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LEFT TRANSLATES OF A SQUARE INTEGRABLE FUNCTION

ON THE HEISENBERG GROUP

R. RADHA † AND SASWATA ADHIKARI

Abstract. The aim of this paper is to study some properties of left translates of
a square integrable function on the Heisenberg group. First, a necessary and suf-
ficient condition for the existence of the canonical dual to a function ϕ ∈ L2(R2n)
is obtained in the case of twisted shift-invariant spaces. Further, characterizations
of ℓ2-linear independence and the Hilbertian property of the twisted translates of
a function ϕ ∈ L2(R2n) are obtained. Later these results are shown in the case of
the Heisenberg group.

1. Introduction

A closed subspace V ⊂ L2(R) is called shift-invariant if f ∈ V =⇒ τkf ∈ V for
any k ∈ Z. Characterizations of shift-invariant spaces in terms of range functions
were studied on Rn by Bownik in [3]. These types of characterization problems were
obtained for locally compact abelian groups in [4, 9] and for non-abelian compact
groups in [12]. In [1], the authors introduced bracket map on the polarized Heisen-
berg group Hn

pol using the group Fourier transform and obtained characterizations
of orthonormal system, frames and Riesz basis consisting of left translates of ϕ in
L2(Hn

pol) in terms of the bracket map. In [6], Currey et al generalized some re-
sults of [3] to shift-invariant spaces associated with a class of nilpotent Lie groups.
The concept of the bracket map has been generalized in [2] to include any non-
abelian discrete group Γ using its unitary representations and L1 space over the
non-commutative measurable space vNa(Γ), which is the compact dual of Γ whose
underlying space is a group von Neumann algebra. Using this bracket map, charac-
terizations of orthonormal basis, Riesz basis, frames were obtained for shift-invariant
spaces in a Hilbert space H given by the action of a non-abelian countable discrete
group Γ. In [13], Luef provided a connection between the construction of projec-
tions in non-commutative tori and the construction of tight Gabor frames for L2(R).
Recently, the authors obtained characterizations of orthonormal system, Bessel se-
quence, frame and Riesz basis of twisted shift-invariant spaces in terms of the kernel
of the Weyl transform in [10]. Similar characterizations are obtained in the shift-
invariant spaces associated with a countably many mutually orthogonal generators
on the Heisenberg group in [11].
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Hernandez et al have provided a necessary and sufficient condition for the existence
of the canonical dual to a function ϕ ∈ L2(R) in [8]. Further, characterizations of
ℓ2-linear independence and the Hilbertian property of {τkϕ : k ∈ Z} were obtained
in terms of the Fourier transform. The aim of this paper is to obtain similar type of
results on the Heisenberg group in terms of the group Fourier transform. In order to
obtain our results on the Heisenberg group, we first prove all these results in twisted
shift-invariant spaces on R2n. Since L1(Hn) is a non-commutative group under
convolution and L1(Cn) is a non-commutative group under twisted convolution, in
order to obtain analogous results, as in the Euclidean case (as per [8]), we make use
of a condition called “condition C". This condition roughly means that a non-trivial,
non-central translate of ϕ ∈ L2(Hn) yields a periodizing (operator valued) sequence
on the Fourier transform side that is orthogonal to that of ϕ. As mentioned earlier,
we first prove the results in the case of a twisted shift-invariant space on R2n and
then extend to a shift-invariant space on Hn.

The Heisenberg group Hn is a nilpotent Lie group whose underlying manifold
is Rn × Rn × R, where the group operation is defined by (x, y, t)(x′, y′, t′) = (x +

x′, y + y′, t + t′ +
1

2
(x′.y − y′.x)) and the Haar measure is the Lebesgue measure

dxdydt on Rn × Rn × R. Now it is clear that {(2k, l,m) : k, l ∈ Zn, m ∈ Z} is a
discrete subgroup of Hn. By Stone-von Neumann theorem, every infinite dimensional
irreducible unitary representation on the Heisenberg group is unitarily equivalent to
the representation πλ, λ ∈ R⋆, where πλ is defined by

πλ(x, y, t)ϕ(ξ) = e2πiλte2πiλ(x.ξ+
1
2
x.y)ϕ(ξ + y),

where ϕ ∈ L2(Rn). In order to study shift-invariant spaces on Hn, we need to make
use of the representation theory of Hn. The group Fourier transform on Hn is defined
to be

f̂(λ) =

∫

Hn

f(x, y, t)πλ(x, y, t)dxdydt

for f ∈ L1(Hn). More explicitly, f̂(λ) is the bounded operator acting on L2(Rn)

(i.e., f̂(λ) ∈ B(L2(Rn))) given by f̂(λ)ϕ =

∫

Hn

f(x, y, t)πλ(x, y, t)ϕdxdydt, where the

integral is a Bochner integral taking values in the Hilbert space L2(Rn) . Further,

‖f̂(λ)‖B ≤ ‖f‖L1(Hn).

Define fλ(x, y) =

∫

R

f(x, y, t)e2πiλtdt to be the inverse Fourier transform of f in the

t-variable. Thus f̂(λ) =

∫

R2n

fλ(x, y)πλ(x, y, 0)dxdy. One can write f̂(λ) = Wλ(f
λ),

where Wλ(f) is given by

Wλ(f) =

∫

R2n

f(x, y)πλ(x, y, 0)dxdy,
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for f ∈ L1(R2n).
In many problems on Hn, an important technique is to take the partial Fourier

transform in the t-variable to reduce the study to the case of R2n. In particular, for
f, g ∈ L1(Hn), the convolution of f and g on Hn is defined to be

(f ∗ g)(z, t) =

∫

Hn

f((z, t)(w, s)−1)g(w, s)dwds.

This group convolution on Hn can be reduced to R2n as a non-standard convolution,
known as twisted convolution. For f, g ∈ L1(R2n), the twisted convolution of f and
g is defined to be

(f × g)(z) =

∫

R2n

f(z − w)g(w)eπiIm(z.w)dw.

If we define f#(z, t) = e−2πitf(z), then one can show that f# ∗ g# = (f × g)#.

Further, for f, g ∈ L1(Hn), one has f̂ ∗ g(λ) = f̂(λ)ĝ(λ), λ ∈ R⋆, as in the case of
Euclidean Fourier transform. This leads to W (f × g) = W (f)W (g), where

W (f) =

∫

R2n

f(x, y)π(x, y)dxdy,

called the Weyl transform of f ∈ L1(R2n), by taking λ = 1 in Wλ(f) and by writing
π(x, y) = π1(x, y, 0).

Thus in order to study shift-invariant spaces on Hn, we consider the twisted shift-
invariant spaces on R2n. Let L be a discrete subgroup of the Heisenberg group Hn

such that Hn/L is compact. In other words, L is a lattice in Hn. For ϕ ∈ L2(Hn),
the principal shift-invariant space, V (ϕ), is defined to be span{Llϕ : l ∈ L }, where
Llϕ(X) = ϕ(l−1.X), X ∈ Hn. However, for the sake of computational convenience
the standard lattice {(2k, l,m) : k, l ∈ Zn, m ∈ Z} is taken in place of L . Hence for
ϕ ∈ L2(Hn), V (ϕ) is taken to be the closed linear span of the collection {L(2k,l,m)ϕ :
k, l ∈ Zn, m ∈ Z}. In order to study the left translations on the Heisenberg group,
we consider the twisted translations on R2n. For ϕ ∈ L2(R2n), (k, l) ∈ Z2n, we define
the twisted translation of ϕ, denoted by T t

(k,l)ϕ, as

T t
(k,l)ϕ(x, y) = eπi(x.l−y.k)ϕ(x− k, y − l), (x, y) ∈ R2n.

Using this definition, the twisted shift-invariant space of ϕ, denoted by V t(ϕ), is
defined to be the closed linear span of {T t

(k,l)ϕ : (k, l) ∈ R2n} in L2(R2n).
We shall now mention a few more properties of Weyl transform and group Fourier

transform on Hn, which will be used in the sequel. The Weyl transform of a function
f ∈ L1(R2n) can be explicitly written as

W (f)ϕ(ξ) =

∫

R2n

f(x, y)e2πi(x.ξ+
1
2
x.y)ϕ(ξ + y)dxdy, ϕ ∈ L2(Rn), z = x+ iy,

which maps L1(R2n) into the space of bounded operators on L2(Rn), denoted by
B(L2(Rn)). The Weyl transform W (f) is an integral operator with kernel Kf (ξ, η)
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given by ∫

Rn

f(x, η − ξ)eiπx·(ξ+η)dx.

This map W can be uniquely extended to a bijection from the class of tempered
distributions S ′(R2n) onto the space of continuous linear maps from S(Rn) into
S ′(Rn). If f ∈ L2(R2n), then W (f) ∈ B2(L

2(Rn)), the space of Hilbert-Schmidt
operators on Rn. For f, g ∈ L2(R2n), we have

〈W (f),W (g)〉B2 = 〈f, g〉L2(R2n) = 〈Kf , Kg〉L2(R2n). (1.1)

The group Fourier transform is an isometric isomorphism of L2(Hn) onto L2(R⋆,B2;
dµ) , where B2 denotes the space of Hilbert-Schmidt operators on L2(Rn) and
dµ(λ) = |λ|ndλ. For f, g ∈ L2(Hn), we have

〈f, g〉 =

∫

R

〈f̂(λ), ĝ(λ)〉B2|λ|
ndλ =

∫

R

〈Wλ(f
λ),Wλ(g

λ)〉B2|λ|
ndλ. (1.2)

We refer to Thangavelu [15] for further details on Hn.
The paper is organized as follows. In section 2, we provide required definitions

and statement of some results which are available in the literature. In section 3,
we study the canonical dual to a function in twisted shift-invariant spaces on R2n.
In section 4, we obtain characterization for the twisted translates in L2(R2n) to be
ℓ2-linearly independent. In section 5, we provide characterization for the twisted
translates to be Hilbertian. In this case, we show that there exists ϕ̃ ∈ L2(R2n) such
that {T t

(k,l)ϕ̃ : (k, l) ∈ Z2n} is Besselian. In section 6, we obtain these results on the
Heisenberg group.

2. Preliminaries

Let H be a separable Hilbert space.

Definition 2.1. A sequence {fk : k ∈ Z} in H is called a Bessel sequence for H if

there exists a constant B > 0 such that∑

k∈Z

|〈f, fk〉|
2 ≤ B‖f‖2, ∀f ∈ H.

Definition 2.2. A sequence {fk : k ∈ Z} in H is called a frame for H if there exist

two constants A,B > 0 such that

A‖f‖2 ≤
∑

k∈Z

|〈f, fk〉|
2 ≤ B‖f‖2, ∀f ∈ H.

Definition 2.3. A sequence {fk : k ∈ Z} in H is said to be ℓ2-linearly dependent if

there exists a non-zero sequence {ck} ∈ ℓ2(Z) such that
∑
k∈Z

ckfk = 0. If the sequence

{ck} is not ℓ2-linearly dependent, then it is said to be ℓ2-linearly independent.

For a study of of frames we refer to [5] and [7].
We shall make use of the following definitions and results which were given in [10].
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Lemma 2.1. Let ϕ ∈ L2(R2n). Then the kernel of the Weyl transform of T t
(k,l)ϕ

satisfies the following relation.

KT t
(k,l)

ϕ(ξ, η) = eπi(2ξ+l).kKϕ(ξ + l, η). (2.1)

Definition 2.4. For ϕ ∈ L2(R2n), the function wϕ is defined as follows.

wϕ(ξ) =
∑

m∈Zn

∫

Rn

|Kϕ(ξ +m, η)|2dη, ξ ∈ Rn.

Definition 2.5. A function ϕ ∈ L2(R2n) is said to satisfy “condition C” if

∑

m∈Zn

∫

Rn

Kϕ(ξ +m, η)Kϕ(ξ +m+ l, η)dη = 0 a.e. ξ ∈ Tn, for all l ∈ Zn \ {0}.

Theorem 2.1. [10] If {T t
(k,l)ϕ : (k, l) ∈ Z2n} is a Bessel sequence in L2(R2n) with

bound B, then wϕ(ξ) ≤ B a.e. ξ ∈ Tn. Conversely, suppose wϕ(ξ) ≤ B a.e.

ξ ∈ Tn. If, in addition ϕ satisfies condition C, then {T t
(k,l)ϕ : (k, l) ∈ Z2n} is a

Bessel sequence in L2(R2n) with bound B.

Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C. SupposeAt(ϕ) = span{T t
(k,l)ϕ

: (k, l) ∈ Z2n} and V t(ϕ) = At(ϕ). Consider f ∈ At(ϕ) i.e., f =
∑

(k′,l′)∈F

ck′,l′T
t
(k′,l′)ϕ,

where F is a finite set. Define ρ(ξ) = {ρ
l′
(ξ)}

l′∈Zn for ξ ∈ Tn, where ρ
l′
(ξ) =∑

k′
c
k′,l′

eπi(2ξ+l′).k′. Define J
ϕ
(f) = ρ. In particular, taking f = T t

(k,l)ϕ, one has

J
ϕ
(T t

(k,l)ϕ)(ξ) = (. . . , 0, . . . , 0, eπil.ke2πik.ξ, 0, . . . , 0, . . . ) (2.2)

with eπil.ke2πik.ξ in the lth position a.e. ξ ∈ Tn.

Proposition 2.1. [10] The map J
ϕ

initially defined on At(ϕ) can be extended to an

isometric isomorphism between V t(ϕ) and L2(Tn, ℓ2(Zn), w
ϕ
).

Moreover, it was proved that f ∈ V t(ϕ) if and only if

K
f
(ξ, η) =

∑

l′∈Zn

ρ
l′
(ξ)K

ϕ
(ξ + l′, η), (2.3)

where ρ(ξ) = {ρ
l′
(ξ)}

l′∈Zn and ρ ∈ L2(Tn, ℓ2(Zn), w
ϕ
).

The following equation (2.4) appears in the proof of Theorem 3.5 in [10].

Lemma 2.2. Let {c
k,l

: (k, l) ∈ Z2n} be a finite sequence and ϕ ∈ L2(R2n) be such

that ϕ satisfies condition C. Then
∥∥∥∥

∑

(k,l)∈F

c
k,l
T t
(k,l)ϕ

∥∥∥∥
2

L2(R2n)

=
∑

l

∫

Tn

∣∣∣∣
∑

k

c
k,l
eπil.ke2πik.ξ

∣∣∣∣
2

w
ϕ
(ξ)dξ, (2.4)

where F denotes a finite set.

Now, we shall give some definitions and results which are also given in [11].
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Definition 2.6. For ϕ ∈ L2(Hn) and (k, l) ∈ Z2n, the function Gϕ
k,l is defined as

follows.

Gϕ
k,l(λ) =

∑

r∈Z

〈ϕ̂(λ+ r), ̂L
(2k,l,0)

ϕ(λ+ r)〉
B2
|λ+ r|n, λ ∈ (0, 1]. (2.5)

In fact, originally in [11], the function Gϕ
k,l was defined in terms of the kernel of

W
λ
. Later it was shown that Gϕ

k,l turns out to be (2.5).

Definition 2.7. A function ϕ ∈ L2(Hn) is said to satisfy “condition C” if Gϕ
k,l(λ) = 0

a.e. λ ∈ (0, 1], ∀ (k, l) ∈ Z2n \ {(0, 0)}.

Remark 2.1. In order to show that a function ϕ ∈ L2(Hn) satisfies condition C,

it is enough to show that all the Fourier coefficients of Gϕ
k,l vanish when (k, l) ∈

Z2n \ {(0, 0)}. But

Ĝϕ
k,l(m) =

1∫

0

Gϕ
k,l(λ)e

−2πimλdλ = 〈ϕ, L
(2k,l,m)

ϕ〉
L2(Hn)

. (2.6)

Thus it is enough to show that 〈ϕ, L
(2k,l,m)

ϕ〉 = 0, ∀ m ∈ Z, whenever (k, l) 6= (0, 0).

Examples 2.1. We shall first provide some examples of functions in L2(H) which

satisfy condition C.

1. Let ϕ(x, y, t) = χ
[0,2]

(x)χ
[0,1]

(y)h(t), where h is an arbitrary function in

L2(R). Then

L
(2k,l,m)

ϕ(x, y, t) = ϕ(x− 2k, y − l, t−m+
1

2
(2ky − xl))

= χ
[0,2]

(x− 2k)χ
[0,1]

(y − l)h(t−m+ ky −
l

2
x)

= χ
[2k,2k+2]

(x)χ
[l,l+1]

(y)h(t−m+ ky −
l

2
x).

Since for (k, l) 6= (0, 0), [0, 2]×[0, 1]
⋂

[2k, 2k+2]×[l, l+1] = ∅, it follows that

〈ϕ, L
(2k,l,m)

ϕ〉 = 0, ∀ m ∈ Z. Then from (2.6), we get Ĝϕ
k,l(m) = 0, ∀ m ∈ Z

whenever (k, l) 6= (0, 0). Thus ϕ satisfies condition C.
In [11], we have proved the theorem that {L

(2k,l,m)
ϕ : (k, l,m) ∈ Z2n+1} is

an orthonormal system in L2(Hn) if and only if Gϕ
0,0(λ) = 1 a.e. λ ∈ (0, 1]

and ϕ satisfies condition C. Thus it is meaningful to give an example of a
function ϕ which satisfies condition C but {L

(2k,l,m)
ϕ : (k, l,m) ∈ Z2n+1} is

not an orthonormal system. This is illustrated in Example 2 and Example
3.

2. We take h(t) = e−t2 , t ∈ R, in Example 1. For this function h, the correspond-
ing ϕ satisfies 〈ϕ, L

(0,0,1)
ϕ〉 6= 0. Hence {L

(2k,l,m)
ϕ : (k, l,m) ∈ Z2n+1} does

not form an orthonormal system in L2(H).

3. Instead of e−t2 , one can take e−|t| or in general any h ∈ L2(R) for which∫
R

h(t)h(t− 1)dt 6= 0. Then 〈ϕ, L
(0,0,1)

ϕ〉 6= 0.
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4. Let ϕ(x, y, t) = f(x)g(y)h(t), where supp f
⋂
supp τ

2k
f = ∅, ∀ k 6= 0 and

supp g
⋂
supp τ

l
g = ∅, ∀ l 6= 0, h ∈ L2(R). Then the same proof discussed

in Example 1 can be used to show that ϕ satisfies condition C. Again as an
example, we can take

f(x) =

{
e
− 1

x(2−x) , 0 < x < 2,
0, otherwise,

and

g(x) =

{
e−

1
x(1−x) , 0 < x < 1,

0, otherwise,

and h(t) = e−t2 , t ∈ R.
Now we shall provide examples of functions in L2(H), which do not satisfy

condition C.
5. Let ϕ(x, y, t) = χ

[0,3]
(x)χ

[0,1]
(y)h(t), where h is an arbitrary function in

L2(R). Then it can be shown that

〈ϕ, L
(2,0,0)

ϕ〉 =

1∫

0

∫

R

h(t)h(t + y)dtdy.

Choose h in such a way that the above integral is non-zero. For example, we
can take h(t) = sinct, t ∈ R. Then

〈ϕ, L
(2,0,0)

ϕ〉 =

1∫

0

sinπy

πy
dy > 0.

Thus from (2.6), we have Ĝϕ
1,0(0) 6= 0, showing that ϕ does not satisfy

condition C.
6. More generally, let ϕ(x, y, t) = f(x)g(y)h(t), where the value of both the in-

tegrals
∫
R

f(x)f(x− 2)dx and
∫
R

∫
R

|g(y)|2h(t)h(t + y)dtdy are non-zero. Since

〈ϕ, L
(2,0,0)

ϕ〉 6= 0, ϕ does not satisfy condition C. For example, we can take

f(x) = e−|x|, x ∈ R, h(t) = sinct, t ∈ R and

g(y) =

{
1

n+1
, y ∈ [2n, 2n+ 1], n = 0, 1, 2, . . . ,

0, otherwise.

Remark 2.2. Let m = 0 in (2.6). Then we have

1∫

0

Gϕ
k,l(λ)dλ = 〈ϕ, L

(2k,l,0)
ϕ〉 <∞,

which shows that the function Gϕ
k,l(λ), defined in (2.5), is finite a.e. λ ∈ (0, 1].

The following theorem is a consequence of Theorem 4.1 in [11]. For its proof, we
refer to [11].
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Theorem 2.2. If {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is a Bessel sequence in L2(Hn) with

bound B, then Gϕ
0,0(λ) ≤ B a.e. λ ∈ (0, 1]. Conversely, suppose Gϕ

0,0(λ) ≤ B a.e.

λ ∈ (0, 1]. If, in addition ϕ satisfies condition C, then {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1}

is a Bessel sequence in L2(Hn) with bound B.

Let ϕ ∈ L2(Hn) be such that ϕ satisfies condition C. Suppose A(ϕ) = span

{L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1}. Then V (ϕ) = A(ϕ). Let f ∈ A(ϕ) i.e., f =∑
(k′,l′,m′)∈F

c
k′,l′,m′

L
(2k′,l′,m′)

ϕ, where F is a finite set. Define ρ(λ) = {ρ
k′,l′

(λ)}
(k′,l′)

for

λ ∈ (0, 1], where

ρ
k′,l′

(λ) =
∑

m′

c
k′,l′,m′

e2πim
′λ. (2.7)

Define J
ϕ
(f) = ρ.

Proposition 2.2. The map J
ϕ

initially defined on A(ϕ) can be extended to an

isometric isomorphism between V (ϕ) and L2((0, 1], ℓ2(Z2n), Gϕ
0,0).

(The above result has been proved for a more general case in [11]. However, for
the sake of completeness, we provide the proof here.)

Proof. Let f ∈ A(ϕ). Then

f̂(λ) =
∑

(k′,l′,m′)∈F

c
k′,l′,m′

̂L
(2k′,l′,m′)

ϕ(λ)

=
∑

k′,l′,m′

c
k′,l′,m′

e2πim
′λ ̂L

(2k′,l′,0)
ϕ(λ)

=
∑

k′,l′

ρ
k′,l′

(λ) ̂L
(2k′,l′,0)

ϕ(λ), (2.8)

using (2.7) and ρ(λ) = {ρ
k′,l′

(λ)}
(k′,l′)

.

Conversely let ρ(λ) = {ρ
k′,l′

(λ)}
(k′,l′)∈F

, where ρ
k′,l′

(λ) is given by (2.7). Define

f =
∑

(k′,l′,m′)∈F

c
k′,l′,m′

L
(2k′,l′,m′)

ϕ. Then f ∈ A(ϕ). Thus we see that there is a one

to one correspondence between A(ϕ) and the collection of functions of the form ρ.
Further, we have

‖f‖2 =

∥∥∥∥
∑

(k′,l′,m′)∈F

c
k′,l′,m′

L
(2k′,l′,m′)

ϕ

∥∥∥∥
2

=
∑

k′,l′

1∫

0

∣∣∣∣
∑

m′

c
k′,l′,m′

e2πim
′λ

∣∣∣∣
2

Gϕ
0,0(λ)dλ. (2.9)
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In fact,
∥∥∥∥

∑

(k′,l′,m′)∈F

c
k′,l′,m′

L
(2k′,l′,m′)

ϕ

∥∥∥∥
2

L2(Hn)

=

∫

R

∥∥∥∥
∑

k′,l′,m′

c
k′,l′,m′

̂L
(2k′,l′,m′)

ϕ(λ)

∥∥∥∥
2

B2

|λ|ndλ

=

1∫

0

∑

r∈Z

∥∥∥∥
∑

k′,l′,m′

c
k′,l′,m′

̂L
(2k′,l′,m′)

ϕ(λ+ r)

∥∥∥∥
2

B2

|λ+ r|ndλ

=

1∫

0

∑

r∈Z

∥∥∥∥
∑

k′,l′

(∑

m′

c
k′,l′,m′

e2πim
′λ

)
̂L
(2k′,l′,0)

ϕ(λ+ r)

∥∥∥∥
2

B2

|λ+ r|ndλ

=

1∫

0

∑

r∈Z

∑

k′,l′

∥∥∥∥
(∑

m′

c
k′,l′,m′

e2πim
′λ

)
̂L
(2k′,l′,0)

ϕ(λ+ r)

∥∥∥∥
2

B2

|λ+ r|ndλ

+

1∫

0

∑

r∈Z

∑

(k′1,l
′

1)6=(k′2,l
′

2)

〈(∑

m′

c
k′1,l

′

1,m
′
e2πim

′λ

)
̂L
(2k′1,l

′

1,0)
ϕ(λ+ r),

(∑

m′

c
k′2,l

′

2,m
′
e2πim

′λ

)
̂L
(2k′2,l

′

2,0)
ϕ(λ+ r)

〉

B2

|λ+ r|ndλ, (2.10)

using (1.2). Now, using (2.5) and the fact that ‖ ̂L
(2k,l,0)

ϕ(λ)‖
B2

= ‖ϕ̂(λ)‖
B2
, ∀ k, l ∈

Zn, the first term on the right hand side of (2.10) becomes

1∫

0

∑

r∈Z

∑

k′,l′

∣∣∣∣
∑

m′

c
k′,l′,m′

e2πim
′λ

∣∣∣∣
2

‖ ̂L
(2k′,l′,0)

ϕ(λ+ r)‖2B2
|λ+ r|ndλ

=

1∫

0

∑

k′,l′

∣∣∣∣
∑

m′

c
k′,l′,m′

e2πim
′λ

∣∣∣∣
2∑

r∈Z

‖ϕ̂(λ+ r)‖2B2
|λ+ r|ndλ

=

1∫

0

∑

k′,l′

∣∣∣∣
∑

m′

c
k′,l′,m′

e2πim
′λ

∣∣∣∣
2

Gϕ
0,0(λ)dλ. (2.11)

The second term on the right hand side of (2.10) is

1∫

0

∑

(k′1,l
′

1)6=(k′2,l
′

2)

∑

m′

1,m
′

2

c
k′1,l

′

1,m
′

1

c
k′2,l

′

2,m
′

2

e2πi(m
′

1−m′

2)λ

×
∑

r∈Z

〈 ̂L
(2k′1,l

′

1,0)
ϕ(λ+ r), ̂L

(2k′2,l
′

2,0)
ϕ(λ+ r)〉

B2
|λ+ r|ndλ = 0,
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as ϕ satisfies condition C. Thus (2.9) follows from (2.10) and (2.11). Then, using
(2.7), we have

‖f‖2 =
∑

k′,l′

1∫

0

|ρ
k′,l′

(λ)|2Gϕ
0,0(λ)dλ =

1∫

0

‖ρ(λ)‖2ℓ2(Z2n)G
ϕ
0,0(λ)dλ

= ‖ρ‖2L2((0,1],ℓ2(Z2n),Gϕ
0,0)
.

Hence J(ϕ) is an isometry. Using density argument this isometry can be extended
to the whole of V (ϕ). Moreover from (2.8), we have f ∈ V (ϕ) if and only if

f̂(λ) =
∑

k′,l′∈Zn

ρ
k′,l′

(λ) ̂L
(2k′,l′,0)

ϕ(λ), (2.12)

where ρ(λ) = {ρ
k′,l′

(λ)}
(k′,l′)∈Z2n and ρ ∈ L2((0, 1], ℓ2(Z2n), Gϕ

0,0). �

The following definitions and results are in accordance with [8].

Definition 2.8. An element ϕ ∈ H is said to be a canonical dual to the system

{f
k
: k ∈ Z} if 〈f

k
, ϕ〉 = δ

k,0
, ∀ k ∈ Z. In case, if f

k
is generated from a single

function f by some transformation, then ϕ is called a canonical dual to f .

Definition 2.9. A sequence {f
k
: k ∈ Z} in H is said to be Besselian if

∑
k∈Z

c
k
f
k

is

convergent implies {c
k
} ∈ ℓ2(Z).

Definition 2.10. A sequence {f
k
: k ∈ Z} in H is said to be Hilbertian if {c

k
} ∈

ℓ2(Z) implies
∑
k∈Z

c
k
f
k

converges.

Lemma 2.3. Suppose a measurable non-negative function s on Tn satisfies sm ∈
L1(Tn), whenever m ∈ L1(Tn), then s ∈ L∞(Tn).

The following theorem is in accordance with Remark 2.3 of [14].

Theorem 2.3. For every measurable subset A ⊂ Tn with λ(A) > 0, λ(Ac) > 0,
there exists non-zero f ∈ L2(Tn) such that

(1) supp f ⊂ A;

(2) there exists M > 0 such that ‖S
n
(f)‖

L∞(Tn)
≤M for all n ∈ N, where S

n
(f)

denotes the nth partial sum of the Fourier series of f .

3. Canonical dual in twisted shift-invariant spaces

The following theorem gives a necessary and sufficient condition for the existence
of the canonical dual to ϕ in L2(R2n) under condition C. We recall Definition 2.8.
Accordingly, we say that a function ϕ̃ ∈ L2(R2n) is said to be a canonical dual to a
function ϕ in L2(R2n) if 〈T t

(k,l)ϕ̃, ϕ〉 = δ
(k,l),(0,0)

holds for every k, l ∈ Zn.

Theorem 3.1. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C. Then there

exists a canonical dual ϕ̃ to ϕ that belongs to V t(ϕ) if and only if 1
wϕ

∈ L1(Tn).

Moreover, in this case, K
ϕ̃
(ξ, η) = 1

wϕ(ξ)
K

ϕ
(ξ, η).
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4. Non-redundancy property of Twisted translates in L2(R2n)

In the following theorem, we shall show that under condition C, the condition
w

ϕ
(ξ) > 0 a.e. ξ ∈ Tn is sufficient for the collection consisting of twisted translates

of ϕ ∈ L2(R2n) to be non-redundant.

Theorem 4.1. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C. Suppose

w
ϕ
(ξ) > 0 a.e. ξ ∈ Tn. Then {T t

(k,l)ϕ : (k, l) ∈ Z2n} is ℓ2- linearly independent.

In the following theorem, we shall prove that the converse of the above theorem
becomes true without using condition C but under an additional assumption that
{T t

(k,l)ϕ : (k, l) ∈ Z2n} is a Bessel sequence.

Theorem 4.2. Suppose {T t
(k,l)ϕ : (k, l) ∈ Z2n} is a Bessel sequence with bound B

that is ℓ2-linearly independent. Then w
ϕ
(ξ) > 0 a.e. ξ ∈ Tn.

Now we shall prove the converse of Theorem 4.1 without assuming that {T t
(k,l)ϕ :

(k, l) ∈ Z2n} is a Bessel sequence in Theorem 4.2.

Theorem 4.3. Let 0 6= ϕ ∈ L2(R2n). If {T t
(k,l)ϕ : (k, l) ∈ Z2n} is ℓ2-linearly

independent, then w
ϕ
(ξ) > 0 a.e. ξ ∈ Tn.

5. Twisted translates as Besselian and Hilbertian sequences in

L2(R2n)

In this section, we shall obtain the characterization for the collection {T t
(k,l)ϕ :

(k, l) ∈ Z2n} to be Hilbertian. Towards this, we have the following theorem.

Theorem 5.1. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C. Assume that
1
wϕ

∈ L1(Tn). If {T t
(k,l)ϕ : (k, l) ∈ Z2n} is Hilbertian, then ||w

ϕ
||
∞
<∞.

Now we shall prove the converse of Theorem 5.1.

Theorem 5.2. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C and 1
wϕ

∈

L1(Tn). Assume that ‖w
ϕ
‖
∞
<∞. Then {T t

(k,l)ϕ : (k, l) ∈ Z2n} is Hilbertian.

Combining Theorem 5.1, Theorem 5.2 and by taking B = ‖w
ϕ
‖
∞

in Theorem 2.1,

we get the following theorem.

Theorem 5.3. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C and 1
wϕ

∈

L1(Tn). Then the following are equivalent.

(a) {T t
(k,l)ϕ : (k, l) ∈ Z2n} is Hilbertian.

(b) ‖w
ϕ
‖
∞
<∞.

(c) {T t
(k,l)ϕ : (k, l) ∈ Z2n} is a Bessel sequence.

Theorem 5.4. Let ϕ ∈ L2(R2n) be such that ϕ satisfies condition C and 1
wϕ

∈

L1(Tn). If any one of the equivalent conditions of Theorem 5.3 is true, then there

exists ϕ̃ ∈ V t(ϕ), canonical dual to ϕ such that {T t
(k,l)ϕ̃ : (k, l) ∈ Z2n} is Besselian.

Moreover, if {T t
(k,l)ϕ : (k, l) ∈ Z2n} is Besselian and if for each ψ ∈ V t(ϕ) there

exists a sequence {c
k,l
} such that ψ =

∑
k,l∈Zn

c
k,l
T t
(k,l)ϕ, then ‖ 1

wϕ
‖
∞
<∞.
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6. Results on the Heisenberg group

The following theorem provides a necessary and sufficient condition for the exis-
tence of the canonical dual to a function ϕ ∈ L2(Hn) under condition C. We recall
Definition 2.8. Correspondingly, we say that a function ϕ̃ ∈ L2(Hn) is said to be a
canonical dual to a function ϕ in L2(Hn) if 〈L

(2k,l,m)
ϕ̃, ϕ〉 = δ

(k,l,m),(0,0,0)
holds for

every k, l ∈ Zn, m ∈ Z.

Theorem 6.1. Let ϕ ∈ L2(Hn) be such that ϕ satisfies condition C. Then there

exists a canonical dual ϕ̃ to ϕ that belongs to V (ϕ) if and only if 1
G

ϕ
0,0

∈ L1(0, 1].

Moreover, in this case, ̂̃ϕ(λ) = 1
G

ϕ
0,0(λ)

ϕ̂(λ).

Theorem 6.2. Let ϕ ∈ L2(Hn) be such that ϕ satisfies condition C. If Gϕ
0,0(λ) > 0

a.e. λ ∈ (0, 1], then {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is ℓ2-linearly independent.

In the following, we state the converse of the above theorem without proof. The
proof will be similar to the proof of Theorem 4.3.

Theorem 6.3. Let 0 6= ϕ ∈ L2(Hn). Assume that {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is

ℓ2-linearly independent. Then Gϕ
0,0(λ) > 0 a.e. λ ∈ (0, 1].

As in the case of twisted translation, by taking B = ‖Gϕ
0,0‖∞ in Theorem 2.2, we

can show the following theorem.

Theorem 6.4. Let ϕ ∈ L2(Hn) be such that ϕ satisfies condition C and 1
G

ϕ
0,0

∈

L1(0, 1]. Then the following are equivalent.

(a) {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is Hilbertian.

(b) ‖Gϕ
0,0‖∞ <∞.

(c) {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is a Bessel sequence.

Theorem 6.5. Let ϕ ∈ L2(Hn) be such that ϕ satisfies condition C and 1
G

ϕ
0,0

∈

L1(0, 1]. If any of the equivalent conditions of the above theorem holds, then there

exists ϕ̃ ∈ V (ϕ) such that {L
(2k,l,m)

ϕ̃ : (k, l,m) ∈ Z2n+1} is Besselian.

Moreover, if {L
(2k,l,m)

ϕ : (k, l,m) ∈ Z2n+1} is Besselian and if for each ψ ∈

V (ϕ), there exists a sequence {c
k,l,m

} such that ψ =
∑

(k,l,m)∈Z2n+1

c
k,l,m

L
(2k,l,m)

ϕ, then

‖ 1
G

ϕ
0,0
‖
∞
<∞.
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