Header menu link for other important links
X
Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices
, Podsiadlo P., Shevchenko E.V., Sankaranarayanan S.K.R.S., Narayanan B.
Published in Royal Society of Chemistry
2019
Volume: 11
   
Issue: 22
Pages: 10655 - 10666
Abstract
Precise engineering of nanoparticle superlattices (NPSLs) for energy applications requires a molecular-level understanding of the physical factors governing their morphology, periodicity, mechanics, and response to external stimuli. Such knowledge, particularly the impact of ligand dynamics on physical behavior of NPSLs, is still in its infancy. Here, we combine coarse-grained molecular dynamics simulations, and small angle X-ray scattering experiments in a diamond anvil cell to demonstrate that coverage density of capping ligands (i.e., number of ligands per unit area of a nanoparticle's surface), strongly influences the structure, elasticity, and high-pressure behavior of NPSLs using face-centered cubic PbS-NPSLs as a representative example. We demonstrate that ligand coverage density dictates (a) the extent of diffusion of ligands over NP surfaces, (b) spatial distribution of the ligands in the interstitial spaces between neighboring NPs, and (c) the fraction of ligands that interdigitate across different nanoparticles. We find that below a critical coverage density (1.8 nm-2 for 7 nm PbS NPs capped with oleic acid), NPSLs collapse to form disordered aggregates via sintering, even under ambient conditions. Above the threshold ligand coverage density, NPSLs surprisingly preserve their crystalline order even under high applied pressures (∼40-55 GPa), and show a completely reversible pressure behavior. This opens the possibility of reversibly manipulating lattice spacing of NPSLs, and in turn, finely tuning their collective electronic, optical, thermo-mechanical, and magnetic properties. © 2019 The Royal Society of Chemistry.
About the journal
JournalData powered by TypesetNanoscale
PublisherData powered by TypesetRoyal Society of Chemistry
Open AccessNo