(t)−w∗

2 be small

perturbations aboutw∗

1 andw∗

2 respectively. Linearising (13) about this equilibrium, weobtain

u̇1(t) = −κ (M1u1(t) +N1u1(t− τ1) + P1u2(t)) ,

u̇2(t) = −κ
((

M2 +N2

)

u2(t) + P2u1(t− τ1)
)

, (14)

where, the increase and decrease functions for Compound TCPgiven by (4), and the functional form of the loss

probability at the core router given by (6) yield the following coefficients:

Mj = −
α

τj
(k − 2)

(

w∗

j

)k−1

(

1−
1

CB

(

w∗

1

τ1
+

w∗

2

τ2

)B
)

,

Nj =
B
(

w∗

j

)2

τ2j (C)
B

(

α
(

w∗

j

)k−2
+ β

)

(

w∗

1

τ1
+

w∗

2

τ2

)B−1

,

Pj =
B
(

w∗

j

)2

τ1τ2 (C)
B

(

α
(

w∗

j

)k−2
+ β

)

(

w∗

1

τ1
+

w∗

2

τ2

)B−1

, (15)

for j = 1, 2. Looking for exponential solutions, we obtain the characteristic equation for the linearised system (14)

as

λ2 + κaλ+ κbλe−λτ1 + κ2ce−λτ1 + κ2d = 0. (16)

where,

a = M1 +M2 +N2 , b = N2,

c = M1 (M2 +N2) , d = N1 (M2 +N2)− P1P2. (17)

For system (13) to be locally stable about the equilibrium(w∗

1 , w
∗

2), all roots of the characteristic equation (16)

should lie in the left half of the complex plane. It can be shown that, for negligibly small values of the non-

dimensional parameterκ, the system is stable,i.e., all the roots would have negative real parts. However, asκ

is increased beyond a critical value, one pair of complex conjugate roots may cross over the imaginary axis, and

hence have positive real parts. At this critical value the system would transit into an unstable region and have a

pair of purely imaginary roots. To deduce this point, we substitute λ = jω in (16) and separate real and imaginary

April 20, 2016 DRAFT
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parts to get

ω2 =
κ2(2c− a2 + b2)

2
±

κ2
√

(2c− a2 + b2)2 − 4(c2 − d2)

2
.

Condition 1: There exists only one positive value ofω2 if the following conditions hold

(i) (2c− a2 + b2) > 0, and(2c− a2 + b2)2 = 4(c2 − d2)

(ii) (2c− a2 + b2) > 0, andc2 − d2 < 0

Condition 2: There exists two positive value ofω2 if the following condition holds

(2c− a2 + b2) > 0, and(c2 − d2) > 0.

When Condition 1 is satisfied, the system transits from the locally stable regime to instability asκ increases beyond

a critical value, and never regains stability asκ is further increased. On the contrary, when Condition 2 is satisfied,

the system may undergo stability switches asκ is increased [2]. In the context of congestion control algorithms, the

stability switch phenomenon is an undesirable dynamical feature. Further, we have observed in numerous packet-

level simulations that Compound TCP does not exhibit stability switches. Hence, we focus only on the case when

Condition 1 is satisfied, and only one positive root ofω2 exists. This implies that there exists a cross over frequency

at which one pair of complex conjugate roots crosses over theimaginary axis, and is given byω = κA, where

A =

√

(2c− a2 + b2)

2
+

√

(2c− a2 + b2)2 − 4(c2 − d2)

2
.

The critical value ofκ denoted byκc, at which this transition occurs, is given by

κc =
1

Aτ1
cos−1

(A2(d− ab)− cd

b2A2 + c2

)

. (18)

Case II

The schematic diagram of the topology is illustrated in Fig.2(b).

Scenario 1:With this assumption, the second model reduces to a single set of TCP flows, regulated by an edge

router, and feeding into a core router. Observe that, the loss probabilities at both routers are the same. Hence, with the

non-dimensional bifurcation parameterκ, system (1) reduces to the following non-linear, first-order, time-delayed

differential equation

dw(t)

dt
= κ

w(t− τ)

τ

(

i (w(t))
(

1− p(w(t− τ))
)

− d ((w(t)) q(w(t − τ))

)

, (19)

wherew(t) is the average window size of the TCP flows. Using the functional forms of loss probabilities given by

(7), we obtain

p(w∗) = 2q(w∗) = 2

(

w∗

Cτ

)B

.

The critical value ofκ, at which system (19) loses its stability, satisfies the following equation

κcα (w∗)
k−1

√

B2 − ((k − 2) (1− p(w∗)))
2
= cos−1

(

(k − 2) (1− p(w∗))

B

)

. (20)

April 20, 2016 DRAFT
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Scenario 2:With the introduction of the non-dimensional parameterκ, system (2) reduces to

dw1(t)

dt
=κ

w1(t− τ1)

τ1

(

i (w1(t))
(

1− q1(t, τ1, τ2)− q2(t, τ1, τ2))
)

− d ((w1(t)) (q1(t, τ1, τ2) + q2(t, τ1, τ2))

)

,

dw2(t)

dt
=κ

w2(t)

τ2

(

i (w2(t))
(

1− q1(t, τ1, τ2)− q2(t, τ1, τ2))
)

− d ((w2(t)) (q1(t, τ1, τ2) + q2(t, τ1, τ2))

)

. (21)

Linearising (21) about its non-trivial equilibrium(w∗

1 , w
∗

2), we obtain

u̇1(t) = −κ (M1u1(t) +N1u1(t− τ1) + P1u2(t)) ,

u̇2(t) = −κ
((

M2 +N2

)

u2(t) + P2u1(t− τ1)
)

, (22)

where, for Compound TCP, the increase and decrease functions (4), and the functional forms of the loss probabilities

given by (7) yield the following coefficients

Mj = −
α

τj
(k − 2)

(

w∗

j

)k−1

(

1−

(

1

CB1

1

(

w∗

1

τ1
+

w∗

2

τ2

)B1

−
1

CB2

2

(

w∗

1

τ1
+

w∗

2

τ2

)B2

)

,

Nj =
(

α
(

w∗

j

)k−1
+ βw∗

j

) w∗

j

τj

(

B1

CB1

1

(

w∗

1

τ1
+

w∗

2

τ2

)B1−1

+
B2

CB2

2

(

w∗

1

τ1
+

w∗

2

τ2

)B2−1
)

,

Pj =
(

α
(

w∗

j

)k−1
+ βw∗

j

) w∗

j

τ1τ2

(

B1

CB1

1

(

w∗

1

τ1
+

w∗

2

τ2

)B1−1

+
B2

CB2

2

(

w∗

1

τ1
+

w∗

2

τ2

)B2−1
)

, (23)

for j = 1, 2. Observe that, the linearised system (22) has a similar form as (14). Hence, conducting a similar kind

of analysis as done for system (21), we obtain the critical value of the non-dimensional parameterκ, as given by

(18).

Case III

The schematic diagram for this topology is illustrated in Fig. 2(c).

Scenario 1: For Compound TCP in the small buffer regime, the critical value of κ, denoted byκc, at which

system (3) transits into a locally unstable regime, satisfies the following condition:

κcα (w∗)
k−1

√

B2 − (k − 2)2 (1− (1 + 2B) p(w∗))
2
< cos−1

(

(k − 2)
(

1−
(

1 + 2B
)

p(w∗)
)

B

)

.

Scenario 2:With the introduction of the non-dimensional parameterκ, (3) reduces to

dw1(t)

dt
= κ

w1(t− τ1)

τ1

(

i (w1(t))
(

1− p1(t− τ1)− q(t, τ1, τ2))
)

− d ((w1(t)) (p1(t− τ1) + q(t, τ1, τ2))

)

,

dw2(t)

dt
= κ

w2(t)

τ2

(

i (wj(t))
(

1− p2(t)− q(t, τ1, τ2))
)

− d ((wj(t)) (p2(t) + q(t, τ1, τ2))

)

. (24)

Linearising (24) about its equilibrium(w∗

1 , w
∗

2), we obtain

u̇1(t) = −κ (M1u1(t) +N1u1(t− τ1) + P1u2(t)) ,

u̇2(t) = −κ
((

M2 +N2

)

u2(t) + P2u1(t− τ1)
)

, (25)
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Fig. 3: Stability chart.Hopf condition for (3) with Compound TCP in the small buffer regime with respect to two

sets of parameters: (a) the non-dimensional parameterκ, and the protocol parameterα, (b) the non-dimensional

parameterκ, and the buffer size at the core routerB. The shaded region below the Hopf condition curve represents

the stable region.

where, for Compound TCP, and the functional forms of the lossprobabilities given by (8) yield the following

coefficients

Mj = −
α

τj
(k − 2)

(

w∗

j

)k−1

(

1−

(

w∗

j

Cjτj

)Bj

−
1

CB

(

w∗

1

τ1
+

w∗

2

τ2

)B
)

,

Nj =
(

α
(

w∗

j

)k−1
+ βw∗

j

)

(

Bj

τj

(

w∗

j

Cjτj

)Bj

+
B
(

w∗

j

)2

CBτ2j

(

w∗

1

τ1
+

w∗

2

τ2

)B−1
)

,

Pj =
(

α
(

w∗

j

)k−1
+ βw∗

j

) Bw∗

j

τ1τ2 (C)
B

(

w∗

1

τ1
+

w∗

2

τ2

)B−1

, (26)

for j = 1, 2. Note that, the linearised system (25) has a similar form as (14). Hence, a similar kind of local stability

analysis would yield the condition on the critical value of the non-dimensional parameterκ, and the protocol

parameters as given by (18).

For all three scenarios, with the simplifying assumptions,the conditions derived above essentially capture the

interdependence among the non-dimensional parameterκ, and the system parameters to ensure local stability.

Observe that, the loss of local stability can be studied withrespect to any system parameter. However, we prefer to

choose an exogenous parameter as the bifurcation parameter, to aid our analysis. It can be explicitly shown that, for

all the above cases, the system loses local stability via a Hopf bifurcation [8] if the conditions derived above get

violated. We prove this by verifying that the transversality condition of the Hopf spectrum [8]. To verify this, we

show that,Re(dλ/dκ) 6= 0 at κ = κc. In particular, we prove that,Re(dλ/dκ) > 0 at κ = κc. This implies that,

one pair of complex conjugate roots crosses over the imaginary axis from the left half of the complex plane to the

right half. Thus, the system undergoes a Hopf bifurcation atκ = κc. Hence,κ < κc is a necessary and sufficient

condition for local stability, for all the three scenarios.
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Observe that, deriving a necessary and sufficient conditionwith heterogeneous network parameters, and different

round trip times is analytically complex, for all three scenarios discussed earlier. Hence, we numerically illustrate

through DDE-BIFTOOL version 2.03 [3], [4], that system (3) undergoes a Hopf bifurcation if the non-dimensional

parameterκ is varied beyond a certain critical value. We fix the protocolparameters as follows:α = 0.3, β = 0.5

andk = 0.75. Since, we mainly focus on small buffer regime, the buffer sizes of the routers are fixed as:B1 =

10, B2 = 15, andB = 25. We fix the remaining network parameters as:C1 = C2 = 100, C = 180, τ1 = 1 and

τ2 = 2. Now, we vary the non-dimensional parameterκ in the range[0, 2] and observe that the system undergoes

a Hopf bifurcation atκc = 1. At this point, the system has one pair of complex conjugate roots on the imaginary

axis. Consequently, the system dynamics exhibit limit cycles atκc = 1.

Stability charts: To obtain insights about the system behaviour at the stability boundary, we now demonstrate

some stability charts for system (3). Fig. 3 (a) represents the Hopf condition for system (3) in the two parameter

space: the non-dimensional parameterκ, and the protocol parameterα. Observe that, ifκ is increased,α would have

to reduce to ensure stability. Fig. 3 (b) illustrates the Hopf condition in the two parameter space: the non-dimensional

parameterκ, and the buffer size at the core routerB. Observe that, ifκ is increased, keeping other system parameters

fixed,B would have to be decreased accordingly to ensure stability of system (3). Fig. 4 characterises the stability

boundary of system (3) with respect to the increase protocolparametersα andk. It is evident that, there exists a

trade-off between the increase parameters to ensure stability. Hence, we conclude that, both protocol parameters, and

network parameters, need to be co-designed carefully to maintain stability of system (3). If these Hopf conditions

get violated, the system would lose stability leading to theemergency of limit cycles in the system dynamics. In

the next section, we provide a detailed analytical framework to characterise thetype of Hopf bifurcation and the

asymptoticorbital stability of the emergent limit cycles, for system (3).

IV. H OPFBIFURCATION ANALYSIS

We have seen that, variation in the exogenous parameterκ induces instability in system. Instability in the system

could be induced by any of the system parameters. This loss ofstability occurs via a Hopf bifurcation which

results in limit cycles in the system dynamics which in turn leads to deterministic oscillations in the queue size.

Consequently, this results in the overall degradation of the system performance because of loss in link utilisation.

To that end, it becomes imperative to study the type of bifurcation and the stability of these emergent limit cycles

to a greater detail.

Note that, we have motivated the exogenous, non-dimensional parameterκ as the bifurcation parameter. This

enables us to capture the effect of the different system parameters on the system stability in a unified manner.

The Hopf bifurcation analysis enables us to analyse the system dynamics in its locally unstable regime, in the

neighbourhood of the Hopf condition. Using Poincaré normal forms and the center manifold theory, we present an

analytical framework to determine thetype of the Hopf bifurcation and the orbital stability of the emergent limit

cycles. Our analysis closely follows the analysis presented in [8], [9], [12].

Let κ = κc + µ, whereµ ∈ R. Observe that, the system undergoes a Hopf bifurcation atµ = 0, whereκ = κc.
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We can now considerµ as the bifurcation parameter. An incremental change inκ from κc to κc +µ whereµ > 0,

pushes the system to its locally unstable regime.

Step 1: Using Taylor series expansion, we segregate the right handside of (3) into linear and non-linear parts.

We then cast this equation into the standard form of an operator differential equation.

Step 2: At the critical value of the bifurcation parameter,i.e. at µ = 0, the system has exactly one pair of

purely imaginary eigenvalues with non-zero angular velocity. The linear eigenspace spanned by the eigenvectors

corresponding these eigenvalues is called the critical eigenspace. The center manifold theorem [9, Chapter5,

Theorem5.1.] guarantees the existence of a locally invariant2−dimensional manifold which is tangent to the

critical eigenspace at the equilibrium of the system.

Step 3: Next, we project the system onto its critical eigenspace and its complement at the critical value of the

bifurcation parameter. This enables us to capture the dynamics of the system on the center manifold, with the help

of an ordinary differential equation in a single complex variable.

Step 4: Finally, using Poincaré normal forms, we evaluate the lyapunov coefficient and the floquet exponent,

which characterise the type of the Hopf bifurcation and the asymptotic orbital stability of the emergent limit cycles

respectively.

Suppose(w∗

1 , w
∗

2) is an equilibrium for (3). Letu1(t) = w1(t)−w∗

1 andu2(t) = w2(t)−w∗

2 be small perturbations

about the equilibrium. Thus, a Taylor series expansion of (3) about its equilibrium(w∗

1 , w
∗

2) is as follows

u̇1(t) =κ
(

ξau1(t) + ξbu1(t− τ1) + ξdu2(t− τ2)
)

+ κ
(

ξaau
2
1(t) + ξbbu

2
1(t− τ1) + ξddu

2
2(t− τ2)

+ ξabu1(t)u1(t− τ1) + ξadu1(t)u2(t− τ2) + ξbdu1(t− τ1)u2(t− τ2)
)

+ κ
(

ξaaau
3
1(t)

+ ξbbbu
3
1(t− τ1) + ξdddu

3
2(t− τ2) + ξaabu

2
1(t)u1(t− τ1) + ξaadu

2
1(t)u2(t− τ2) + ξabbu1(t)u

2
1(t− τ1)

+ ξbbdu
2
1(t− τ1)u2(t− τ2) + ξaddu1(t)u

2
2(t− τ2) + ξbddu1(t− τ1)u

2
2(t− τ2)

+ ξacdu1(t)u1(t− τ1)u2(t− τ2)
)

,

u̇2(t) =κ
(

χcu2(t) + χdu2(t− τ2) + χbu1(t− τ1)
)

+ κ
(

χccu
2
2(t) + χddu

2
2(t− τ2) + χbbu

2
1(t− τ1)

+ χcdu2(t)u2(t− τ2) + χbcu1(t− τ1)u2(t) + χbdu1(t− τ1)u2(t− τ2)
)

+ κ
(

χcccu
3
2(t)

+ χdddu
3
2(t− τ2) + χbbbu

3
1(t− τ1) + χccdu

2
2(t)u2(t− τ2) + χbccu1(t− τ1)u

2
2(t) + χcddu2(t)u

2
2(t− τ2)

+ χbddu1(t− τ1)u
2
2(t− τ2) + χbbcu

2
1(t− τ1)u2(t) + χbbdu

2
1(t− τ1)u2(t− τ2)

+ χbcdu1(t− τ1)u2(t)u2(t− τ2)
)

. (27)

The Taylor series coefficients are given in Table I. Using thenotationu = [u1 u2]
T , we reduce equation (27) to

the following form

u̇(t) = Lµut + F(ut, µ), (28)
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k

α
0.1

1
.0

1.0

0
.5

Hopf Condition

Fig. 4: Stability chart.Hopf condition for system (3). The shaded region below the curve denotes the stable region.

It is evident that there exists a trade-off between the increase protocol parametersα andk. As α increases,k has

to be decreased to ensure system stability.

wheret > 0, µ ∈ R. For τ > 0,we define

ut(θ) = u(t+ θ), ut : [−τ, 0] → R
2, θ ∈ [−τ, 0].

For this model, without loss of generality, we assume thatτ1 > τ2. L : C[−τ1, 0] → R
2 denotes a family of

continuous and bounded functions parametrised byµ. Here,C[a, b] denotes the set of all continuous functions on

the interval[a, b]. The operatorF : C[−τ1, 0] → R
2 consists of the non-linear terms. Further, we assume thatF is

analytic and bothL andF depend analytically on the bifurcation parameterµ for small |µ|. The linear operator is

Lµut = κ





ξau1(t) + ξbu1(t− τ1) ξdu2(t− τ2)

χbu1(t− τ1) χcu2(t) + χdu2(t− τ2)



 . (29)

We now cast equation (28) into the following standard form ofan operator differential equation,

u̇ = A(µ)ut +Rut. (30)

Note that, (30) hasut rather than bothut andu. Now, using the Riesz representation theorem [14, Chapter6,

Theorem6.19.], we transform the linear problem(d/dt)u(t) = Lµut. The Riesz representation theorem guarantees

the existence of an2 × 2 matrix-valued measureη(·, µ) : [−τ1, 0] → R
4, such that each component ofη has

bounded variation and for allφ ∈ C[−τ1, 0],

Lµφ =

∫ 0

θ=−τ1

dη(θ, µ)φ(θ).

In particular, we have

Lµut =

∫ 0

θ=−τ1

dη(θ, µ)ut(θ).

Observe that, for system (3), the matrixdη is

dη(θ, µ) = κ





ξaδ(θ) + ξbδ(θ + τ1) ξdδ(θ + τ2)

χbδ(θ + τ1) χcδ(θ) + χdδ(θ + τ2)



dθ. (31)
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Here,δ(·) is the Dirac-delta measure. LetC1[−τ1, 0] denotes the space of all functions defined on[−τ1, 0], with

continuous first derivatives. Forφ ∈ C1[−τ1, 0], we then define the following linear and non-linear operators

A(µ)ut(θ) =







dut(θ)
dθ , θ ∈ [−τ1, 0),

Lµut, θ = 0.

Rut(θ) =







0, θ ∈ [−τ1, 0),

F(ut, µ), θ = 0.
(32)

Note that,dut/dθ ≡ dut/dt. Hence, equation (28) can be transformed into (30). Further, recall that,κ = κc + µ,

and the system undergoes bifurcation at the critical pointµ = 0. Hence, we fixµ = 0 to perform the necessary

analysis at the point of bifurcation. Atµ = 0, the system has a pair of complex eigenvalues on the imaginary axis:

λ = ±iω0, whereω0 > 0. Let q(θ) denote the eigenvector forA(0) corresponding to the eigenvalueλ(0) = iω0.

We assume thatq(θ) has a form as

q(θ) =
[

1 φ1

]T

eiω0θ.

Now, using

A(0)q(θ) = iω0q(θ),

we obtainφ1 as

φ1 =
−κχbe

−iω0τ1

κχc + κχde−iω0τ2 − iω0
.

We now define the following adjoint operator

A∗(µ)α(s) =











−dα(s)
ds , s ∈ (0, τ1],

∫ 0

t=−τ1
dηT (t, 0)α(−t), s = 0.

where ηT denotes the transpose ofη. Observe that, the domains ofA and A∗ are C1[−τ1, 0] and C1[0, τ1]

respectively. Then,̄λ(0) = −iω0 is an eigenvalue ofA∗ and for some non-zero vectorp, we have

A∗(0)p(ζ) = −iω0p(ζ). (33)

We considerp(θ) to have the following form:

p(θ) = D
[

φ2 1
]T

eiω0θ.

Using (33), we obtainφ2 as

φ2 =
−κχbe

iω0τ1

κξa + κξbeiω0τ1 + iω0
.

Let us define the inner-product of the functionsψ ∈ C[0, τ1] andφ ∈ C[−τ1, 0] as

〈ψ,φ〉 =ψ̄(0)φ(0)−

∫ 0

θ=−τ1

∫ θ

ζ=0

ψ
T
(ζ − θ)dη(θ, µ)φ(ζ)dζ. (34)
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Using the above definition of inner product, we can easily verify that the eigenvectorsp andq satisfy the conditions

〈p,q〉 = 1 and 〈p, q̄〉 = 0 when

D =
(

φ2

(

1 + κξbτ1e
−iω0τ1 + κξdφ1τ2e

−iω0τ2
)

+ φ1

(

1 + κχdτ2e
−iω0τ2 + κχbτ1e

−iω0τ1
)

)

−1

. (35)

The critical eigenspace corresponding to the pair of eigenvalues±iω0, denoted byTc, is now 2−dimensional and

is spanned by{Req, Imq}, whereReq and Imq denote the real and imaginary parts ofq respectively. Further,

we denote the complement of the critical eigenspaceTc asTsu. We now project system (30) ontoTc andTsu. For

ut, a solution of (30) atµ = 0, define

z(t) = 〈p,ut〉, and w(t, θ) = ut(θ)− 2Re
(

z(t)q(θ)
)

. (36)

Recall that, the center manifold,C0 is tangent to the critical eigenspace at the equilibrium. The representation

of the center manifold is

w(t, θ) = w
(

z(t), z̄(t), θ
)

, where

w(z, z̄, θ) = w20(θ)
z2

2
+w11(θ)zz̄ +w02(θ)

z̄2

2
+ · · · . (37)

Here,wij(θ), for all i, j ∈ {0, 1, 2} is a two dimensional vector given as

wij(θ) =
[

wij1(θ) wij2(θ)
]T

.

We observe that,z and z̄ are the local coordinates on the manifoldC0 in the direction of the eigenvectorsp and

p̄ respectively. Further, note that the existence of the center manifold C0 ensures that equation (30) can now be

reduced to an ordinary differential equation for a single complex variablez on C0. At µ = 0, in the coordinates

(36), the dynamics ofz can be represented as

ż(t) = 〈p,Aut +Rut〉

= iω0z(t) + p̄(0) · F
(

w(z, z̄, θ) + 2Re
(

z(t)q(θ)
)

)

= iω0z(t) + p̄(0) · F0(z, z̄)

= iω0z(t) + g(z, z̄). (38)

Now, we can expand the functiong(z, z̄) in powers ofz and z̄ as

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (39)

We now need to determine the coefficientsw11(θ), w20(θ), w02(θ) in equation (37) to solve the differential equation

(38) for z. Following [8] we can writeẇ = u̇t − żq− ˙̄zq̄, and using (30) and (38) we obtain

ẇ =











Aw − 2Re
(

p̄(0) · F0q(θ)
)

, θ ∈ [−τ1, 0),

Aw − 2Re
(

p̄(0) · F0q(0)
)

+ F0, θ = 0,

which, using (37), can be rewritten as

ẇ = Aw +H(z, z̄, θ). (40)
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Here, the functionH(z, z̄, θ) can be expanded in powers ofz and z̄ as

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (41)

Here,Hij(θ), for all i, j ∈ {0, 1, 2} is a two dimensional vector given as

Hij(θ) =
[

Hij1(θ) Hij2(θ)
]T

.

Now, on the center manifoldC0, near the origin

ẇ = wz ż +wz̄ ˙̄z. (42)

We now use equations (37) and (38) to replacewz and ż (and their conjugates) and equate this with (42) to get

(2iω0 −A)w20(θ) = H20(θ),

−Aw11(θ) = H11(θ),

−(2iω0 +A)w02(θ) = H02(θ), (43)

as in [8]. Now, we observe that

ut(θ) = w(z, z̄, θ) + zq(θ) + z̄q̄(θ)

= w20(θ)
z2

2
+w11(θ)zz̄ +w02(θ)

z̄2

2
+ zeiω0θ + z̄e−iω0θ + · · · , (44)

from which we obtainut(0), ut(−τ1), andut(−τ2). We now proceed to expand the non-linear terms present in

equation (27) using equation (44) and retain only the coefficients ofz2, zz̄, z̄2, z2z̄. They are summarised as below:

u2
1,t(0) = z2 + z̄2 + 2zz̄ + z2z̄

(

w201(0) + 2w111(0)
)

+ · · · ,

u2
2,t(0) = φ2

1z
2 + φ̄1

2
z̄2 + 2φ1φ̄1zz̄ + z2z̄

(

w202(0)φ̄1 + 2w112(0)φ1

)

+ · · · ,

u2
1,t(−τ1) = z2e−2iω0τ1 + z̄2e2iω0τ1 + 2zz̄ + z2z̄

(

w201(−τ1)e
iω0τ1 + 2w111(−τ1)e

−iωτ1
)

+ · · · ,

u2
2,t(−τ2) = φ2

1z
2e−2iω0τ2 + φ̄1

2
z̄2e2iω0τ2 + 2φ1φ̄1zz̄ + z2z̄

(

w202(−τ2)φ̄1e
iω0τ2 + 2w112(−τ2)φ1e

−iωτ2
)

+ · · · ,

u1,t(0)u1,t(−τ1) = z2e−iω0τ1 + z̄2eiω0τ1 +
(

eiω0τ1 + e−iω0τ1
)

zz̄ + z2z̄
(w201(0)

2
eiω0τ1 + w111(0)e

−iω0τ1

+ w111(−τ1) +
w201(−τ1)

2

)

· · · ,

u1,t(0)u2,t(−τ2) = φ1z
2e−iω0τ2 + φ̄1z̄

2eiω0τ2 +
(

φ̄1e
iω0τ2 + φ1e

−iω0τ2
)

zz̄ + z2z̄
(

φ̄1
w201(0)

2
eiω0τ2

+ φ1w111(0)e
−iω0τ2 + w112(−τ2) +

w202(−τ2)

2

)

· · · ,

u1,t(−τ1)u2,t(−τ2) = φ1z
2e−iω0(τ1+τ2) + φ̄1z̄

2eiω0(τ1+τ2) +
(

φ̄1e
iω0(τ2−τ1) + φ1e

−iω0(τ2−τ1)
)

zz̄

+ z2z̄
(

φ̄1
w201(−τ1)

2
eiω0τ2 + φ1w111(−τ1)e

−iω0τ2 + w112(−τ2)e
−iω0τ1 +

w202(−τ2)

2
eiω0τ1

)

· · · ,
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u2,t(0)u2,t(−τ2) = φ2
1z

2e−iω0τ2 + φ̄1
2
z̄2eiω0τ2 + φ1φ̄1

(

eiω0τ2 + e−iω0τ2
)

zz̄ + z2z̄
(

φ̄1
w202(0)

2
eiω0τ2

+ φ1w112(0)e
−iω0τ2 + φ1w112(−τ2) + φ̄1

w202(−τ2)

2

)

· · · ,

u2,t(0)u1,t(−τ1) = φ1z
2e−iω0τ1 + φ̄1z̄

2eiω0τ1 +
(

φ1e
iω0τ1 + φ̄1e

−iω0τ1
)

zz̄ + z2z̄
(w202(0)

2
eiω0τ1

+ w112(0)e
−iω0τ1 + φ1w111(−τ1) + φ̄1

w201(−τ1)

2

)

· · · ,

u3
1,t(0) = 3z2z̄ + · · · ,

u3
2,t(0) = 3φ2

1φ̄1z
2z̄ + · · · ,

u3
1,t(−τ1) = 3z2z̄e−iωτ1 + · · · ,

u3
2,t(−τ2) = 3φ2

1φ̄1z
2z̄e−iωτ2 + · · · ,

u2
1,t(0)u1,t(−τ1) = z2z̄

(

2e−iω0τ1 + eiω0τ1
)

· · · ,

u2
1,t(0)u2,t(−τ2) = z2z̄

(

2φ1e
−iω0τ2 + φ̄1e

iω0τ2
)

· · · ,

u2
1,t(−τ1)u1,t(0) = z2z̄

(

e−2iω0τ1 + 2
)

· · · ,

u2
1,t(−τ1)u2,t(−τ2) = z2z̄

(

φ̄1e
−iω0(2τ1−τ2) + 2φ1e

−iω0τ2
)

· · · ,

u2
2,t(−τ2)u1,t(0) = z2z̄φ1

(

φ1e
−2iω0τ1 + 2φ̄1

)

· · · ,

u2
2,t(−τ2)u1,t(−τ1) = z2z̄φ1

(

φ1e
−iω0(2τ2−τ1) + 2φ̄1e

−iω0τ1
)

· · · ,

u2
2,t(0)u1,t(−τ1) = z2z̄φ1

(

2φ̄1e
−iω0τ1 + φ1e

iω0τ1
)

· · · ,

u2
2,t(0)u2,t(−τ2) = z2z̄φ2

1φ̄1

(

2e−iω0τ2 + eiω0τ2
)

· · · ,

u2
2,t(−τ2)u1,t(0) = z2z̄φ1

(

φ1e
−2iω0τ2 + 2φ̄1

)

· · · ,

u2
1,t(−τ1)u2,t(0) = z2z̄

(

φ̄1e
−2iω0τ1 + 2φ1

)

· · · ,

u2
2,t(−τ2)u2,t(0) = z2z̄φ2

1φ̄1

(

2 + e−2iω0τ2
)

· · · ,

u1,t(0)u1,t(−τ1)u2,t(−τ2) = z2z̄
(

φ̄1e
−iω0(τ1−τ2) + φ1e

iω0(τ1−τ2) + φ1e
−iω0(τ1+τ2)

)

· · · ,

u2,t(0)u1,t(−τ1)u2,t(−τ2) = z2z̄φ2
1

(

e−iω0(τ1−τ2) + eiω0(τ1−τ2) + e−iω0(τ1+τ2)
)

· · · .

Using the definitiong(z, z̄) = p̄(0) · F0(z, z̄) we then determine the coefficients ofz2, zz̄, z̄2 andz2z̄, which are

outlined below.

g20 = 2κD̄

(

φ̄2

(

ξaa + ξbbe
−2iω0τ1 + ξddφ

2
1e

−2iω0τ2 + ξabe
−iω0τ1 + ξadφ1e

−iω0τ2 + ξbdφ1e
−iω0(τ1+τ2)

)

+ χccφ
2
1 + χddφ

2
1e

−2iω0τ2 + χbbe
−2iω0τ1 + χcdφ

2
1e

−iω0τ2 + χbcφ1e
−iω0τ1 + χbdφ1e

−iω0(τ1+τ2)

)

,
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g02 = 2κD̄

(

φ̄2

(

ξaa + ξbbe
2iω0τ1 + ξddφ

2
1e

2iω0τ2 + ξabe
iω0τ1 + ξadφ̄1e

iω0τ2 + ξbdφ̄1e
iω0(τ1+τ2)

)

+ χccφ̄1
2
+ χddφ̄1

2
e2iω0τ2 + χbbe

2iω0τ1 + χcdφ̄1
2
eiω0τ2 + χbcφ̄1e

iω0τ1 + χbdφ̄1e
iω0(τ1+τ2)

)

,

g11 = κD̄

(

φ̄2

(

2ξaa + 2ξbb + ξddφ1φ̄1 + ξab
(

eiω0τ1 + e−iω0τ1
)

+ ξad
(

φ̄1e
iω0τ2 + φ1e

−iω0τ2
)

+ ξbd

(

φ̄1e
iω0(τ2−τ1) + φ1e

−iω0(τ2−τ1)
))

+ 2φ1φ̄1(χcc + χdd) + 2χbb + χcdφ1φ̄1

(

eiω0τ2 + e−iω0τ2
)

+ χbc

(

φ1e
iω0τ1 + φ̄1e

−iω0τ1
)

+ χbd

(

φ̄1e
iω0(τ2−τ1) + φ1e

−iω0(τ2−τ1)
)

)

,

g21 = 2κD̄

(

φ̄2

(

ξaa (w201(0) + 2w111(0)) + ξbb
(

w201(−τ1)e
iω0τ1 + 2w111(−τ1)e

−iωτ1
)

+ ξdd
(

w202(−τ2)φ̄1e
iω0τ2 + 2w112φ1(−τ2)e

−iωτ2
)

+ ξab
(w201(0)

2
eiω0τ1 + w111(0)e

−iω0τ1 + w111(−τ1)

+
w201(−τ1)

2

)

+ ξab
(w201(0)

2
φ̄1e

iω0τ2 + w111(0)φ1e
−iω0τ2 + w112(−τ2) +

w202(−τ2)

2

)

+ ξbd
(w201(−τ1)

2
φ̄1e

iω0τ2 + w111(−τ1)φ1e
−iω0τ2 + w112(−τ2)e

−iω0τ1 +
w202(−τ2)

2
eiω0τ1

)

+ 3ξaaa + 3ξbbbe
iω0τ1 + 3ξdddφ

2
1φ̄1e

−ıω0τ2 + ξaab
(

2e−iω0τ1 + eiω0τ1
)

+ ξaad
(

2φ1e
−iω0τ2 + φ̄1e

iω0τ2
)

+ ξabb
(

e−2iω0τ1 + 2
)

+ ξbbd
(

φ̄1e
−iω0(2τ1−τ2) + 2φ1e

−iω0τ2
)

+ ξaddφ1

(

φ1e
−2iω0τ2 + 2φ̄1

)

+ ξbddφ1

(

φ1e
−iω0(2τ2−τ1) + φ̄1e

−iω0τ1
)

+ ξabd
(

φ̄1e
−iω0(τ1−τ2) + φ1e

iω0(τ1−τ2) + φ1e
−iω0(τ1+τ2)

)

)

+ χcc

(

w202(0)φ̄1 + 2w112(0)φ1

)

+ χdd

(

w202(−τ2)φ̄1e
iω0τ2 + 2w112(−τ2)φ1e

−iωτ2
)

+ χbb

(

w201(−τ1)e
iω0τ1 + 2w111(−τ1)e

−iωτ1
)

+ χcd

(w202(0)

2
φ̄1e

iω0τ2 + φ1w112(0)e
−iω0τ2

+ φ1w112(−τ2) + φ̄1
w202(−τ2)

2

)

+ χbc

(w202(0)

2
eiω0τ1 + w112(0)e

−iω0τ1 + φ1w111(−τ1) + φ̄1
w201(−τ1)

2

)

+ χbd

(

φ̄1
w201(−τ1)

2
eiω0τ2 + φ1w111(−τ1)e

−iω0τ2 + w112(−τ2)e
−iω0τ1 +

w202(−τ2)

2
eiω0τ1

)

+ 3χcccφ
2
1φ̄1

+ 3χdddφ
2
1φ̄1e

−iω0τ2 + 3χbbbe
−iω0τ1 + χccdφ

2
1φ̄1

(

2e−iω0τ2 + eiω0τ2
)

+ χbccφ1

(

2φ̄1e
−iω0−τ1 + φ1e

iω0τ1
)

+ χcddφ
2
1φ̄1

(

e−2iω0τ2 + 2
)

+ χbddφ1

(

φ1e
−iω0(2τ2−τ1) + 2φ̄1e

−iω0τ1
)

+ χbbc

(

φ̄1e
−2iω0τ2 + 2φ1

)

+ χbbd

(

φ̄1e
−iω0(2τ1−τ2) + 2φ1e

−iω0τ2
)

+ χbcdφ1

(

φ̄1e
−iω0(τ1−τ2) + φ1e

iω0(τ1−τ2) + φ̄1e
−iω0(τ1+τ2)

)

)

. (45)

Note that, the expression forg21 hasw20(θ) andw11(θ) which we need to evaluate. Now, forθ ∈ [−τ, 0) from

(41), we have

H(z, z̄, θ) =− 2Re
(

q̄∗(0) · F0q(θ)
)

=− g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ)

=−

(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)

q(θ) −

(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)

q̄(θ),
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which when compared with (41) gives

H20(θ) = −g20q(θ)− ḡ02q̄(θ),

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (46)

Using equations (32) and (43), we have

ẇ20(θ) = 2iω0w20(θ) + g20q(θ) + ḡ02q̄(θ),

ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (47)

Solving the differential equations in (47), we get

w20(θ) = −
g20
iω0

q(0)eiω0θ −
ḡ02
3iω0

q̄(0)e−iω0θ + ee2iω0θ,

w11(θ) =
g11
iω0

q(0)eiω0θ −
ḡ11
iω0

q̄(0)e−iω0θ + f . (48)

The objective now is to determinee andf . We define,

H(z, z̄, 0) = −2Re
(

q̄∗(0) · F0q(0)
)

+ F0, (49)

whereF0 represents the non-linear terms that can be expanded in powers of z as

F = F20
z2

2
+F11zz̄ +F02

z̄2

2
+F21

z2z̄

2
+ · · · . (50)

Substituting the coefficients from the expansion ofF0 gives

H20(0) = −g20q(0)− ḡ02q̄(0) +
[

F201 F202

]T

,

H11(0) = −g11q(0)− ḡ11q̄(0) +
[

F111 F112

]T

. (51)

From (51) and (32), we obtain

g20q(0) + ḡ02q̄(0) =
[

F201 F202

]T

+





(κa11 − 2iω0)w201(0) + κa12w201(−τ1) + κa13w202(−τ1)

κa23w201(−τ) + κ(a21 − 2iω0)w202(0) + κa22w202(−τ2)



 ,

g11q(0) + ḡ11q̄(0) =
[

F111 F112

]T

+





κa11w111(0)− κa12w111(−τ1) + κa13w112(−τ2)

κa23w111(−τ1) + κa21w112(0) + κa22w112(−τ2)



 . (52)

We substitutew20(0),w20(−τ),w11(0) andw11(−τ) from (48) in (52) we gete and f of the form

e =
[

e1 e2

]T

and f =
[

f1 f2

]T

. (53)

Note that,e1, e2, f1 andf2 can be derived explicitly in terms of system parameters, which are outlined below:

e1 =
Y2Z1 − Y1Z2

X1Y2 −X2Y1
, e2 =

X1Z2 −X2Z1

X1Y2 −X2Y1
, f1 =

Q2R1 −Q1R2

P1Q2 − P2Q1
, f2 =

P1R2 − P2R1

P1Q2 − P2Q1
,

(54)
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where,

X1 = κa11 + κa12e
−2iω0τ1 − 2iω0, X2 = κa23e

−2iω0τ1 ,

Y1 = κa13e
−2iω0τ2 , Y2 = κa21 + κa22e

−2iω0τ2 − 2iω0,

P1 = κa11 + κa12, P2 = κa23, Q1 = κa13, Q2 = κa21 + κa22,

Z1 =
g20
iω0

(

−iω0 + κa11 + κa12e
−iω0τ1 + κa13φ1e

−iω0τ1
)

+
ḡ02
3iω0

(

iω0 + κa11 + κa12e
iω0τ1 + κa13φ̄1e

iω0τ1
)

−F201,

Z2 =
g20
iω0

(

− iω0φ1 + κa23e
iω0τ1 + κa21φ1 + κa22φ1e

iω0τ2
)

+
ḡ02
3iω0

(

iω0φ̄1 + κa23e
iω0τ1 + κa21φ̄1

+ κa22φ̄1e
iω0τ2

)

−F202,

R1 =
g11
iω0

(

iω0 − κa11 − κa12e
−iω0τ1 − κa13φ1e

−iω0τ1
)

+
ḡ11
iω0

(

iω0 + κa11 + κa12e
iω0τ1 + κa13φ̄1e

iω0τ1
)

−F111,

R2 =
g11
iω0

(

iω0φ1κa23e
iω0τ1 − κa21φ1 − κa22φ1e

iω0τ2
)

+
ḡ02
3iω0

(

iω0φ̄1 + κa23e
iω0τ1 + κa21φ̄1 + κa22φ̄1e

iω0τ2
)

−F112. (55)

Using e andf we evaluatew20 andw11, using which we computeg21. We now have all the terms required for

the analysis of Hopf bifurcation as follows, see [8]

c1(0) =
i

2ω0

(

g20g11 − 2|g11|
2 −

1

3
|g02|

2

)

+
g21
2

, (56)

µ2 = −
Re
(

c1(0)
)

α′(0)
, β2 = 2Re

(

c1(0)
)

, (57)

where c1(0) is the lyapunov coefficient andα′(0) = Re(dλ/dκ) |κ=κc
. The following conditions enable us to

verify the type of the Hopf bifurcation, and the asymptotic orbital stability of the limit cycles [8].

• The Hopf bifurcation issupercritical if µ2 > 0 andsub-critical if µ2 < 0.

• The limit cycles areasymptotically orbitally stableif β2 < 0 andunstableif β2 > 0.

Substituting the expression forg21 in (56) yields the expression forc1(0), which is the lyapunov coefficient. We

can then computeµ2 andβ2 using (57). We now present a numerical example, and compute the values ofµ2 and

β2 for Compound TCP in the small buffer regime.

Numerical Example:

We first fix the system parameters as follows:α = 0.3, k = 0.75, β = 0.5, B1 = 10, B2 = 15, B = 25,

C1 = C2 = 100, C = 180, τ1 = 1, andτ2. With these parameter values, the system undergoes a Hopf bifurcation

at κc = 1. We now increase the value of the non-dimensional parameterto κ = 1.05, and push the system beyond
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Fig. 5: Phase portraits.Emergence of limit cycle in the dynamics ofw2(t) in (3), for Compound TCP in the small

buffer regime, with the variation in the non-dimensional parameterκ. Observe that, (a) Trajectories converge to

stable equilibrium forκ = 0.95, (b) Trajectories converge to a stable limit cycle forκ = 1.05.

the edge of stability. Following the Hopf bifurcation analysis presented above, we compute the required expressions:

Re (c1(0)) = −0.0738 < 0, α′(0) = 0.3467 > 0

µ2 = 0.2129 > 0, β2 = −0.1477 < 0.

Thus, the Hopf bifurcation issupercriticaland the emergent limit cycles are asymptoticallyorbitally stable.

Phase portraits and bifurcation diagram:

We present the phase portrait for system (3), for Compound TCP in the small buffer regime, in Fig. 5. First, we

fix a pointα = 0.3, κ = 1, on the stability boundary in the stability chart as shown inFig. 3 (a). The remaining

system parameter values are fixed as mentioned above in the numerical example. We now plot the phase portrait

for the window size for the second set of TCP flows, forκ = 0.95 andκ = 1.05 respectively, as shown in Fig. 5.

Observe that, forκ = 0.95, the average window size of the second set Compound TCP flows converges to its

equilibrium value, as expected. For,κ = 1.05, the average window size exhibits orbitally stable limit cycles, as the

system undergoes a Hopf bifurcation atκ = 1. Note that, the average window size of the first set of Compound

flows can be shown to exhibit qualitatively similar dynamical behaviour. We now present the bifurcation diagram

for system (3), in Fig. 6, obtained from DDE-BIFTOOL version2.03. Observe that, the amplitude of the limit

cycles increases asκ is increased beyond1.

V. PACKET-LEVEL SIMULATIONS

In order to corroborate the analytical insights obtained, we conduct some packet-level simulations, for the multiple

bottleneck scenario, in NS2 [16]. The system consists of twodistinct sets of60 long-lived Compound TCP flows

each with an access speed of2 Mbps, regulated by two edge routers and feeding into one corerouter. Each edge
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Fig. 6: Bifurcation diagram.Emergence of limit cycles in the dynamics ofw2(t) at κ = 1 for system (3), with

Compound TCP flows in the small buffer regime. The amplitude of the emergent limit cycles increases for further

increase inκ.
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Fig. 7: Long-lived flows. Two sets of 60 long-lived Compound flows over a 2 Mbps link, regulated by two edge

routers, feeding into a core router with link capacity 180 Mbps. Observe the emergence of limit cycles in the queue

at the core router, for larger buffer thresholds, and largerround trip times.

router has a link capacity of100 Mbps, and the core router has a link capacity of180 Mbps. Since our primary

focus is on small buffers, we fix the buffer size for each edge router to be15 packets, and vary the buffer size of

the core router from15 packets to100. Further, we fix the round trip time of one set of flows to be10 ms, and the

round trip time of the other set is varied from10 ms to200 ms. The simulations are illustrated in Fig. 7. Observe

that, if the buffer sizes at all routers are fixed at15 packets, the queue at the core router is completely random,

and hence stable, since the queue does not exhibit any deterministic oscillations. When the buffer size at the core

router is increased to100 packets and the round trip time of the second set of flows is200 ms, the queue dynamics

exhibits limit cycles. Hence, larger queue thresholds are prone to inducing limit cycles, for larger round trip times.

These limit cycles in the queue size lead to synchronisationamong TCP flows and make the downstream traffic

bursty.

April 20, 2016 DRAFT



23

VI. CONCLUDING REMARKS

We considered three different topologies, and conducted a detailed local stability analysis with two simplifying

assumptions, to obtain necessary and sufficient conditionsfor stability. To aid our analysis, we motivated a suitable

non-dimensional bifurcation parameter, and illustrated that, the underlying dynamical systems lose stability if the

bifurcation parameter is varied. Further, in the multiple bottleneck scenario, even without any simplifying assump-

tions on the system parameters, we numerically identified that the system loses stability via a Hopf bifurcation. A

key insight obtained was the trade-off between different system parameters to ensure stability, as illustrated through

some stability charts. After knowing that a system exhibitsa Hopf, it is natural to have a framework to determine the

asymptotic orbital stability of the bifurcating limit cycles. To that end, using Poincaré normal forms and the center

manifold theory, we conducted a detailed Hopf bifurcation analysis, in the neighbourhood of the Hopf condition.

To corroborate our analytical insights, we conducted some packet-level simulations to highlight the existence and

stability of limit cycles in the queue size dynamics as system parameters vary.

The insights obtained in this paper could have important consequences for the modelling and the performance

evaluation of communication networks. From a theoretical perspective, this opens many challenging questions

centred around the development of accurate fluid models for TCP and queue management policies. From a practical

perspective, the emergence of stable limit cycles could have an impact on the end-to-end quality of service – these

issues merit further investigation.
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APPENDIX

TABLE I: Coefficients in the Taylor series expansion of the non-linear fluid model (3) with Compound TCP and

Drop-tail queue policy evaluated at the equilibrium(w∗

1 , w
∗

2). Here, the termp′ represents the partial derivative of

p with respect to the variables as given by the subscripts.

ξa =
∂f1

∂w1(t)

w∗

1

τ1

(

i
′

1,ad
∗

1
− i∗

1
d
′

1,a

i∗
1
+ d∗

1

)

ξb =
∂f1

∂w1(t− τ1)
−
w∗

1

τ1
(i∗1 + d∗1)

(

p
′

1,b + q
′

b

)

ξd =
∂f1

∂w2(t − τ2)
−
w∗

1

τ1
q
′

d (i∗1 + d∗1)

ξaa =
1

2

∂2f1

∂w2

1
(t)

w∗

1

τ1

(

i
′′

1,ad
∗

1
− i∗

1
d
′′

1,a

i∗
1
+ d∗

1

)

ξbb =
1

2

∂2f1

∂w2

1
(t − τ1)

−
1

τ1
(i∗1 + d∗1)

(

p
′′

1,bbw
∗

1 + q
′′

bbw
∗

1 + 2p
′

1,b + 2q
′

b

)

ξdd =
1

2

∂2f1

∂w2

2
(t − τ2)

−
w∗

1

τ1
q
′′

dd (i∗1 + d∗1)

ξab =
∂2f1

∂w1(t)∂w1(t − τ1)

i
′

1,a

τ1
−

1

τ1

(

p∗1 + q∗ + p
′

1,bw
∗

1 + q
′

bw
∗

1

)(

i
′

1,a + d
′

1,a

)

ξad =
∂2f1

∂w1(t)∂w2(t− τ2)
−
w∗

1

τ1
q
′

d

(

i
′

1,a + d
′

1,a

)

ξbd =
∂2f1

∂w1(t− τ1)∂w2(t− τ2)
−

1

τ1
(i∗1 + d∗1)

(

q
′

d + q
′′

bdw
∗

1

)

ξaaa =
1

6

∂3f1

∂w3

1
(t)

w∗

1

τ1

(

i
′′′

1,ad
∗

1
− i∗

1
d
′′′

1,a

i∗
1
+ d∗

1

)

ξbbb =
1

6

∂3f1

∂w3

1
(t − τ1)

−
1

τ1
(i∗1 + d∗1)

(

p
′′′

1,bbbw
∗

1 + q
′′′

bbbw
∗

1 + 3p
′′

1,bb + 3q
′

bb

)

ξddd =
1

6

∂3f1

∂w3

2
(t − τ2)

−
w∗

1

τ1
q
′′′

ddd (i∗1 + d∗1)
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