Get all the updates for this publication
Cubic silicon carbide (3C-SiC) films were grown by pulsed laser deposition (PLD) on magnesium oxide [MgO (100)] substrates at a substrate temperature of 800°C. Besides, p-type SiC was prepared by laser assisted doping of Al in the PLD grown intrinsic SiC film. The SiC phases, in the grown thin films, were confirmed by x-ray diffraction (XRD), Si–C bond structure is identified by Fourier-transform infrared spectroscopy spectrum analysis. Measurements based on the XRD and Raman scattering techniques confirmed improvement in crystallization of 3C-SiC thin films with the laser assisted doping. The studies on I–V characteristics by two probe technique, elemental analysis by energy dispersion spectrum, binding energy by x-ray photoelectron spectroscopy and carrier concentration by Hall effect, ensured Al doping in SiC thin film. From the UV–visible NIR spectroscopic analysis, the optical bandgap of the PLD grown 3C-SiC was obtained. Numerical analysis of temperature and carrier concentration distribution is simulated to understand the mechanism of laser assisted doping. © 2019, The Minerals, Metals & Materials Society.
Journal | Data powered by TypesetJournal of Electronic Materials |
---|---|
Publisher | Data powered by TypesetSpringer New York LLC |
ISSN | 03615235 |
Open Access | No |