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Joint image and depth completion in
shape-from-focus: Taking a cue from parallax
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Shape-from-focus (SFF) uses a sequence of space-variantly defocused observations captured with relative mo-
tion between camera and scene. It assumes that there is no motion parallax in the frames. This is a restriction
and constrains the working environment. Moreover, SFF cannot recover the structure information when there
are missing data in the frames due to CCD sensor damage or unavoidable occlusions. The capability of filling-
in plausible information in regions devoid of data is of critical importance in many applications. Images of 3D
scenes captured by off-the-shelf cameras with relative motion commonly exhibit parallax-induced pixel motion.
We demonstrate the interesting possibility of exploiting motion parallax cue in the images captured in SFF
with a practical camera to jointly inpaint the focused image and depth map. © 2010 Optical Society of
America
OCIS codes: 150.6910, 150.5670.
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. INTRODUCTION
n shape-from-focus (SFF) [1], a sequence of images is
aptured by moving a real-aperture camera relative to a
D object. By measuring the degree of focus in the stack of
pace-variantly blurred observations, SFF arrives at the
tructure of the 3D scene. SFF is particularly well-suited
or applications such as endoscopy [2] where spatial con-
traints preclude access to camera controls [required in
ethods such as depth from defocus (DFD)] and camera
otion can be treated as piece-wise axial. The small
orking distances used in such applications demand tech-
iques that work with real-aperture off-the-shelf cameras
OTS), and SFF clearly has advantages over other shape-
xtraction methods such as stereo, structure-from-
otion, and shape-from-shading, which assume a pinhole

amera.
SFF makes the critical assumption of “no pixel motion”

n order to be able to apply a local window around a pixel
nd compute the focus measure profile by traversing
hrough the stack. Researchers acknowledge [3–5] the
act that magnification will cause errors in depth estima-
ion in methods that use the blur cue and have devised
ethods to avoid it. In the related area of DFD, telecen-

ricity on the image-side has been proposed [3] to avoid
agnification effects. Object-side telecentricity is also

revalent in the literature [6], but in order to achieve this
ffect the aperture of the front lens needs to be as large as
he object to be viewed. This necessitates large, heavy,
nd expensive lenses. The assumption of “no parallax” is
alid only for telecentric optics and not for OTS digital
ameras in which pixel motion is a naturally occurring
henomenon. In one of our recent works [7], we have pro-
osed a method to obtain the super-resolved focused im-
ge of 3D specimens in the SFF scenario using space-
ariantly defocused observations from a stack captured
1084-7529/10/051203-11/$15.00 © 2
sing an optical microscope with object-side telecentric
enses (i.e., no parallax effect). In this paper, we discuss
epth and image inpainting in SFF using an OTS camera
n the presence of missing data in observations and occlu-
ions. We demonstrate that by exploiting parallax-
nduced pixel motion it is possible to fill-in missing re-
ions due to simulated scratches on the CCD sensor and
hin occluders.

Image inpainting assumes that the area to be inpainted
s known a priori and uses information in the neighbor-
ood to recover missing details. Applications include res-
oration of scanned old photographs, astronomical im-
ges, removal of text/subtitles in images as well as in
ideos, and also for disocclusion/removal of objects. Some
f the early works on image inpainting can be found in
8–13]. Recent works have focused on automatic detection
nd inpainting of corrupted regions [14,15], and on joint
uper-resolution of video and inpainting [16]. Inpainting
as also been used for shadow removal in [17,18].
The problem of occlusion-handling has been addressed

n several works [19–23]. The authors in [19] estimate
oth the radiance and the shape of the occluding object as
ell as the background scene that is occluded. The prop-
rty of a real-aperture camera is exploited to “see
hrough” the occluder. However, they assume both the
oreground and the background objects to be equifocal
lanes. The problem of self-occlusion is tackled in [20]
gain with the equifocal plane assumption. Levoy et al.
24,25] extend the idea of confocal microscopy and use an
rray of cameras/mirrors/projectors to see beyond occlud-
rs. In [21], high-resolution (HR) images are captured us-
ng an SLR camera, and depth maps for challenging data
ets such as hair (a wig) are estimated. However, the
ethod requires hundreds of HR images and yet suffers

rom unreliable depth estimates at low-textured regions,
010 Optical Society of America
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here inpainting is resorted to by propagating boundary
nformation using smoothness constraints [9] as a post-
rocessing step. In the work of [22], three synchronized
ideo streams are captured that share the same point-of-
iew but differ in their plane of focus. By over-
onstraining the problem, an improved alpha-matte is es-
imated that reveals the occlusion effect. The work in [23]
odels occlusions at defocused layer boundaries using a

ayered image formation model. However, the scene is as-
umed to consist of multiple, overlapping, fronto-parallel
ayers, which is a simplification. Only the camera aper-
ure is changed while capturing different observations
nd there is no relative motion between the sensor and
he scene. Importantly, the work in [23] does not perform
isocclusion per se but accounts for occlusion effects only
t defocused boundaries. We remark that all the above
orks [19–23] have been proposed in the DFD frame-
ork, where camera parameters such as focal length,

mage-plane to lens distance, and aperture are changed to
btain defocused observations. It can be theoretically
hown that the observations captured by relative motion
etween the camera and the 3D object in SFF and those
btained by changing camera parameters, as in DFD, are
ot identical.
We observe that in all the above works [8–23], there is

o motion parallax in the observations. In the literature,
mage/video inpainting has primarily been attempted us-
ng focused/defocused images without any magnification
r parallax. In this work, we model the formation of the
tack of space-variantly blurred observations affected by
otion parallax and missing data in the SFF scenario. We

xplicitly relate the parallax-induced pixel motion to the
tructure of the 3D object. The space-variant defocusing is
lso related to the depth of the points on the specimen
rom the real-aperture camera. We seek to exploit the in-
ricate coupling of parallax and defocus with the shape of
he object. We model the inpainted focused image and the
ompleted depth profile using independent Markov ran-
om fields (MRF) and obtain their maximum a posteriori
MAP) estimates in an integrated manner. SFF methods
ypically avoid modeling the point spread function (PSF)
f the camera. However, because of the complexity of the
hallenges tackled in this paper, we are constrained to use
model for the PSF. All approximations made are vali-

ated with real data.
The works in [16,26] are the closest in comparison to

ur approach. However, there are several differences, too.
he work of [16] assumes a planar scene and performs

mage inpainting while obtaining a super-resolved video
equence from low-resolution frames. The captured low-
esolution images are shifted with respect to one another
lobally, and there is no motion parallax in the frames. In
recent work [26], the authors perform inpainting in a

tereo setup using only pinhole images. By virtue of using
wo viewpoints, they have access to regions that are
issing/occluded in one of the views, which enables them

o inpaint the focused image and the depth map. Unlike
n [26], we do not need a pre-calculated depth map, nor
re we constrained to work with pinhole images. To the
est of our knowledge, ours is the first work of its kind in
FF to use parallax and defocus cues jointly for handling
cclusions and sensor damage. We would like to empha-
ize that our aim here is not to account for motion paral-
ax but rather to use it judiciously as a cue for inpainting
mage and the structure.

In Section 2, we discuss the issue of missing data in
FF. Pixel motion due to parallax effect is treated in Sec-
ion 3. The degradation model for missing observations is
xplained in Section 4. The proposed method for joint im-
ge and depth inpainting is given in Section 5. Experi-
ental results are described in Section 6. Concluding re-
arks are presented in Section 7.

. MISSING DATA PROBLEM
n this section, we illustrate the effect of missing data in
FF. Let us consider that the 3D object is occluded by an-
ther object that is placed in the foreground. The occluder
s assumed to be static and it is only the 3D object that

oves.
Let us initially assume that there is no magnification

parallax) in the observations (assumption not valid for
TS cameras). We use the term “magnification” or “scal-

ng” loosely to refer to parallax-induced pixel motion.
herefore, data are missing at some fixed spatial loca-

ions in the captured frames. A similar situation could
rise if some portion on the CCD sensor was corrupted.
e evoke a synthetic experiment, where there is no pixel
otion, and show that depth and focused image (in the
issing regions) cannot be recovered faithfully in SFF.
e choose a simple ramp-shaped 3D specimen with “calf”

27] texture mapped onto its surface. We simulate the mo-
ion of the object along the optical axis to obtain a se-
uence of images with missing data in some parts of the
mages. Fifty frames are captured in steps of �d=1 mm.
n Figs. 1(a) and 1(b), two of the frames are shown. The
issing regions due to the damaged sensor or occlusions

re shown with black pixels (whose locations are chosen
rbitrarily). The reconstructed depth map obtained using
he SFF technique [1] is shown as a grayscale image in
ig. 1(c). The estimated depth at regions where image
ata are missing in the observations is quite poor. We also
econstruct the focused image of the underlying specimen
y selecting the particular frame in which a pixel comes
nto focus and by picking the grayscale intensity at that
ocation. By repeating this procedure for all the pixels, we
an construct an (approximate) all-in-focus image, which
s shown in Fig. 1(d). We observe that with such a proce-
ure, it is impossible to fill-in the missing regions in the
ocused image.

. Motion-Cue for Data Completion
or OTS cameras, parallax results in apparent motion of

mage features. The center of projection of the rays com-
ng from the scene changes every time the object is moved
long the optical axis in finite steps. As an example, let us
onsider Fig. 2, where we have shown images from a
tack captured by a real OTS camera. To simulate the ef-
ect of a damaged sensor we have marked some of the pix-
ls black. The 3D specimen is a small wooden piece on
hich a face has been carved. The captured images are
oth space-variantly blurred and scaled. The location of
mage features shifts as we travel from one frame to an-
ther [shown by white arrows in Fig. 2(a)]. Note that the
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osition of the damaged regions is fixed but different im-
ge features are covered by the black pixels in a different
mage [Fig. 2(b)]. We shall subsequently exploit this cue
or inpainting both focused image and structure.

. INPAINTING IN SFF
he basic principle of SFF is depicted in Fig. 3(a). The ob-

ect is initially placed such that the translating stage is on
he focused plane. The 3D object is translated downwards

(a) (b)

(e) (f)
ig. 1. (a,b) Frames 1 and 40 (unscaled stack). (c,d) Reconstruc

rom scaled stack. (g,h) Inpainted focused image and completed
along the optical axis in fixed finite steps of �d) such that
t every step a space-variantly blurred image is captured.
s the point �k , l� approaches the focused plane it gradu-
lly comes into focus. The quantity d̄�k , l� is the amount
y which the stage should be translated to bring the point
k , l� to the focused plane (at a distance of wd from the
ens plane), when it is in perfect focus (neglecting diffrac-
ion effects and aberrations). The basic idea in SFF is to
stimate for every point the position of best focus, d̄�k , l�.
he variable d̄= d̄�k , l� for all the points �k , l� on the 3D
pecimen characterizes its shape. To detect the position of

(c) (d)

(g) (h)
pth profile and focused image using [1]. (e,f) Frames 20 and 40
rofile, respectively, using our method.
(a) (b)

(c) (d)
Fig. 2. Wooden face specimen. (a,b) Second and eighth frames, respectively. (c,d) Corresponding frames with thicker scratches.
ted de
depth p
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est focus for a point on the 3D object a focus measure op-
rator is used to measure the quality of image focus in a
ocal region. Specifically, the sum-modified Laplacian
SML) operator [1] is used to compute a focus measure
rofile for each pixel in the frame. The estimate of the
hape of the object is obtained by Gaussian interpolation.

The above formulation assumes that the pixel locations
o not change between frames. This is crucial since the
indow used for computing the SML is centered around

he same point in all the frames. In real-world situations,
ata in portions of the observations may be missing due to
everal factors including damage to the CCD sensor or oc-
lusions. Since the SFF analysis is local, and depth esti-
ates for a particular point are computed using data in

he observations in the immediate neighborhood of that
ixel, this technique cannot recover structure in missing
egions [as shown in Figs. 1(c) and 1(d)]. Interestingly, we
how next that when there is magnification in the stack,
tructure-dependent pixel motion can be tapped to per-
orm inpainting of both the depth profile as well as the fo-
used image of the 3D specimen.

. Motion Parallax in the Stack
hen the relative motion between scene and camera is

ignificant, there will be magnification (due to motion
arallax), and image features will shift spatially from
rame to frame. Let the 3D specimen move relative to the
amera along the axial direction as a sequence of frames
s captured. Initially, we consider a pinhole camera. As
hown in Fig. 3(b), we examine a specific point on the
pecimen that is moved relative to the pinhole camera. A
oint on the 3D object with world coordinates
�XP ,YP ,ZP� moves to Q�XQ ,YQ ,ZQ� along the Z-axis by a
istance of m�d and away from the pinhole denoted by O.
he distances of the points P and Q from the pinhole are
P and ZQ, respectively. The point P is imaged at p on the

mage plane and has coordinates �x ,y�. Let this image be
he reference plane. When the 3D object is moved away
rom the pinhole by an amount m�d, the point Q is im-
ged at q with coordinates �x� ,y�� on the image plane.
According to basic perspective projection equations,

x =
vXP

ZP , x� =
vXQ

ZQ , and y =
vYP

ZP , y� =
vYQ

ZQ , �1�

here v is the distance between the pinhole and the im-
ge plane. The motion of the object relative to the pinhole

Motion
along

optical
axis

Image Plane

Focused Plane

wd

∆d

Translational Stage

Lens

3D Object
�

(k,l)

m=0
m=1
m=2
m=3

d(k, l)

(a)
Fig. 3. (a) Working principle of SFF. (b) Schematic sho
s along the Z-axis only, since the 3D specimen is trans-
ated away from or towards the camera along the optical
xis. Hence, for the SFF scenario, we have XP=XQ, YP

YQ, ZQ=ZP+m�d=wd− d̄+m�d, and −M /2�x� ,y�
M /2. Here, M�M is image size. Thus, it can be shown

hat

x� =
x�wd − d̄�

�wd − d̄� + m�d
, y� =

y�wd − d̄�

�wd − d̄� + m�d
. �2�

ote that the pixel motion is a function of d̄, the 3D struc-
ure of the scene.

. DEGRADATION MODEL
onsider N frames, �ym�i , j��, m=0,1, . . . ,N−1 from the
tack. Assume that these are derived from a single fo-
used image �x�i , j�� of the 3D specimen. The scaled and
efocused frames can be related to the focused image by
he degradation model

ym
vis = Om�Hm�d̄�Wm�d̄�x + nm�, m = 0, . . . ,N − 1,

�3�

here ym
vis is the lexicographically arranged vector of size

2�1 derived from the visible regions in the mth defo-
used and scaled frame, Wm is the matrix describing the
otion of the pixels in the mth frame, Hm is the blurring
atrix for the mth frame, nm is the M2�1 Gaussian

oise vector in the mth observation, and Om is the opera-
or that removes the missing/damaged regions and crops
ut the visible portions of the observations. Note that for
oth the cases of sensor damage or occlusions (due to a
tatic occluder), the cropping operator is unchanged
cross the stack, i.e., Om=O. Hence, the spatial locations
f the inpainting region remain the same in all the
rames.

Observe the interesting relationship between the shape
f the object, pixel-motion, and space-variant defocusing
n the frames. The degree of space-variant defocus blur
nduced at each point in the image of a 3D scene is depen-
ent upon the depth of the object �d̄� from the lens plane.
lso, the pixel motion is a function of the 3D structure of

he object. In fact, the twin cues of defocus and motion
arallax are intertwined with the 3D structure and must
e exploited.

age Plane ĵ

î

k̂

P Q

q

v ZQ

ZP
m∆d

3D Object

O

(b)
echanism of structure-dependent pixel motion in SFF.
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In the previous section, we elucidated the motion par-
llax effect that is modeled by Wm�d̄� in Eq. (3). We now
escribe the space-variant blurring mechanism as speci-
ed by Hm�d̄� in Eq.(3). In its most general form, the im-
ge formation process [as described by Eq. (3)] is difficult
o comprehend, and some simplifying assumptions must
e made to gain a handle on the problem. To this end, we
ssume a parametric model for the PSF of the camera.
ecause of diffraction and lens aberrations, the PSF is
est described by a circularly symmetric 2D Gaussian
unction [28] with standard deviation �=�rb, where � is a
amera constant and rb is the blur circle radius. There ex-
st several works that have validated this approximation
19,29]; hence, we too are motivated to use this model.
ince the blur parameter � is a function of depth [29], the
lurring induced is space-variant.
When the stage is moved downwards in steps of �d

Fig. 3(a)], for the mth frame the blur parameter for a 3D
oint whose image coordinates are �k , l� is given as

�m�k,l� = �Rv� 1

wd
−

1

wd + m�d − d̄�k,l�
� , �4�

here 1/wd= �1/ f�− �1/v�, f is the focal length, R is the ra-
ius of the aperture of the lens, and v is the distance be-
ween the lens and the image plane.

The value of the camera intrinsic parameter �Rv in Eq.
4) must be deduced by camera calibration but needs to be
etermined only once for a given camera. To this end, we
onducted the following experiment. A focused image If of
planar object (with an appreciable amount of texture)
as first acquired by positioning it parallel to the lens
lane. Next, we displaced this sample by a known dis-
ance along the optical axis to obtain a space-invariantly
lurred image Ib. The originally captured focused image If
as blurred using a Gaussian kernel for different values
f �Rv incremented in small steps. That value of �Rv that
inimized the mean-squared error between the “blurred”

ocused image and the captured observation was taken to
e the estimate of �Rv. Note that since the object chosen
n the calibration experiment was planar, there are no
arallax effects when the object is translated.
We next analyze the degree of occlusion that can be

andled using parallax and defocus cues. Let hx and hy
enote the maximum widths of the scratch along X and Y
irections, respectively. Let xmin=minx�S�	x	� and ymin
miny�S�	y	�, where S is the set of pixels to be inpainted.
rom Eq. (2), it can be shown that if

hx � max
0�m�N−1


 xminm�d

wd − d̄min + m�d

, or

hy � max
0�m�N−1


 yminm�d

wd − d̄min + m�d

 , �5�

hen every pixel in S will be rendered visible in at least
ne of the N observations due to the parallax effect. Here,

min=minx,y�Sd̄�x ,y�. The bounds in Eq. (5) are derived
or the worst-case situation, when the corresponding pixel
n S is assumed to be farthest from the lens among all the
oints in S. While inpainting due to motion cue is direct,
he defocus cue contributes indirectly by affecting obser-
ation values outside of S. Since the Gaussian blur is
ymmetric, this yields the condition for inpainting as

hx or hy � min
x,y�S

� max
0�m�N−1

�6�m�x,y� + 1��. �6�

ote that 99% of the area under a Gaussian is within ±3�
rom its mean value. We remark that near the image cen-
er, pixel motion is absent and the method relies only on
he defocus cue for inpainting these locations.

. PROPOSED FRAMEWORK FOR
NPAINTING/DISOCCLUSION
he problem that we attempt to solve is the following:
iven a stack of scaled and defocused observations, where

here are regions of missing data due to possible occlu-
ions in the scene or due to faulty camera sensor, how do
e simultaneously inpaint the depth profile and the fo-

used image of the object?
We propose to inpaint both the depth profile as well as

he focused image of the object within a unified frame-
ork. Note that for the problem scenario considered in

his work, the spatial locations of the missing regions do
ot change from frame to frame in the stack. It is highly
robable that whatever region of the 3D specimen was
ccluded/missing in one observation of the stack will come
nto view in another frame, since there is magnification in
he stack due to parallax effect.

Simultaneous reconstruction of depth profile d̄ and fo-
used image x is an ill-posed inverse problem, and hence,
he solution must be regularized using a priori con-
traints. Real-world objects usually have depth profiles
hat are locally smooth. The same argument holds good
or the focused image also. MRFs have the capability to
odel spatial dependencies so as to incorporate prior in-

ormation [30]. We model the structure and the focused
mage of the 3D specimen using separate Gauss MRF
GMRF) with a first-order neighborhood. We use the
MRF model for its simplicity. The Hammerseley–
lifford theorem [31] provides the all-important equiva-

ence between Gibbs random field and MRF, enabling the
pecification of the prior joint probability density fuction
or the depth map and the focused image. For details on

RF, see [30].
We seek to solve for the MAP estimate of d̄ and x. Let

s consider a set of p frames chosen from the stack of N
bservations. Assuming noise processes nm� s to be inde-
endent, the MAP estimates of d̄ and x can be obtained
y minimizing

Up�d̄,x� = �
m�O

�ym
vis − Om�Hm�d̄�Wm�d̄�x��2

2��
2

+ �d̄ �
c�Cd̄

Vc
d̄�d̄� + �x �

c�Cx

Vc
x�x�, �7�

here O= �u1 ,u2 , . . . ,up�, ui is the frame number, and ��
2

s the variance of the Gaussian noise. The clique potential
unction for d̄ is
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Table 1. Errors for Synthetic and Real Specimens

Specimen
RMSE for Image Inpainting
(in Gray Levels)

RMSE for Depth Completion
(as % of Maximum d̄)

ks=0,1,2,3 ks=0,1,2,3

Ramp1�calf� 14, 15, 15.5, 14.5 2.8%, 2.96%, 3%, 3.2%
amp2�random-dot� 4.5, 5, 5.53, 4.8 1.0678%, 1.074%, 1.07%, 1.069%

Ramp3�bark� 5.66, 7.64, 7.55, 7.52 2.1%, 2.1%, 2.113%, 2.112%
Ramp4�straw� 10.37, 13.13, 13.01, 13.88 2.25%, 2.27%, 2.28%, 2.29%

Ramp5�brick wall� 3.02, 4.4, 4.25, 4.75 3.055%, 3.061%, 3.056%, 3.06%

RMSE for Depth Completion (as % of Maximum d̄)
ks=0,1,2,3

Cylinder1�1 cm� 7%, 7.5%, 7.479%, 7.207%
Cylinder2�1.3 cm� 8.22%, 8.25%, 8.28%, 8.26%

Cylinder3�1.6 cm� 5.98%, 6.019%, 6.077%, 6.022%
(a) (b)

(c) (d)

(e) (f)
ig. 4. (a,b,c) Observations corresponding to the second frame for three different specimens. (d) Inpainted focused image corresponding

o specimen (c). (e) Completed depth map. (f) Cylindrical fit to the estimated depth profile.
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�
c�Cd̄

Vc
d̄�d̄� = �

i=1

M

�
j=1

M

��d̄�i,j� − d̄�i,j − 1��2 + �d̄�i,j + 1�

− d̄�i,j��2 + �d̄�i + 1,j� − d̄�i,j��2 + �d̄�i,j�

− d̄�i − 1,j��2�, �8�

here c is a clique, C is the set of all cliques, and Vc� · � is
he potential associated with clique c. We choose Vc

x�x� to

e of the same form as Vc
d̄�d̄�.

In recent literature, graph cuts have been used as a
ast optimization technique for submodular energy func-
ions [32,33]. In applications that involve blur [34–36] the
nergy functions are non-submodular and graph cuts
ave not performed well. Roof duality works in cases
here the number of non-submodular terms is small [35].
owever, for a 5�5 sized kernel, it is shown in [35] that

he number of unassigned labels for the quadratic pseudo
oolean optimization (QPBO) and the “probing” QPBO
QPBOP) methods is a whopping 80%. In contrast, simu-
ated annealing (SA) is shown to outperform all the meth-
ds, including QPBO and QPBOP [35]. The energy at con-
ergence is zero and all the nodes are labeled. Hence, we

(a)

(c)

(e)
ig. 5. (a) Inpainted focused image. (b) Inpainted depth map. (c
espectively, obtained using the observations in Figs. 2(c) and 2(
ave used the SA algorithm to minimize Up�d̄ ,x�. Param-
ters �d̄ and �x must be carefully chosen to obtain a good
stimate of both d̄ and x.

. EXPERIMENTAL RESULTS
n all our experiments, we feed the entire SFF stack as
nput to the method in [1] to obtain an initial estimate of
he inpainted depth map. During the inpainting process,
ollowing literature [9], we assume knowledge of the loca-
ions of the regions that have to be filled-in. For the in-
ainted focused image, we choose an arbitrary initial es-
imate (cropped portion of the Lena image). We use four
rames with good relative blur among them from the
tack to reconstruct the completed focused image and the
epth map in all the experiments. To avoid boundary
roblems, we operate over an inner region of the observa-
ions. Hence, the inpainted depth profile and the focused
mage obtained from our method are slightly smaller in
ize compared to the observations.

Initially, we present results for a synthetic experiment
orresponding to a ramp-shaped depth map. We consider
ifferent heights and textures for the depth map. The
eights of the ramps �ramp , i=1,2,3,4,5� are 3.0 cm,

(b)

(d)

(f)
el view depiction. (e,f) Inpainted focused image and depth map,
,d) Nov
i
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.5 cm, 4.0 cm, 4.5 cm, and 5.0 cm, respectively. The cor-
esponding textures were chosen as “calf” [27], a random-
ot pattern, “bark,” “straw,” “brick wall” (last three from
27]), respectively. We synthetically generate scaled and
efocused stacks of fifty frames corresponding to each of
hese cases by simulating the motion of the object away
rom the camera along the optical axis in finite steps of
d=1 mm with the effect of parallax factored in. To simu-

ate CCD sensor damage, we scratched the observations
y three different scratch patterns (denoted by ks=1,2,3
n Table 1, with ks=0 representing the no-scratch case).

Four observations from each scaled stack were given as
nput to our method. For each of the synthetic experi-

ents, we choose MRF parameters as �d̄=109 and �x
0.005. As a representative example, the 20th and the
0th observations of the first ramp-shaped specimen
with scratch pattern corresponding to ks=1) are shown in
igs. 1(e) and 1(f), respectively. Our method fills up both
he image and the depth map completely, as shown in
igs. 1(g) and 1(h) {unlike the unscaled case discussed
arlier in Section 2 [Figs. 1(c) and 1(d)]}. The structure in-
ormation is recovered even at locations where the data
ere missing. Our algorithm was tested on all the fifteen

(a)

(c)

(e)
ig. 6. (a,b) Observations of a clay model of a bunny occluded b
ovel views of the bunny.
ifferent cases (corresponding to five different ramp
eights each scratched by three different patterns), and
he rms errors in image and depth inpainting are re-
orted in Table 1. The average rms error for the inpainted
tructure over all the fifteen samples is less than 3.3% of
he maximum height of the ramp in each case. The aver-
ge rms error incurred in image inpainting is less than 15
ray levels. In Table 1, we also report the rms error for
he case when there are no scratches (i.e., for ks=0 and for
ach specimen). The average rms error incurred for the
no scratch” case (for both structure and image inpaint-
ng) is only marginally lower compared to the case when
cratches are present. This amply demonstrates the abil-
ty of our method to effectively fill-in missing information.

Next, we captured real-world objects using an OTS
lympus C5050Z digital camera operating in the “super-
acro” mode. To enable quantitative evaluation of accu-

acy, we tested with different bottles of ophthalmic medi-
ine �cylinderi , i=1,2,3�. The corresponding radii were
cm, 1.3 cm, and 1.6 cm, respectively. Each bottle had its

wn wrapper containing written text. Synthetically gen-
rated cylindrical surfaces were fit and compared with
he reconstructed depth maps. For general 3D objects

(b)

(d)

(f)
. (c) Inpainted focused image. (d) Estimated shape profile. (e, f)
y a pin
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ith arbitrary shapes, we provide novel views for qualita-
ive evaluation.

For capturing defocused and scaled stacks, the digital
amera was kept static, and the 3D specimen was placed
n a translating stage that was moved away from the
amera in fixed finite steps of �d=1 mm. A video was cap-
ured for the entire motion. The frames were then ex-
racted from this video and processed. To simulate the ef-
ect of missing data due to possible damage to the CCD
ensor, we randomly scratched the frames post-capture
ith the scratch patterns corresponding to ks=1,2,3 (dis-

ussed earlier). Sample observations corresponding to dif-
erent cylindrical specimens are shown in Figs. 4(a)–4(c).
he proposed algorithm was used to obtain the inpainted

ocused image and the completed depth profile in each
ase. For the real-world specimen, the values of the MRF
arameters were chosen as �d̄=108 and �x=0.05, respec-
ively. Because of space constraints, we show the results
nly for the first object degraded by the first scratch pat-
ern [Fig. 4(c)]. The inpainted focused image is shown in
ig. 4(d). Note that, after inpainting with our method, the
ext below the scratched regions in the observations be-
omes visible. The completed depth profile represented as

(a)

(c)

(e)
ig. 7. Wooden Buddha statue occluded by a pin. (a, b) Frames 2
fter texture mapping.
grayscale image is shown in Fig. 4(e). Note that the
epth profile in the scratched region has been completely
lled-in. The actual radius of the 3D object is 1 cm. The
aximum height of the estimated depth profile is also ap-

roximately 1 cm which is in accordance with the physi-
ally measured dimension of the bottle. In Fig. 4(f), we de-
ict together the plot of the estimated structure and the
ynthetically generated cylindrical surface. Note that the
stimated depth profile closely follows the cylindrical sur-
ace, as expected. The size of the estimated depth profile
nd the fitted cylindrical surface is 112�169 pixels.
In Table 1, we give a summary of the rms errors for

ine different cases (corresponding to three different
ottles each scratched by three different patterns). The
verage rms error in depth completion is less than 8.3%.
he rms errors for the “no scratch” case �ks=0� in Table 1
re again only marginally lower, thus validating the effec-
iveness of inpainting using our method. For real speci-
ens, we do not provide rms errors for image inpainting

ince the original texture is not available.
Next, we return to the face example discussed in Sub-

ection 2.A. Two of the four observations used by the pro-
osed method are as given in Figs. 2(a) and 2(b). The in-

(b)

(d)

(f)
(c,d) Inpainted focused image and shape profile. (e,f) Novel views
and 8.
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ainted image and the reconstructed depth map using the
roposed algorithm are given in Figs. 5(a) and 5(b), re-
pectively. It is interesting to note that various features of
he face, such as the eyes, the eyebrows, the nose, and the
traight edge below it are faithfully reconstructed both in
he inpainted image and the inpainted depth map. We
lso show two novel views [Figs. 5(c) and 5(d)] of the es-
imated inpainted structure after texture mapping. Note
hat there are no artifacts.

We also investigated a failure case corresponding to se-
ere sensor damage. Two representative observations are
hown in Figs. 2(c) and 2(d). The quality of the estimated
ocused image [Fig. 5(e)] and the depth profile [Fig. 5(f)] is
egraded (see points indicated by arrows). Because of the
hick nature of the scratches, the motion of pixels is in-
ufficient to render visible (in other observations) the por-
ions hidden behind the damaged regions.

To demonstrate the capability of our method in per-
orming disocclusion, we present results for yet another
eal experiment. We attempt to demonstrate the useful-
ess of the proposed method in potential applications
uch as endoscopy, where fine body structures may oc-
lude the object of interest. A small pin is kept across the
eld-of-view of the camera such that it occludes the speci-
en, which is chosen as a clay model of a bunny. Two

rames from the stack are shown in Figs. 6(a) and 6(b).
ote that the position of the occluded regions is fixed in
ll the observations and is assumed to be known. The pro-
osed method yields the inpainted focused image shown
n Fig. 6(c). The features of the eye portion at the loca-
ions of the occluder have been recovered well. The edges
t the junction of the eyelids and the eyeball which were
ccluded are now clearly visible. Also, the texture on the
urface of the specimen has been deblurred well and can
e discerned easily. The estimated depth profile is shown
n Fig. 6(d). Even in occluded regions, the algorithm is
ble to recover the depth information. Since the occlusion
emoval is accurate, the novel views [shown in Figs. 6(e)
nd 6(f)] do not exhibit any artifacts.
We present one more set of real results for disocclusion.

n this case, a portion of a statue of Buddha was used for
maging. The object was occluded again by a pin and a
tack of scaled and defocused frames was captured.
mong the four chosen observations, the second and the
ighth frames are shown in Figs. 7(a) and 7(b), respec-
ively. Using these frames, the focused image of the speci-
en was estimated and this is shown in Fig. 7(c). Observe

hat the portion of the lower lip that was occluded in the
bservations has been recovered well. The occluder has
lmost completely been removed in the estimated focused
mage. The depth profile was also reconstructed and is de-
icted in Fig. 7(d). The proposed algorithm has estimated
he depth map correctly despite the presence of the oc-
luder. In Figs. 7(e) and 7(f) we depict two novel views of
he object for qualitative assessment.

. CONCLUSIONS
n this paper, we demonstrated the interesting possibility
f using motion parallax as a cue for inpainting within
he SFF scenario. When a real-world camera is moved
elative to a 3D object to capture a stack, the frames are
ubject to parallax effects. In addition, there can be data
oss in certain regions due to sensor damage and/or occlu-
ions. Despite missing regions in the observations, we
ave shown that it is possible to judiciously exploit the
arallax cue to obtain the inpainted focused image and
D structure of the underlying specimen using only a few
rames from the stack. In effect, we were able to integrate
mage deblurring, and image and structure inpainting
ithin a single unified framework. Some interesting ex-

ensions include generalizing the proposed method to
andle arbitrary camera motion and automatic detection
f missing regions by utilizing the frames in the SFF
tack.
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