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Abstract

We conduct a local stability and Hopf bifurcation analysis Compound TCP, with small Drop-tail buffers, in
three topologies. The first topology consists of two sets @PTlows having different round trip times, and feeding
into a core router. The second topology corresponds to tveaieglin tandem, and consists of two distinct sets of TCP
flows, regulated by a single edge router and feeding into a mmuter. The third topology comprises of two distinct
sets of TCP flows, regulated by two separate edge routersieadihg into a common core router. For each of these
cases, we conduct a detailed local stability analysis andimlzonditions on the network and protocol parameters
to ensure stability. If these conditions get marginallylaied, our analysis shows that the underlying systems would
lose local stability via a Hopf bifurcation. After exhibig a Hopf, a key concern is to determine the asymptotic
orbital stability of the bifurcating limit cycles. We pragea detailed analytical framework to address the stahilfty
the limit cycles, and the type of the Hopf bifurcation by ikiy Poincaré normal forms and the center manifold
theory. We conduct packet-level simulations to highlighg existence and stability of the limit cycles in the queue

size dynamics.

Index Terms
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|I. INTRODUCTION

Network performance, and end-to-end latency are affecyed bombination of the choice of TCP, the size of

router buffers, and the choice of queue management impliemém Internet routers [1]1[5]/[10]. A major portion
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of Internet traffic is controlled by the Transmission Coh®ootocol (TCP)[[7],[11]. There have been proposals for
different flavours of TCP and queue management strateg@seter, Compound TCP_[15] is the default protocol
in Windows, and a simple Drop-Tail queue management is contyrimplemented in Internet routers. It has been
argued that the default large buffer dimensioning rule éurter buffers, combined with Drop-Tail, leads to excessive
delays in the Internet [5].

In our recent work[[6], we conducted a performance evalnatib Compound TCP, in a small buffer regime,

with particular emphasis on buffer thresholds. One of theiksights obtained therein was the two-fold advantage
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of having small router buffers. In particular, our analysitowed that small buffers are favourable for ensuring
the stability of the system, in addition to reducing queudedays. Furthermore, our analysis identified that the
underlying dynamical systems undergo a Hopf bifurcatiow &ansit from a locally stable into an unstable regime
as the buffer size increases. The Hopf bifurcation alert®oube emergence of isolated periodic orbits, termed as
limit cycles, as a parameter crosses a certain criticalevdlu addition, we repeatedly observed limit cycles in the
queue size dynamics, in numerous packet-level simulatiigs[d portrays one such instance; indeed, it captures
the emergence of limit cycles in the queue size of the coréerda a single bottleneck topology. This motivates
us to develop an analytical framework under which the enrergeof these non-linear oscillations can be better
understood. To that end, in this paper, we provide a compleédytical characterisation of the type of the Hopf
bifurcation, and prove the orbital stability of the emergkmit cycles.

We consider three different topologies, and focus on airadythe dynamical properties of a fluid model of
Compound TCP in conjunction with small Drop-Tail buffersurGluid model takes the form of a non-linear, time-
delayed dynamical system. The first topology is a genetalisaf the single bottleneck topology studied|in [6], and
consists of two sets of TCP flows having different round tiipets, and feeding into a core router (see Elg. 2(a)).
The second topology corresponds to two queues in tandentarsists of two distinct sets of TCP flows, regulated
by a single edge router and feeding into a core router (se€Zfiy). The third topology comprises of two distinct
sets of TCP flows, regulated by two separate edge routersfeaaiéhg into a common core router (see Eig. 2(c)).

For each of these cases, we first conduct a local stabilitlysisaand outline necessary and sufficient conditions
for local stability, with two simplifying assumptions. Ihe first scenario, we assume that the network parameters
are the same, and that both sets of Compound TCP flows havéregud trip times. In the second scenario, we
assume the network parameters to be heterogeneous, amsutiae trip time of one set of TCP flows to be much
larger as compared to the other. If the local stability ctods get marginally violated, our analysis shows that the
underlying systems would lose local stability via a Hopfubdfation. Motivated by this insight, we then analyse
only the third topology in greater detail, to better undemst the impact of heterogeneous system parameters on
local stability. We numerically show through DDE-BIFTOQR]][ [4] that, even in the presence of heterogeneous
network parameters and different round trip times, the dyinal system undergoes a Hopf bifurcation which leads
to the emergence of limit cycles.

As argued in[[B], the emergence of limit cycles in the systgmadnics could have a number of detrimental
consequences — for example it could lead to the synchramisat TCP windows, result in a loss in link utilisation,
and cause the downstream traffic to be bursty. Hence, it besamperative to study these limit cycles in further
detail. To that end, an important contribution of this pales in providing an analytical framework to determine
the asymptotic orbital stability of the emerging limit cgsl Using Poincaré normal forms and the center manifold
theory, we show that the Hopf bifurcation is indeed supgcati, and hence leads to the emergence of orbitally
stable limit cycles. To corroborate our analytical insggjhwe conduct some packet-level simulations in NS2 [16],
to highlight the existence and stability of the limit cycli@esthe queue size dynamics. Notably, instead of treating

any particular system parameter as the bifurcation paemmee choose a suitably motivated exogenous, non-
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Fig. 1: Long-lived flows 60 long-lived Compound flows over a 2 Mbps link, and feedinip ia core router with
link capacity 100 Mbps. Observe the emergence of limit cydfethe queue at the core router, for larger buffer

thresholds, and larger round trip times.

dimensional parameter as the bifurcation parameter to @ichnalysis. The two main advantages of this are: first,
it enables us to capture the effects of different systemmatars on the system stability in a unified manner and
secondly, we need not be concerned about the dimension dfifimeation parameter.

The rest of the paper is as organised as follows. In seCfomdloutline the governing fluid models for the three
cases we consider. Sectibnl Il deals with local stabilitplgsis of the fluid models. In SectignllV, we provide an
analytical framework to determine the asymptotic orbitabdgity of the bifurcating limit cycles, and to charactai
the type of the Hopf bifurcation. Packet-level simulaticare presented in Sectign V to corroborate some of the

analytical insights. Finally, in sectidn VI, we summarisg @ontributions.

Il. MODELS

In this section, we consider two distinct sets of TCP flowsitgndifferent round trip times; and r in three
topologies. For our analysis of these models, we primanlyué on long-lived flows. We assume that both sets
of TCP flows can be of different flavours and hence, can haverdiit increase and decrease rules to govern the
evolution of the corresponding window sizes. Let the averagndow sizes of the two sets of flows he (t)
and ws(t) respectively. For each acknowledgement received, theageewindow sizes increase by(w; (t)) and
i2(w2(t)), and for each packet loss detected, the average window dee®ase byl (w;(t)) and da(wa(t))
respectively. Note that, the increase and decrease funscfr a particular TCP flavour depend on the protocol

parameters. Further, the loss probability at the routegoiserned by the corresponding AQM strategy.

A. Fluid models for TCP

Now, we briefly outline the fluid models for the evolution ofthverage window sizes of the two sets of TCP

flows in the congestion avoidance phase for three topologies
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Case |

This model consists of a single bottleneck link with two ihist sets of TCP flows feeding into a common core
router, as shown in Fid] 2(a). The core router has a buffer sfzB, with link capacityC. Thus, for generalised

TCP flows, the non-linear, time-delayed, fluid model of thetsyn is given by the following equations:

dw;(t)  w;(t—15)

= ( (w; (®) (1= glt.m1, 7)) = d; <<wj<t>>q<t,n,m>), j=12, 1)

dt Tj

whereq(t, 71, 72) represents the packet loss probability at the core routerdepend on the sending rates of both

sets of TCP flows.

Case |l

This model consists of two distinct sets of TCP flows, regdaby a single edge router and feeding into a
common core router, as shown in Hig. 2(b). The buffer sizab@fcore router and the edge routers Bieand B,
with link capacitiesC; and Cs respectively. Thus, for generalised TCP flows, the noralingme-delayed, fluid

model of the system is given by the following differentialuatjons:

dwdjt(t) = wj(trj_ ) (27 (w;(1)) (1 —q(t,m1,72) — %(hﬁﬁz))) —dj ((w; (1) (1 (t, 71, 72) + q2(t, 71, 72)) ),
2

for j = 1,2, andq: (¢, 71, 72) and ¢z (t, 71, 2) denote the packet loss probabilities at the edge router lenddre

router respectively.

Case Il

This model consists of two distinct sets of TCP flows, regddiy two edge routers and feeding into a common
core router, as shown in Figl 2(c). The buffer size at the conter is B, with link capacityC. The buffer sizes
for the edge routers arB;, and B,, with link capacitiesC; andC; respectively. Thus, for generalised TCP flows,

the non-linear, time-delayed, fluid model of the system i&giby the following equations:

) D (4 y o) (1= 3= ) = ) = &5 @) (st = 7 + ot ) ). @)

dt Tj

for j = 1,2. The loss probabilities at the two edge routers gr&) and p»(t). The loss probability at the core
router is denoted by (¢, 1, 72). Recall that, the increase and decrease functions arefisptecithe choice of a
particular flavour of TCP. Specifically, [L3] has summarisieel increase and decrease functions for different TCP
flavours including Compound. Since our primary focus is oomPound TCP, we state the increase and decrease

functions for Compound as follows:

i(w(t)) = a(wt)"!, andd(w(t)) = ful(t). (4)
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Fig. 2: Schematic diagrams of three topologiés) Case |, a single bottleneck topology (b) Case I, twoemitn

tandem and (c) Case lll, two routers feeding into one corgerou

Here,«a, k are the increase parameters ghi the decrease parameter. The default values of these gtnare

a=0.125, k = 0.75 and 3 = 0.5 [15].

B. Packet loss probability

In this paper, we mainly focus on small buffers with Drop}T@ieue policy for the local stability analysis of
the non-linear fluid models of TCP given Hyl (1)] (2) ahd (3). fivst consider the scenario wherdaage number
of long-lived TCP flows having a common round trip timesofeed into a router having a buffer size 8f The
bottleneck link has a capacity. In this scenario, we can approximate the packet loss pililyadf the router by

the blocking probability of an//M/1/B queue[[1B]. This gives rise to the following fluid model:

o0 = (42)" ©

wherew(t) represents the average window size of the TCP flows. Usihgw@®)can then obtain the functional
forms of packet loss probabilities for the three scenandgch we briefly outline as follows:

Case [: The fluid model for the loss probability at the core router iigeg by

B
0 - (202002 o
Case II: The fluid models for the loss probabilities are:
Bg Bl
() = wi®)/m+wa/r2 0o(t) = wi(t)/71 + wa(t)/m2\ ™ %
Cg C'1
Case lll: Using [8), we can approximate the loss probabilities atorarirouters as below:
_ (wm®\"” _(wa()\
pl(t) - (0171 ) ) p?(t) - (027-2 ) a’nd
B
o) = (O L) ®)

Using these functional forms, we now proceed to perform allstability and bifurcation analysis for the systems
given by [1), [[2) and[{3). This would enable us to understdmeddynamical properties of the coupled system of
Compound TCP with Drop-Tail queue policy to a greater detail
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IIl. L OCAL STABILITY ANALYSIS

Note that, to perform a local stability and bifurcation arsid for the non-linear modelgI(1),]1(2) ard (3), we need
to choose an appropriate bifurcation parameter. It can B#dyeseen that both protocol and network parameters
affect the stability of the systems. To that end, insteadrediting any of the system parameters as a bifurcation
parameter, we introduce an exogenous non-dimensionaigéeax as the bifurcation parameter. We choose the
non-dimensional parameter in such a manner that it doesffestt ahe equilibrium of the system. Recall that, to
conduct the local stability analysis, we primarily focus Gompound TCP with Drop-Tail queues in the small
buffer regime. For mathematical tractability, we assume thoth sets of TCP flows in all three topologies are
regulated by Compound with identical protocol parametEtsther, we consider two simplifying assumptions as

briefly outlined below:

Scenario 1:All network parameters are the same.,, B; = By = B, andC; = Cy; = C. Further, the round

trip times of both TCP flow sets are identicag.,, 71 = » = 7.

Scenario 2:In this scenario, we assume that all network parametersistiaa and the round trip time of one set
of TCP flows is negligible and much smaller as compared to dbed trip time of the other sete, » >> 75 and

9 =~ 0. Under this assumption, the dynamics of the second set of fll®R appear almost instantaneous.

We now proceed to conduct a detailed local stability analygsbdbtain bounds on network, and protocol parameters

to ensure stability, for the systems given by (L, (2) ddd (3)

Case |

The schematic diagram of the topology is presented in[Fi). 2(

Scenario 1:With this assumption, the first model reduces to a singleldratk link with only one set of TCP
flows having round trip timer; = » = 7. Hence, with the non-dimensional bifurcation parametesystem [(IL)
reduces to the following non-linear, first-order, timeajedd differential equation:

dzt;it) _ Kw(t —7) (z (w(t)) (1 —q(w(t — T))) —d((w(t)) q(w(t — T))), 9)

T

wherew(t) is the averagewindow size of the TCP flows. The non-trivial equilibrium® of system[(P) satisfies
the following equation
i(w*) = d(w*)g(w"). (10)

Note that, under the first assumption, the fluid model for thekpt loss probability at the core router, given by (6)

reduces to

a(w) = (gT)B (11)
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at equilibrium. A necessary and sufficient condition fosthiodel, with Compound TCP in the small buffer regime
is [13]

v (w1 B2 — ((k — 2) (1 - g(w")))? < cos™ (““ “20- ‘1(“’*”> . (12)
Scenario 2:With the introduction of the non-dimensional parametesystem [(P) becomes
1) = () (0 gt ,m) = d () a1, 1072) ).
ia(t) = w2 (i wa(0) (1 = gt 1, ) = d (o) 7)) (13)

Supposgw;,w3) is a non-trivial equilibrium of[(I13) and let; (t) = wi (¢) — wi andua(t) = wa(t) — wi be small

perturbations about} andws respectively. Linearisind (13) about this equilibrium, wietain

ul(t) = —K (M1u1 (t) +N1U1 (t - Tl) + Pﬂig(t)) ,

’llg(t) —K ((Mz +N2)u2(t) + qul(t — Tl)) , (24)

where, the increase and decrease functions for Compoundgih@R by [4), and the functional form of the loss

probability at the core router given blyl(6) yield the followi coefficients:

B
Q o k-1 1 [wy  w;
Mi=-2 (k=2 (w5) (1_§(r_11+7_22) )

%) 2 * «\ B—1
N = B (w}) (a (w;)k—2+ﬁ) (ﬂJrﬂ) ’

Tj2 (C)B I T2
2
B (w}) k-2 wi wi\P!
P:iﬂ(a w? +B)<—1+—2) : (15)
T oam(0)? (1) T T2
for 7 = 1,2. Looking for exponential solutions, we obtain the charastie equation for the linearised system1(14)
as
A2 4 kad 4+ kbAe M 4 kZee M 4 k2d = 0. (16)
where,

a=Mi+Msy+ Ny s szQa
c= M (Mas +N2), d=MN (Mo +N2)—’P1P2- (17)

For system[(TI3) to be locally stable about the equilibritinf, w3), all roots of the characteristic equatidn(16)
should lie in the left half of the complex plane. It can be shathat, for negligibly small values of the non-
dimensional parametet, the system is stablé,e., all the roots would have negative real parts. Howevers as
is increased beyond a critical value, one pair of compleXugmate roots may cross over the imaginary axis, and
hence have positive real parts. At this critical value thstesyn would transit into an unstable region and have a

pair of purely imaginary roots. To deduce this point, we $itilite A = jw in (I6) and separate real and imaginary
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parts to get

s K2(2c—a®+b?) n K2/ (2c — a? + b2)2 — 4(c% — d?)

w 2 2

Condition * There exists only one positive value ©f if the following conditions hold
(i) (2c—a®+b%) >0,and(2c — a? + b?)? = 4(c* — d?)
(i) (2¢—a®+b?) > 0,andc? —d? <0

Condition 2 There exists two positive value aof® if the following condition holds
(2¢ — a® +b?) > 0,and(c* — d*) > 0.

When Condition 1 is satisfied, the system transits from tleallp stable regime to instability asincreases beyond

a critical value, and never regains stabilityags further increased. On the contrary, when Condition 2 isfed,

the system may undergo stability switches«as increased [2]. In the context of congestion control dtpans, the
stability switch phenomenon is an undesirable dynamicatiufe. Further, we have observed in numerous packet-
level simulations that Compound TCP does not exhibit stgtslwitches. Hence, we focus only on the case when
Condition 1 is satisfied, and only one positive root.gfexists. This implies that there exists a cross over frequenc
at which one pair of complex conjugate roots crosses ovemtlaginary axis, and is given hy = kA, where

\/(2c—a2+b2) V(2c—a? +b2)2 — 4(c2 — d?)
A= 5 + 5 .

The critical value ofx denoted byk,., at which this transition occurs, is given by

1 1 (A%(d—ab) —cd
wo= g (TEEra ) (18)

Case ll

The schematic diagram of the topology is illustrated in Bigh).

Scenario 1:With this assumption, the second model reduces to a singlef S&CP flows, regulated by an edge
router, and feeding into a core router. Observe that, treegosbabilities at both routers are the same. Hence, with the
non-dimensional bifurcation parameter system[(lL) reduces to the following non-linear, first-oydiene-delayed
differential equation

dw(t) _ w(t—7) <Z (w(®) (1 ~ plw(t — 7))) —d ((w(t)) glw(t — T))) ; (19)

dt T
wherew(t) is the average window size of the TCP flows. Using the funetiéorms of loss probabilities given by

(@), we obtain

«\ B
w
) =2 =2 .
) =2007) =2 ()
The critical value ofx, at which system[{19) loses its stability, satisfies theofeihg equation

e (w1 /B2 — ((k —2) (1 p(w))? = cos™? (<k —20- p“”*”) . (20)
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Scenario 2:With the introduction of the non-dimensional parametesystem[(R) reduces to
dwl(t) - wl(t —7'1)

P o (2 (w1 (t)) (1—Q1(taTlaT2)—(J2(faT1,Tz))) —d((wi(t)) ((J1(t771772)+(J2(f,T1772))),
dU)Q(t) ng(t)

= (z (wa (1)) (1 — it T, ™) — gty T, 72))) — d((wa(®)) (qu(t, 71, 72) + go(t, 71, 72)) > (1)

Linearising [Z21) about its non-trivial equilibriurfw?, w3 ), we obtain

ul(t) = —K (M1u1 (t) +N1U1 (t — Tl) + Pﬂig(f)) N

Ua(t)

—K ((Mz +N2)u2(t) + qul(t - 7'1)) , (22)

where, for Compound TCP, the increase and decrease fusdddrand the functional forms of the loss probabilities
given by [T) yield the following coefficients

o k—1 1 (wr wi\P 1 [wt \ B2
= _ (k-2 3 T [y -1, 22 — 14 72
M, Tj( )(wj) ( <Cf31 (Tl + Tz) 0232 (n + To ’

* * %\ Bi1—1 * Bs—1
. o\ k—1 A Wi Bl fw] w3 By (wi  w
M= (o) *ﬁwa‘)?<@(:+— o latn) )

N *

T2 0232 T1 T2
* * * Bi1—-1 * * Bz—1
oy k1 N Wi B fwp | ws By (wy  ws
= ; o 142 a4 23
& (a(wj) +ﬁw3)7172<0131<71+72 +0232 T ’ (22)

for j = 1,2. Observe that, the linearised systdml(22) has a similar f&ff4). Hence, conducting a similar kind

of analysis as done for systefn 21), we obtain the critichlevaf the non-dimensional parameteras given by

9.

Case Il

The schematic diagram for this topology is illustrated ig.E(c).

Scenario 1: For Compound TCP in the small buffer regime, the criticalueabf x, denoted byk., at which

system[(B) transits into a locally unstable regime, sasistie following condition:

_ _ B w*
m:a(w*)’“1JBQ—(k—2>2<1—<1+23>p<w*>>2<cos1(““ 2)( <;+2 L >)>.

Scenario 2: With the introduction of the non-dimensional parametex3) reduces to

dw;t(t) _ ,{wl(tﬁ— T1) <z (w1 () (1 —p1(t—m71) — q(t, 11, 7'2))) —d((wi(®) (p1(t —71) + q(t, 71, 72)) >7
dw;t(t) _ ﬁwiit) (z (w5(8)) (1= p2(t) = alt,71,72))) = d (w; (1)) (2(t) + alt, 71, 7)) ) (24)

Linearising [24) about its equilibriurw}, w3 ), we obtain

Ul(t) = —K (./\/llul(t) +./\/1u1(t — 7’1) + P1U2(t)) y

’llg(t) = —K ((Mz +N2)u2(t) + qul(t — Tl)) , (25)
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Fig. 3: Stability chart.Hopf condition for [8) with Compound TCP in the small buffegime with respect to two
sets of parameters: (a) the non-dimensional parametand the protocol parameter, (b) the non-dimensional
parameterk, and the buffer size at the core router The shaded region below the Hopf condition curve reprasent

the stable region.

where, for Compound TCP, and the functional forms of the jossbabilities given by[(8) yield the following

My =~ —2) () (1 (2 L A
o wj Cy7j CEBE\m ’
* B %\ 2 B—1
(ol g (B (e N B)” (wp | wg
Ai= (a (15) +ﬂwj) <Tj (Cﬂj> ToEr T T ’

- Buw} T
P (o) ) — g (M 22) 28)

T1T2 (C)B T1 T2

for 7 = 1,2. Note that, the linearised system {25) has a similar forni_Lds fdence, a similar kind of local stability

coefficients

analysis would yield the condition on the critical value bktnon-dimensional parameter and the protocol
parameters as given bl (18).

For all three scenarios, with the simplifying assumptiathg, conditions derived above essentially capture the
interdependence among the non-dimensional parametand the system parameters to ensure local stability.
Observe that, the loss of local stability can be studied wapect to any system parameter. However, we prefer to
choose an exogenous parameter as the bifurcation paratoedist our analysis. It can be explicitly shown that, for
all the above cases, the system loses local stability via jaf Hifurcation [8] if the conditions derived above get
violated. We prove this by verifying that the transvergationdition of the Hopf spectrum [8]. To verify this, we
show thatRe(d\/dk) # 0 at k = k.. In particular, we prove thaRRe(d\/dx) > 0 at k = k.. This implies that,
one pair of complex conjugate roots crosses over the imagands from the left half of the complex plane to the
right half. Thus, the system undergoes a Hopf bifurcatior at .. Hence,x < k. is a necessary and sufficient

condition for local stability, for all the three scenarios.
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Observe that, deriving a necessary and sufficient condititin heterogeneous network parameters, and different
round trip times is analytically complex, for all three saéps discussed earlier. Hence, we numerically illustrate
through DDE-BIFTOOL version 2.037][3].[4], that systel (3)dergoes a Hopf bifurcation if the non-dimensional
parameters is varied beyond a certain critical value. We fix the protggafameters as followst = 0.3, 5 = 0.5
and k£ = 0.75. Since, we mainly focus on small buffer regime, the buffeesiof the routers are fixed aB; =
10, By = 15, and B = 25. We fix the remaining network parameters 5. = Co = 100, C = 180, ; = 1 and
79 = 2. Now, we vary the non-dimensional parametein the rangel0, 2] and observe that the system undergoes
a Hopf bifurcation atk. = 1. At this point, the system has one pair of complex conjugatgsron the imaginary
axis. Consequently, the system dynamics exhibit limit egcts,. = 1.

Stability charts: To obtain insights about the system behaviour at the staliibundary, we now demonstrate
some stability charts for systeml (3). Fid. 3 (a) represdmsHopf condition for systeni{3) in the two parameter
space: the non-dimensional parameteand the protocol parametaer Observe that, if is increasedy would have
to reduce to ensure stability. FI[d. 3 (b) illustrates the Hmmdition in the two parameter space: the non-dimensional
parametek, and the buffer size at the core roufér Observe that, it is increased, keeping other system parameters
fixed, B would have to be decreased accordingly to ensure stabflisystem [B). Figl4 characterises the stability
boundary of systeni{3) with respect to the increase protpadmetersy and k. It is evident that, there exists a
trade-off between the increase parameters to ensureitstabénce, we conclude that, both protocol parameters, and
network parameters, need to be co-designed carefully tataiaistability of system{3). If these Hopf conditions
get violated, the system would lose stability leading to éngergency of limit cycles in the system dynamics. In
the next section, we provide a detailed analytical framé&worcharacterise theg/pe of Hopf bifurcation and the

asymptoticorbital stability of the emergent limit cycles, for systef (3).

IV. HOPFBIFURCATION ANALYSIS

We have seen that, variation in the exogenous paramadtetuces instability in system. Instability in the system
could be induced by any of the system parameters. This lostatility occurs via a Hopf bifurcation which
results in limit cycles in the system dynamics which in tueads to deterministic oscillations in the queue size.
Consequently, this results in the overall degradation efdjsstem performance because of loss in link utilisation.
To that end, it becomes imperative to study the type of bition and the stability of these emergent limit cycles
to a greater detail.

Note that, we have motivated the exogenous, non-dimersparameters as the bifurcation parameter. This
enables us to capture the effect of the different systemnpatexrs on the system stability in a unified manner.
The Hopf bifurcation analysis enables us to analyse theesystynamics in its locally unstable regime, in the
neighbourhood of the Hopf condition. Using Poincaré ndrfaans and the center manifold theory, we present an
analytical framework to determine thgpe of the Hopf bifurcation and the orbital stability of the ement limit
cycles. Our analysis closely follows the analysis presemd8], [9], [12].

Let k = k. + u, Wherep € R. Observe that, the system undergoes a Hopf bifurcatign-at0, wherex = «..
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We can now consider as the bifurcation parameter. An incremental change from . to . + u wherep > 0,
pushes the system to its locally unstable regime.

Step 1 Using Taylor series expansion, we segregate the right lsated of [3) into linear and non-linear parts.
We then cast this equation into the standard form of an opedifferential equation.

Step 2 At the critical value of the bifurcation parametér. at 4 = 0, the system has exactly one pair of
purely imaginary eigenvalues with non-zero angular vé&jyodihe linear eigenspace spanned by the eigenvectors
corresponding these eigenvalues is called the criticatrsigace. The center manifold theorem [9, Chapter
Theoremb5.1.] guarantees the existence of a locally invari@rtdimensional manifold which is tangent to the
critical eigenspace at the equilibrium of the system.

Step 3 Next, we project the system onto its critical eigenspac itsrcomplement at the critical value of the
bifurcation parameter. This enables us to capture the digsaof the system on the center manifold, with the help
of an ordinary differential equation in a single complexiahte.

Step 4 Finally, using Poincaré normal forms, we evaluate thelysov coefficient and the floquet exponent,
which characterise the type of the Hopf bifurcation and thneptotic orbital stability of the emergent limit cycles
respectively.

Supposéw?, w3) is an equilibrium for[(B). Leti; (¢) = wy (t) —w; andus(t) = we(t) —w5 be small perturbations

about the equilibrium. Thus, a Taylor series expansioipfaf®ut its equilibrium(w?, w3) is as follows
(1) =K (&t (t) + G (t = 71) + Eaualt = 72) ) + K (€aati2 (1) + Eapt(t = 71) + Eaarid(t = 72)

+ Capur ()ur (¢ — 71) + aaur ()ua(t — 72) + Gpaur (t — 71 )ua(t — 7'2)) + fi(faaalﬁ(t)
+ &t (t — 1) + Eagaus (t — 7o) + Eaapuf (Fur (t — 1) + Eagaud (t)ua(t — 72) + Eappur ()ui(t — 71)
+ Gpaut(t — 1)ua(t — 72) + Eagaur (D)u3(t — 72) + Epgaur (t — T1)u3(t — 72)
o+ Eacatin ()ua (¢ = m)uz(t = 72) )

() = (xeus(8) + xauz(t = 72) + xour (t = 71) ) + 1 (Xect (1) + Xaar(t = 72) + xowrid (¢ = )
+ Xcauz(B)ua(t — 72) + Xpcua (8 — T1)ua(t) + xpaur (t — 71)uz(t — 72)) + K(chcug(t)
+ Xadaui (t — 72) + Xooot3 (t = T1) + Xeeat3 (E)uz(t — 72) + Xpeeu1 (t — 71)u3(t) + Xeaquz(t)u3(t — 72)
+ Xpaau1 (t — T1)u3(t — 72) + Xober (t — 71 )ua(t) + Xppaus (t — 71 )ua(t — 72)
+ Xoeaur (t — 11 )uz(t)ua(t — Tz))- (27)

The Taylor series coefficients are given in Table |. Usingrbeationu = [u; us]”, we reduce equatiofi (R7) to

the following form

u(t) = Euut + F(uy, :Uf)a (28)
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1.0

— Hopf Condition

0.5

0.1 1.0

Fig. 4: Stability chart.Hopf condition for systen{{3). The shaded region below thevewdenotes the stable region.
It is evident that there exists a trade-off between the emmeprotocol parametessand k. As « increasesk has

to be decreased to ensure system stability.

wheret > 0, u € R. For 7 > 0,we define
w () =u(t+6), w:[-7,00—R% 0c|[-1,0].

For this model, without loss of generality, we assume that- 7. £ : C[—71,0] — R? denotes a family of
continuous and bounded functions parametrisedibiiere,C|a, b] denotes the set of all continuous functions on
the interval[a, b]. The operatotF : C[—7;,0] — R? consists of the non-linear terms. Further, we assumefhiat

analytic and bothC and F depend analytically on the bifurcation parameteior small ||. The linear operator is

Low =k Eaur (t) + &ui(t — 1) Eaua(t — 2) ' (29)

xou1(t —71) Xcuz(t) + xauz(t — 72)

We now cast equatiofi (P8) into the following standard formanfoperator differential equation,
u= A(/L)ut + Rut. (30)

Note that, [(3D) hasi; rather than botha; and u. Now, using the Riesz representation theoréni [14, Chapter
Theorem6.19.], we transform the linear problefal/d¢)u(t) = £,u;. The Riesz representation theorem guarantees
the existence of a x 2 matrix-valued measurg(-, 1) : [-71,0] — R%, such that each component gf has

bounded variation and for alh € C[—7y, 0],

0
L= [ ante.no)

In particular, we have

0
Euut :/ dlrl(evﬂ)ut(e)
0:—7'1
Observe that, for systeriil(3), the matrly is

o) — e [SFOFECOET)&sO+n) ] an

X0(0 + 71) Xc0(0) + xad (8 + 72)
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Here, () is the Dirac-delta measure. Lét![—7,0] denotes the space of all functions defined|en, 0], with

continuous first derivatives. Far € C'[—7;, 0], we then define the following linear and non-linear operators

due®) g€ [~71,0),
Awm@—{ B o

E#ut, g =0.
0, 0 e |—m,0),
Ruy(6) = o) (32)
‘F(utalu)v 0=0.

Note that,du;/df = du;/d¢. Hence, equatiori (28) can be transformed ifitd (30). Furteenll that,x = k. + p,
and the system undergoes bifurcation at the critical ppist 0. Hence, we fixu = 0 to perform the necessary
analysis at the point of bifurcation. At = 0, the system has a pair of complex eigenvalues on the imagaas:
A = tiwg, Wherewy > 0. Let g(¢) denote the eigenvector fo4(0) corresponding to the eigenvalug€0) = iwy.

We assume thaf(¢) has a form as
T
a0) = [1 61| e’

Now, using
A(0)q(6) = iwoq(0),

we obtaing; as

_HXbefionl

FXe T Rxae 0 — iy

¢1 =

We now define the following adjoint operator

_da(s)
ds 7

ftO:f‘rl dlr]T(t’ O)O‘(_t)v s=0.

where n” denotes the transpose gf Observe that, the domains of and A* are C'[—7,0] and C'[0, 7]

s 0,7,
A (w)as) = s

respectively. Then)(0) = —iwy is an eigenvalue of4* and for some non-zero vectgr, we have

A*(0)p(¢) = —iwop(¢)- (33)
We considemp(6) to have the following form:

p(0) =D {¢2 1}T e’

Using [33), we obtainp, as

ionl

by = —KXpe
27 Ko+ REEOT iy

Let us define the inner-product of the functioiss C[0, 1] and¢ € C[—71,0] as

0 0
.0 =5000)~ [ | F (-0 maac (34
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Using the above definition of inner product, we can easilyfy¢hat the eigenvectorp andq satisfy the conditions

(p,q) =1 and(p,q) = 0 when
, . , , -1
D= (¢2 (1+ k&mie ™07 + kEqp172e™0™) + ¢y (1 + Kxamee “°72 + kxprre” 0T ) _ (35)

The critical eigenspace corresponding to the pair of eigle®s+iwy, denoted byT,, is now 2—dimensional and
is spanned by{Req, Imq}, whereReq andImq denote the real and imaginary partsgfespectively. Further,
we denote the complement of the critical eigensgBcasTs,,. We now project systeni (BO) onf. andTy,,. For
u;, a solution of [3D) ap. = 0, define

2(t) = (p,w), and w(t,0) = u,(0) — 2Re(=(t)q(0)). (36)

Recall that, the center manifoldj, is tangent to the critical eigenspace at the equilibriume Tépresentation
of the center manifold is
w(t,0) = w(z(t),z(t),0), where

2 =2
w(z, 2, 0) :wQO(o)% +W11(9)z2—|—w02(9)% . (37)

Here,w;;(9), for all ¢, € {0, 1,2} is a two dimensional vector given as
T

wij(0) = [wijl(o) w;j2(0)
We observe that; and z are the local coordinates on the manifd@lg in the direction of the eigenvectogs and
p respectively. Further, note that the existence of the cem@ifold Cy ensures that equatioh {30) can now be
reduced to an ordinary differential equation for a singlenptex variablez on Cy. At © = 0, in the coordinates

@3B), the dynamics of can be represented as
(t) = (p, Aug + Ruy)
— iwoz(t) + p(0) - f(w(z, %,6) + 2Re(z(t)q(9)))
=iwpz(t) + p(0) - Fo(z, 2)
= iwoz(t) + gz, 2). (38)

Now, we can expand the functigs(z, z) in powers ofz andz as

22 72 22z

_ _ z
9(272):9203 +91122+9023 +9217+"' . (39)

We now need to determine the coefficients; (6), wa(6), wo2(#) in equation[(3F7) to solve the differential equation
(38) for . Following [8] we can writew = 1u; — 2q — zq, and using[(30) and_(38) we obtain
Aw — 2Re(15(0) ’ ]'—qu))a e [_Tla 0)7
Aw — 2Re(f)(0) . ]'—()q(O)) + Fo, 0 =0,
which, using [(3FF), can be rewritten as
w=Aw + H(z, z,0). (40)
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Here, the functiorH(z, z, §) can be expanded in powers ofand z as
22 z2
H(Z,E,@) :HQQ(Q)E+H11(6)Z§+H02(9)7+"' . (42)

Here,H,;(6), for alli, j € {0,1,2} is a two dimensional vector given as

H;;(0) = |Hij1(0) Hijo(0) '

Now, on the center manifold’y, near the origin
W= W%+ wZ. (42)
We now use equationk (37) arild{(38) to replaceand z (and their conjugates) and equate this withl (42) to get
(2iwo — A)wao(0) = Hao(0),
—Aw11(0) = Hy1(0),
—(2iwo + A)wo2(0) = Hoz2(0), (43)
as in [8]. Now, we observe that

u(0) = w(z,2,0) + zq(8) + zq(0)

= WQO(G)% +wi1(0)2z + WOQ(G)% + zewol 4 zemiwol 4 (44)

from which we obtainu;(0), u:(—71), andu;(—72). We now proceed to expand the non-linear terms present in

equation[(27) using equation_{44) and retain only the caeffts ofz2, 2z, 22, 22z. They are summarised as below:
“%,t(o) =22 +72+ 222+ 222(w201 (0) + 2w111(0)) + -

ud ,(0) = 6222 + 61" 2% + 2016127 + z2g(w202(0)q§1 + 2w112(0)¢1) 4o

uf (—m1) = 2%e PO 4 2P0 4 927 + 222(w201(—71)ei‘“071 + 2w111(—T1)67iwn) +oe

u%)t(—Tg) _ ¢%22672iw072 + &1222621'0.107'2 + 2¢1¢7122 + 225(w202(_7_2)q§16iw0‘r2 + 2’LU112(—T2)¢1671-WT2) 4o,

ul,t(o)ul,t(—Tl) — 2p—iwoT + 32 piwoT1 + (61w071 + efzwon)zg_i_ Z2Z(w2021( )elwo‘rl + ’LU111(0)87“0071
w201(—71
+ wlll(_Tl) + %) T
. _ . . . _ 0) .
ul,t(O)UQ,t(_TQ) — ¢122671w072 4 ¢152€zw072 4 (d)lelwo‘m 4 (;5167“’072)2“24— 222(¢1 ’LU2021( )e’Lu)oTz

+ ¢rwi11(0)e” ™0™ + wiia(—To) +

)

wzozé—Tz)) o

ul.t(_Tl)UQ.t(_TQ) _ ¢lz2e—iw0(‘r1+‘r2) + (512261’(410(71-1—72) + (Q/;leiw()(‘rz—Tl) + d)le—iwo(‘l’g—n))zz

+ 222(q§1 7w201;_ﬁ)ei“’°” + drwin1 (—71)e” 90T L awygp(—To)e WO 4 710202;_@)6”071) T
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. _ . _ . _ _ 0) .
u2,t(0)u2,t(—7'2) _ ¢%22671w072 + (;512526“0072 + d11 (6“‘1072 + efzwm'z)zz_'_ 222(921)11”2072()6“)072

w202(—T2)> o

+ Grwi12(0)e 0™ + drwi12(—72) + ¢ >

. o . o 0) .
u2,4(0)ur ¢ (—71) = pr2%e 0T + §y F2et 0T 4 (Qf)lewm1 + ¢167w0n)2’2 + ZQE(WOTMEWDTI

w201(—7'1)) o

+ w112(0)e” 0T + prwiyr (—71) + b1 5

us,4(0) = 3g112"2 + -+,
uit(—n) =322z W ...

uy (—72) = 31127z

u%,t(_TZ)'UJLt(O) =22z¢, (gble*QWOTl + 2(51) o

3 (~mJuno(~m1) = 22201 (bre = 0T fag o)

4 4(O1a(m1) = 22561 (210707 4 greton)

U (O)uz (=) = 2226361 (e 07 4 o) ..

u3 ¢ (—T2)u1,4(0) = 2°2¢n (gble*m’o“ + 2(51) o

uf (=1 )uz,(0) = 225((51672“““ + 2¢1) e

u%,t(_TQ)uZt(O) = 222¢i (2 + e*2iwm2) e

w1, (0)ur 1 (—71)ug e (—72) = 225((51671'%(7142) 4 ppeto(n—ra) 4 gble’i“f’(fﬁﬁ)) .
2.4 (0)ur ¢ (=71 )ug i (—m2) = 22293 (efiwo(nfm) 4 eiwo(ri—m2) | efiwo(nqLTz))

Using the definitiony(z, z) = p(0) - Fo(z, z) we then determine the coefficients of, 2z, 22 and 2%z, which are

outlined below.

920 — 2/{D <¢_)2 (gaa _|_ gbb€72’inT1 + §dd¢§ef2iwo‘r2 _|_ gabefiw[)Tl _|_ gad¢1ef’iw072 + gbd¢1ef’iwo(71+72))

+ Xee®] + Xdadre 20T + xppe 0T 4 v ogdTe T 0T 4 xpepreT 0T 4 de¢1€_iw°(”+72)> ,
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go2 = 26D <¢2 (§aa + £ 0T E4adTe O™ 4 Lape™ 0T 4 Eua1 ™0 + Epachy eiw‘)(“”?))
2 T2 2iwgTe 2iwpT1 T2 iwors T iwoT1 i iwo(T1+T2)
+ XeeP1” + Xadp1 e + Xope + Xcdp1 € + Xvchre + Xvar€ ,

g1 =KD <f52 (2§aa + 280 + Eaad101 + Eap (€07 + 7O 4 Lug (41607 + preO™2)
+ &pa ((b_leiwo(fzf‘rl) + ¢167iwo(‘r27n)) ) + 2(251(51 (ch + de) + 2 + Xcdébl(b_l (eiworz + efiwom)

+ Xbe (1™°T + P17 °™) + xpa (leew(’(Trﬁ) + ¢1€7M°(T27n)) >7

g2 = 2kD (¢2 (§aa (w201 (0) + 2w111(0)) + &b (w201 (—71)e™°™ + 2wiy1(—71)e™ ™)

w201 (0)

5 0T 4 awyq1(0)e 0™ + wyqy (—71)

+ Eqa (w202(—72)P1€™°™ + 2wi12¢1 (—T2)e ™ 2) + Eap(

wa01(0)
2

W201 (_Tl)

5 )+ &an(

wa01(—71) w202(—7'2)6m0n)
2 2

+ 3€aaa + 3Embe™° T + 3EaaadTd1e 0T + Eaap (267 OT 4 0T ) 4 Eaq (2016770 + fre’0T?)

’LU202(—7'2) )

$1€™°™ + wi11(0)pre” 0™ 4wy (—72) + 5

+

+&oa( 1™ 4wy (—T1)pre” O™ f o (—T2)e O 4

+ Eapp (€770 +2) + Epa(Pre 0BT 4261670 4 €ogad (dre 20T 4 24 )
b Cpaatn (e T G0N (G ) | gl

+ Xee (w202(0)d1 + 2w112(0) 1) + Xaa (w202 (—T2)P1€"°™ + 2wi12(—T2)Pre” ™)

wa02(0)

5 G107 + rwq12(0)e” o

+ Xob (w201 (—71)€™°™ + 2wi11 (—71)e”™) + Xea

w202(—T2)
2

— wog1 (—T1) , , wag2 (—T2) _
+ de(¢1%eworz + ¢1w111(_71)€71w0T2 + w112(_7_2)67w07'1 + Wewon) + 3chc¢%¢1
+ 3Xdda®i P10 + Bxppne T+ Xeca®i P1 (2670 4 €0T) 4 Xpeehr (201670 4 Bre’0™)

+ Xedd®s 1 (672“’“72 + 2) + Xpaad1 (¢1€7w°(2727ﬁ) + 2951671”071) + Xobe (<J5_1672w°72 + 2¢1)

o wa02(0)

w2 1(—7'1)
2 )

+ rwiiz(—72) + ¢ )+ Xb €O 4 a115(0)e 0T + prwini (—71) + o1

+ Xova (Gre™ 0TI 4 21 eT0T2) 4y (dre 0T gy eo(mmT) <J5_1€_iw°(71+72))> . (45)

Note that, the expression fgp; haswqo(6) andwi;(#) which we need to evaluate. Now, fére [—7,0) from
(41), we have

H(z,z,0) = — 2Re(g"(0) - Foq(0))
22 z2 z2 22
=— (9207 +91125+9023 + .- ) q(f) — (9207 +§1125+§7023 + .- ) q(9),
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which when compared with (#1) gives
Hao(0) = —g20a(0) — Go2a(0),
H11(0) = —gna(9) — g11d(0). (46)
Using equationd (32) an@_(43), we have
Wao(0) = 2iwowao(0) + g20a(f) + Go2a(0),
wi1(0) = g11a(f) + g1a(o). (47)
Solving the differential equations i (47), we get

W20(9) _ _@q(o)eiwgﬁ _ go2 (_1(0)67“)09 + eein()G’

iwo 3in
w11 (0) = L q(0)e™0? — ILg(0)e " 0f + . (48)
o 1w
The objective now is to determineand f. We define,
H(Zv Z, 0) = —QRE((_I* (0) : J:Oq(o)) + ]:01 (49)

where F, represents the non-linear terms that can be expanded inrpafe as

2 52 25
T:T20%+T1125+To2%+-7:21Z—2Z+"'- (50)

Substituting the coefficients from the expansionff gives
T
Hoo(0) = ~9200(0) — 5028(0) + | Foos  Fooa| -
T
Hll(o) = —911Q(0) - ,(711(_1(0) + {]:111 ]:112} . (51)

From [51) and[(32), we obtain

o T (ka1 — 2iwo)wao1(0) + Kaiawao1 (—71) + Ka13Wagp2(— -
g204(0) + g2 (0) = {.7:201 -7:202} + ) o ’
_ma23wz01(—T) + k(a1 — 2iwo)wa2(0) + Kazewaoz (—T72)

o T ka11w111(0) — Ka1awi11 (—71) + Kaizwi12(—T2)
9119(0) + g11q(0) = [-7:111 -7:112} + . (52)
_fifl23W111(—T1) + ra21w112(0) + Kagawi12(—72)

We substitutews(0), wao(—7), w11 (0) andwy;(—7) from (48) in [52) we gee andf of the form

e:[el ezr and f:[fl fzr. (53)

Note that,eq, e2, f1 and fo can be derived explicitly in terms of system parametersciviaire outlined below:

YoZi1 — Y125 _ XaZo — XoZ4 Q2R — Q1R P Ry — PRy

T Xmonn 2T Xmoxnn N =

e = , =,
! PiQsy — P01 T PQy— Py

(54)
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where,

X1 = ka1 + I€a12€_2lw07—1 — 24wy, Xo = ma23e_2m°“,

Y] = kajze 2o Ys = Kkas1 + kagae 20T — 2wy,

P = kai1 + ka2, Py=kazs, Q1= ka3, Q2= ka1 + Kags,

920 go2

7, = &= (—iwo + ka1 + Kajge O + lialggble_mon) + = (iwo + ka1 + Ka12e™°™ + /ialggble“"”n)
Wy 31&]0
— Fao1,
T — 3920 . WO T1 W T2 go2 . It 1w T1 T
2= o ( —iwoP1 + Kazgze + Ka21¢1 + Kagapre ) =+ i (lw0¢1 + Kaase + Kaz1¢1
0 0

+ Kagad1e™°™) — Faga,

g (. —i — gi1 . , -
Ry = =— (zwo — ka1 — kaige TN — Kaizpre M““) e (zwo + ka1 + Ka12e"°" + f<m13¢1e“"““)
(209} (209}
— JFi1,
R, — gi1 4. iwoT1 iwo T go2 (. < iwoT1 Iy 7 iwoT2
2= — (iwod1ragse’™™ — Kag ¢ — Kagd1e“°™) + Z— (iwod1 + Kagze™ T + Kazd1 + Kaga e ™)
Wwo 3two
— Fi12. (55)

Using e and f we evaluatewy, andwi;, using which we computg,;. We now have all the terms required for

the analysis of Hopf bifurcation as follows, se¢e [8]

c1(0) = 2%;0 <920911 —2|gu1* — %|902|2) + 9—217 (56)
R
po = —76(5;(15;))) ; B2 = 2Re(c1(0)), (57)

where ¢, (0) is the lyapunov coefficient and’(0) = Re(d\/dk)|x=«.. The following conditions enable us to

verify the type of the Hopf bifurcation, and the asymptotibital stability of the limit cyclesl[[8].

« The Hopf bifurcation issupercritical if u2 > 0 andsub-critical if ps < 0.

« The limit cycles areasymptotically orbitally stabléf g2 < 0 andunstableif 55 > 0.

Substituting the expression fgp, in (58) yields the expression far (0), which is the lyapunov coefficient. We
can then computg, and 3, using [57). We now present a numerical example, and competealues ofu,; and

B2 for Compound TCP in the small buffer regime.

Numerical Example:

We first fix the system parameters as follows:= 0.3, £k = 0.75, 5 = 0.5, By = 10, By = 15, B = 25,
Ci; = Cy =100, C =180, 1, = 1, and . With these parameter values, the system undergoes a Hopédtion

at k. = 1. We now increase the value of the non-dimensional paraneter= 1.05, and push the system beyond
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Fig. 5: Phase portraitsEmergence of limit cycle in the dynamics @f(¢) in (), for Compound TCP in the small
buffer regime, with the variation in the non-dimensionatgraeterx. Observe that, (a) Trajectories converge to

stable equilibrium forx = 0.95, (b) Trajectories converge to a stable limit cycle for= 1.05.

the edge of stability. Following the Hopf bifurcation ansitypresented above, we compute the required expressions:

Re (¢1(0)) = —0.0738 < 0, o/(0) = 0.3467 > 0

fis = 0.2129 > 0, By = —0.1477 < 0.

Thus, the Hopf bifurcation isupercriticaland the emergent limit cycles are asymptoticalibitally stable

Phase portraits and bifurcation diagram:

We present the phase portrait for systéin (3), for Compoundl ilGhe small buffer regime, in Fi@l 5. First, we
fix a pointa = 0.3, x = 1, on the stability boundary in the stability chart as showrFig.[3 (a). The remaining
system parameter values are fixed as mentioned above in therival example. We now plot the phase portrait
for the window size for the second set of TCP flows, foe 0.95 andx = 1.05 respectively, as shown in Fig] 5.
Observe that, forx = 0.95, the average window size of the second set Compound TCP flomgemes to its
equilibrium value, as expected. Fer— 1.05, the average window size exhibits orbitally stable limities, as the
system undergoes a Hopf bifurcation+at= 1. Note that, the average window size of the first set of Comgdoun
flows can be shown to exhibit qualitatively similar dynanhibahaviour. We now present the bifurcation diagram
for system [(B), in Fig[J6, obtained from DDE-BIFTOOL versi@r3. Observe that, the amplitude of the limit

cycles increases asis increased beyond.

V. PACKET-LEVEL SIMULATIONS

In order to corroborate the analytical insights obtaineel canduct some packet-level simulations, for the multiple
bottleneck scenario, in NS2 [116]. The system consists of digtinct sets o0 long-lived Compound TCP flows

each with an access speed2Mbps, regulated by two edge routers and feeding into one arer. Each edge
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Fig. 6: Bifurcation diagram.Emergence of limit cycles in the dynamics @f(¢) at x = 1 for system [(B), with

Compound TCP flows in the small buffer regime. The amplitutithe emergent limit cycles increases for further
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g i
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Fig. 7: Long-lived flows Two sets of 60 long-lived Compound flows over a 2 Mbps linigulated by two edge
routers, feeding into a core router with link capacity 180@dbObserve the emergence of limit cycles in the queue

at the core router, for larger buffer thresholds, and largend trip times.

router has a link capacity of00 Mbps, and the core router has a link capacityl80 Mbps. Since our primary
focus is on small buffers, we fix the buffer size for each edygear to bel5 packets, and vary the buffer size of
the core router from5 packets tol00. Further, we fix the round trip time of one set of flows to liems, and the
round trip time of the other set is varied frod ms to200 ms. The simulations are illustrated in Fid. 7. Observe
that, if the buffer sizes at all routers are fixed1at packets, the queue at the core router is completely random,
and hence stable, since the queue does not exhibit any deigimoscillations. When the buffer size at the core
router is increased tb00 packets and the round trip time of the second set of flov@disms, the queue dynamics
exhibits limit cycles. Hence, larger queue thresholds aom@to inducing limit cycles, for larger round trip times.
These limit cycles in the queue size lead to synchronisatimong TCP flows and make the downstream traffic

bursty.
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VI. CONCLUDING REMARKS

We considered three different topologies, and conducteetaildd local stability analysis with two simplifying
assumptions, to obtain necessary and sufficient condifmmstability. To aid our analysis, we motivated a suitable
non-dimensional bifurcation parameter, and illustrateat,tthe underlying dynamical systems lose stability if the
bifurcation parameter is varied. Further, in the multiptgtleneck scenario, even without any simplifying assump-
tions on the system parameters, we numerically identifiati tthe system loses stability via a Hopf bifurcation. A
key insight obtained was the trade-off between differestey parameters to ensure stability, as illustrated throug
some stability charts. After knowing that a system exhihitdopf, it is natural to have a framework to determine the
asymptotic orbital stability of the bifurcating limit cyas. To that end, using Poincaré normal forms and the center
manifold theory, we conducted a detailed Hopf bifurcatiomlgsis, in the neighbourhood of the Hopf condition.
To corroborate our analytical insights, we conducted soauket-level simulations to highlight the existence and
stability of limit cycles in the queue size dynamics as sysfgrameters vary.

The insights obtained in this paper could have importansequnences for the modelling and the performance
evaluation of communication networks. From a theoreticalspective, this opens many challenging questions
centred around the development of accurate fluid models@ @and queue management policies. From a practical
perspective, the emergence of stable limit cycles coule lzavimpact on the end-to-end quality of service — these

issues merit further investigation.
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APPENDIX

TABLE I: Coefficients in the Taylor series expansion of thendimear fluid model[{B) with Compound TCP and
Drop-tail queue policy evaluated at the equilibrim;, w3 ). Here, the ternp’ represents the partial derivative of

p with respect to the variables as given by the subscripts.
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