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Abstract 

The occurrence of titanium dioxide nanoparticles (nTiO2) in the effluents released from 

wastewater treatment plants, have raised concerns. The fate of nTiO2 and their potential impact 

on organisms from different ecosystems are widely investigated.  For the first time, in this work, 

we report the response of an oleaginous bacteria Rhodococcus opacus PD630, belonging to an 

ecologically important genus Rhodococcus to environmentally relevant concentrations of nTiO2, 

under dark and UV light conditions. We observed a dose-dependent increase in nTiO2 uptake by 

the bacteria that reached a maximum of  1.4 mg nTiO2 (g cell)-1 under mid-log UV exposure, 

corresponding to 97% uptake. The nTiO2 induced oxidative stress in bacteria that increased from 

25.1 to a maximum of 100.3, 44.1 and 51.7 µmol .𝑂𝐻 (g cell)-1 under dark, continuous and mid-

log UV, respectively. However, nTiO2 did not affect bacterial viability. Further, due to oxidative 

stress, the triacylglycerol (biodiesel) content from bacteria increased from 30% to a maximum 

of 54% CDW. Based on our findings, we propose an application of  R. opacus PD 630 in nTiO2 

remediation due to their high nTiO2 uptake and resistance.  

 

Keywords:  pollutants of concern; nTiO2 release; wastewater treatment; oxidative stress; R. 

opacus; triacylglycerol 
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Introduction 

Nano titanium dioxide (nTiO2), an engineered nanoparticle (ENP), is widely used in various 

consumer products such as cosmetics, paint, textiles, and many others (Simonin et al. 2016; 

Noman et al. 2019). Their increased use has raised concerns on their environmental release and 

exposure and the adverse effects it could cause in the eco-system (Galletti et al. 2016; Bundschuh 

et al. 2018). The nTiO2 eventually reach the wastewater treatment plant (WTP) through domestic 

usage, and their persistence in WTP effluent has been widely reported (Tong et al. 2015; Shi et 

al. 2016). Through effluent discharge or its reclamation for irrigation purposes, nTiO2 enters the 

water bodies and soil ecosystems (Shi et al. 2016; Liu et al. 2018). Due to their prevalence in the 

environmental matrices, nTiO2 are emerging as a contaminant of environmental concern (US 

EPA 2010; Simonin et al. 2016; Juliano and Magrini 2017; Qian et al. 2018). 

The predicted nTiO2 levels in the WTP’s effluent range from 5 – 44 µg L-1 (Keller and Lazareva 

2014; Sun et al. 2014b, 2016) and their actual measured values range from 10 – 100 µg L-1 (Kiser 

et al. 2009; Tong et al. 2015; Shi et al. 2016). However, the nTiO2 concentration at which no 

adverse effect is expected on the ecosystem is 15.7 µg L-1 (Coll et al. 2016). The potential benefits 

of nanoparticles (NPs) are also associated with unknown risks (Singh 2016a). Risk 

characterization through exposure modeling shows nTiO2 could be of marginal risk to organisms 

exposed to surface waters, but the risk is high to organism exposed to WTP effluents (Gottschalk 

et al. 2013; Semenzin et al. 2015).  

The nTiO2 cause harmful effects in living cells, by inducing oxidative stress through the 

generation of reactive species (RS) (Mathur et al. 2015; Bundschuh et al. 2018; Liu et al. 2018). 

At the environmentally relevant concentration (ERC) of 1, 10 and 100 µg L-1 nTiO2 induced 

growth defects (Bar-Ilan et al. 2013), genotoxicity (Rocco et al. 2015) and reproductive defects 

in zebrafish (Wang et al. 2011), respectively. Field studies showed that nTiO2 had negative 

effects on wheat growth and altered soil enzyme activities (Du et al. 2011), shortened life cycle 
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of Arabidopsis thaliana and altered soil microbial community (Liu et al. 2018). Further, field 

studies reported their accumulation in crucian carp (Shi et al. 2016), and studies conducted at 

ERC found nTiO2 to accumulate in gills, guts, and ovaries of zebrafish  (Wang et al. 2011; Bar-

Ilan et al. 2013; Fang et al. 2016). Also, nTiO2 gets trophically transferred across the food chain 

(Wang et al. 2011; Yeo and Nam 2013; Iswarya et al. 2018). 

Several studies highlight the NP’s toxic effects. However, their risk potential is uncertain and 

cannot be generalized as there are multiple factors such as size, shape, surface area, and many 

others that govern nanoparticles (NPs) behavior (Shang et al. 2014; Semenzin et al. 2015). There 

exists a knowledge gap regarding  nTiO2 fate (Adam et al. 2015) and hazard characterization, 

their uptake, and accumulation (Shang et al. 2014; Louie et al. 2016). Nevertheless, since a 

possibility of harm exists, it is worthwhile to develop proactive measures to reduce the risk, even 

if the ecological risk is not completely established (Singh 2016a, b).  

Some techniques have been proposed for removal of emerging contaminants (ECs) from WTP 

effluent (Bilal et al. 2019). Biodegradation of ECs is considered effective (Bilal et al. 2019) and 

involves use of microbes (Ahmed et al. 2017; Men et al. 2017) and immobilized degradation 

enzymes (Bilal et al. 2019). However, NPs such as nTiO2 are nonbiodegradable (Pulicharla et al. 

2014). Possible application of membrane filtrations to prevent the release of NPs into the 

environment has been proposed (Ladner et al. 2012; Lee et al. 2017).  However, frequent 

backwashing might be necessary to prevent membrane fouling, and washing the membrane 

would yet again result in NPs release (Olabarrieta et al. 2018; Zhang et al. 2019). Also, the 

membrane filtration process is energy-intensive and high cost associated (Ahmed et al. 2017).  

Meanwhile, the biological filtration process using a crustacean Daphnia magna was found to be 

effective in removing ECs like pharmaceuticals from WTP effluent that was present in the range 

of ng L-1(Matamoros et al. 2012). While a similar technology can be feasible for nTiO2 removal, 
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it is important to identify an organism that is resistant to nTiO2. We found only one study that 

had identified a bacterial strain, namely Rhodococcus strain GIN-1 that exhibited uniquely high 

resistance and strong adherence to bulk TiO2 particles. The bacteria were employed for the 

recovery of TiO2 from coal fly ash (CFA), a power plant generated waste (Shabtai and Fleminger 

1994). Many years later, the same group had found the strong affinity of bacteria for nTiO2 also 

(Gertler et al. 2003; Dayan et al. 2017). However, the effect of nTiO2 particles, on the 

Rhodococcus bacteria especially at their ERC, has not been thoroughly characterized. Further, 

since the genus Rhodococcus is a strong inhabitant of contaminated soil and water and plays a 

major role in detoxifying them (Ivshina et al. 2019), it is important to study their response to new 

environmental stressors like nTiO2. 

In this study, the effects of nTiO2  at their ERC, on the growth of a Rhodococcus bacteria were 

characterized, and nTiO2 uptake efficiency by bacteria was quantified. Further, the genus 

Rhodococcus are oleaginous bacteria (Alvarez et al. 2013), and it is important to study the effect 

of nTiO2  on their lipid (triacylglycerol or TAG, an important product) accumulation 

characteristics. Also, since nTiO2 is a photocatalyst, the influence of UV light on its uptake and 

the eventual effect on growth and lipid accumulation were analyzed. The outcome of this 

research suggests the use of Rhodococcus bacteria to remediate nTiO2 from the waste stream and 

contaminated environment.  

 

Materials and Methods 

Organism and culture 

Rhodococcus opacus strain PD630 (Alvarez et al. 1996) was sourced from DSMZ (44193) 

culture collection, Germany. The strain R. opacus PD 630 was chosen because we wanted to 

study the nTiO2 resistance and uptake on a species that accumulates a significant amount of 

triacylglycerol (TAG) (Alvarez et al. 2013). The culture maintenance and inoculum preparation 
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were carried out as reported in our earlier work (Archanaa et al. 2019). Since nTiO2 adherence 

is maximum during the mid-log phase (Shabtai and Fleminger 1994) and as R. opacus PD630 

accumulated maximum lipid in the mid-log phase (Archanaa et al. 2019), most of the 

measurements were based on the 12th h (mid-log) sample, while a few studies such as the study 

of nTiO2 effect on R. opacus PD630 growth, morphology and viability was done for an extended 

period. All experiments were carried out in triplicates and repeated on two other days to ensure 

reproducibility. One–way ANOVA was carried out using Megastat version 10.4.  

 

R. opacus PD630 exposure to nTiO2 

To the study the effect of nTiO2 on R. opacus PD630, the NB was spiked with different 

concentration of nTiO2. The nTiO2 concentration chosen for the study included 50 and 100 µg 

L-1 which were based on the levels reported in the WTP effluent (Kiser et al. 2009; Tong et al. 

2015; Shi et al. 2016). Two higher nTiO2 concentration of 200 and 1000 µg L-1 was also included 

in the study to characterize the high nTiO2 exposure scenarios, resulting from its continuous 

discharge over a period or its accidental leakage from production sites. Also, the nTiO2 

concentrations range used in this work is representative of the levels found in secondary and 

primary effluents (Kiser et al. 2009; Westerhoff et al. 2011; Tong et al. 2015; Shi et al. 2016). 

The working nTiO2 concentrations mentioned above were obtained by adding the appropriate 

volumes of nTiO2 stock solution to the NB medium.  

The nTiO2 (anatase, <25 nm, Sigma–637254) stock solution was prepared (Online resource) 

based on the protocol of Kiser et al. (2009). The anatase was chosen as it is more photoactive 

and toxic when compared to rutile or brookite (Tong et al. 2015; De Matteis et al. 2016). The 

UVB (Ultraviolet B; Philips narrowband, TL 20W/01) light was used to induce photocatalysis 

of nTiO2. The experiments were conducted in 500 ml conical flasks with 200 ml medium. The 

different conditions employed in the study are given in table 1. In the case of UVB treatment, 
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two different treatments were employed, as described in table 1. With a Lutron UV light meter, 

the intensity of UVB at the culture flask surface was measured to be 25 µW cm-2. The  media 

was inoculated with R. opacus PD 630 and maintained at 28 ˚C and 200 rpm 

 

Particle size analysis of nTiO2 

The effective hydrodynamic diameter of nTiO2, dispersed in the stock solution was measured 

through dynamic light scattering (DLS) using 90 plus Particle Size Analyser (Brookhaven 

Instruments Corporations, USA). Similarly, the effective hydrodynamic diameters of nTiO2 at 

50, 100, 200 and 1000 µg L-1concentrations in NB were also measured. Further, the factors that 

can influence nanoparticle aggregation such as pH and ionic strength of the medium (He et al. 

2015) was measured at 0th h and 12th h of growth. The pH was measured using a pH probe 

(pHspear, Eutech instruments) and ionic strength was obtained by measuring conductivity using 

a conductivity meter (PCTester 35, Eutech Instruments). 

 

Zeta potential analysis 

The zeta potential or surface charge of nTiO2 in the stock solution was measured using 

nanoparticle size analyzer (SZ–100, Nanoparticle, Horiba, Germany). Similarly, the surface 

charges of nTiO2 and R. opacus PD 630 in NB were measured using nanoparticle size analyzer. 

 

FTIR analysis 

The FT–IR analysis was performed for bacterial cells exposed to nTiO2 and its cell lysate. Cells 

exposed to 1000 µg L-1 of nTiO2 under dark, MUV and CUV for 12 h were harvested and 

lyophilized overnight.  For lysate, cells exposed to 1000 µg L-1 of nTiO2 under dark conditions 

for 12 h were harvested and resuspended in water. The cells in suspension were disrupted using 

a high-intensity probe sonicator (Qsonica Q700, Newton, CT, USA) for 5 min (each on/off pulse 
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cycle was 2 s) to release the intracellular content. The supernatant of the centrifuged cell lysate 

was collected and lyophilized. The dried cells and the intracellular contents were then analyzed 

by FT–IR (Spectrum one, PerkinElmer) spectroscopy by the KBr pellet method.  

 

ICP-OES analysis 

The nTiO2 uptake by R. opacus PD 630 was quantified by measuring the elemental titanium (Ti) 

through inductively coupled plasma optical emission spectroscopy (ICP–OES). The cells were 

harvested by 12th h and lyophilized. The dried biomass was acid digested with microwave-

assistance (Multiwave 3000, Anton Paar, Graz, Austria) according to the established protocol 

(Nischwitz and Goenaga-Infante 2012). The elemental Ti produced from nTiO2 through acid 

digestion was quantified by ICP–OES (Optima 5300DV, Perkin–Elmer Instruments, USA). 

From the measured Ti levels, equivalent levels of nTiO2 were calculated. The nTiO2 uptake was 

represented as specific uptake, i.e., mg nTiO2 per g of biomass. The nTiO2 uptake removed from 

the medium was calculated by dividing the amount of nTiO2 uptaken with the initial amount of 

nTiO2 provided in the media. The obtained fraction was converted into % uptake of nTiO2.       

 

Intracellular hydroxyl radical (oxidative stress) measurement 

The fluorescent dye p–aminophenyl fluorescein (APF; InvitrogenTM Molecular Probes®, CA) 

was used to measure intracellular hydroxyl radical ( .𝑂𝐻) levels in R. opacus PD 630. Samples 

were harvested in the 12th h and were normalized to 1 OD through resuspension in appropriate 

volumes. The protocol given by Setsukinai et al. (2003) was followed. To the cell suspension, 

APF was added to result in a final concentration of 10 µM. It was then incubated for 30 min at 

room temperature. A fluorimeter (LS55, PerkinElmer, Liantrisant, UK) was used for the 

fluorescence measurements at 490/515 nm excitation/emission in a 96-well plate.  

 



9 

 

Growth study 

The growth assessment of bacteria and the growth rate calculation were carried out as reported 

in our previous work (Archanaa et al. 2019). The interference of nTiO2 with OD measurements 

of cells, if any, was checked by adding different nTiO2 concentrations to a particular cell 

concentration. The corresponding OD values were measured, which showed that the presence of 

nTiO2 did not interfere with OD measurements at 600 nm (Fig. S1).  

 

Cell viability assay 

Cell viability assay or cytotoxic assay was done by assaying for Lactate dehydrogenase (LDH) 

released into the extracellular space, which is an indicator of membrane porosity or cytotoxicity 

resulting through nanoparticle interactions (Potter and Stern 2011). The culture filtrate from 12th 

h and 24th h for the samples treated with the highest nTiO2 concentration of 1000 µg L-1under 

dark, MUV, and CUV were used. The presence of LDH in the filtrate was checked according to 

a previously reported protocol (Howell et al. 1979). The cell lysate containing intracellular LDH 

obtained from any one of the samples was used as a positive control.  

 

Cell morphology analysis 

The morphology of bacteria with and without nTiO2 exposure was observed through SEM. The 

cells treated with the highest nTiO2 concentration of 1000 µg L-1 under dark, MUV, and CUV 

were used. The bacterial cells grown in respective NB were harvested from 12th h and 24th h of 

treatment and lyophilized overnight. The dried sample was prepared for SEM analysis in a sterile 

glass slide (Nagarajan et al. 2012), The instrument used was a FEI Quanta FEG 200 – High-

Resolution Scanning Electron Microscope. The bacterial size was measured with SEM image 

analyzer.  
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TAG to biodiesel: conversion, quantification and fatty acid profiling 

The TAGs were quantified by gravimetry – they were converted to fatty acid methyl esters 

(FAMEs) by in situ biomass transesterification, as reported in our previous work (Archanaa et 

al. 2019). The biodiesel was further characterized by calculating their physiochemical properties 

such as Iodine value (IV), cetane number (CN), density (), viscosity (), and calorific value 

(CV) as reported in our previous study (Archanaa et al. 2018). The relative percentages of 

individual FAME components were calculated, and the variations in FAMEs were analysed by 

constructing a heat map using the tool ClustVis (Metsalu and Vilo 2015) 

 

Results and discussion 

A colloidally-stable nTiO2 dispersion was employed 

For in vitro or in vivo studies involving nanoparticles, unstable or agglomerated nanoparticle 

dispersions can lead to deceptive results (Moore et al. 2015) and hence we confirmed that the 

nanoparticles were effectively dispersed (Hasan Nia et al. 2015). While the original or primary 

size of the nTiO2 particles as confirmed through SEM was < 25 nm, the effective hydrodynamic 

diameter (dh) of nTiO2 dispersed in ultrapure water as measured through DLS was 94 ± 19 nm. 

The increase in size indicted that nTiO2 particles aggregated in aqueous solution. However, the 

zeta potential or surface charge of nTiO2, dispersed in ultrapure water was measured to be –26.5 

± 2.7 mV, which indicated that the nTiO2 formed reasonably stable colloidal aggregates; it is 

known that the zeta potential values greater than –30 mV indicate highly stable colloidal 

aggregates (Hasan Nia et al. 2015). 

Similarly, the dh of nTiO2 in NB was also measured by DLS.  The dh for nTiO2 concentration of 

50, 100, 200, and 1000 µg L-1 was found to be 114 ± 10, 124 ± 13, 183 ± 15, 330 ± 27 nm 

respectively. The dh of nTiO2 in the NB increased with concentration and was larger when 

compared to that in water, as the aggregation of nanoparticles in biological media is a common 
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phenomenon (Park and Oh 2014; Guerrini et al. 2018).  One of the possible reason could be the 

high ionic strength (Guerrini et al. 2018) of the nutrient medium (0.085 M). The aggregation can 

induce particle sedimentation and reduce the effective concentration of nanoparticles in contact 

with the cell (Sun et al. 2014). However, continuous shaking at high rpm (200 in this case) is 

known to prevent nanoparticles settling (Raychoudhury et al. 2010; Yu et al. 2015).  

Further, while the nanoparticle aggregation in cell-free biological media increases with time, in 

the presence of growing cells, their aggregation behavior is different. The bacterial cells are 

known to aid in dispersing nanoparticles agglomerates and decrease their settling (Horst et al. 

2010).  Additionally, during the 12 h study period, no significant change in factors that can 

influence particle aggregation and settlings, such as pH (7.3 to 7.6) and Ionic strength (0.085 to 

0.088) was observed.  

 

R. opacus PD 630 attached and internalized nTiO2 

During NP exposure, attachment of NP on a cell’s surface and internalization is a commonly 

observed phenomenon (Iswarya et al. 2015; Thiagarajan et al. 2019). The bacteria R. opacus 

PD630 was found to attach nTiO2 onto them as shown by FT–IR spectroscopy. Bacteria when 

exposed to 1000 µg L-1 of nTiO2, under dark, MUV and CUV, bands were observed in the 

fingerprint region (900–450 cm–1) of the FT–IR spectrum, which was not present in control (Fig. 

1). The bands observed in the region of 900–450 cm–1 especially from 700–450 cm–1 in case of 

nTiO2 exposed cells corresponded to vibrations of Ti–O–Ti symmetric stretching (Enríquez et 

al. 2013; Iswarya et al. 2015) thus proving their attachment onto cells.  

To better understand the nature of nTiO2 binding to bacteria, the surface charges of bacteria and 

nTiO2 in the NB were measured. The mean zeta potential of R. opacus PD 630 and nTiO2 as 

measured by size analyzer was found to be –9.2 mV and –12.9 mV respectively, suggesting that 

the binding was not electrostatic (Dalai et al. 2014). A recent docking study conducted with 
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another species of Rhodococcus, also showed that the binding was not electrostatic, but 

coordinative (Dayan et al. 2017). However, the nature of interaction might be different in a 

natural environment as the NPs can undergo charge reversal, and many factors such as pH, IS, 

and natural organic matter (NOM) govern their surface charge (Li et al. 2016; Oriekhova and 

Stoll 2016).  

Further, the ability of R. opacus PD 630 to internalize the nTiO2 was confirmed by performing 

FT–IR analysis of the cell lysate. As discussed previously in this section, bands in the region of 

900 – 450 cm–1 in FT–IR spectrum of the cell lysate (Fig. 1) show the presence of nTiO2 in the 

intracellular space and thus confirm nTiO2 internalization. Internalization of nTiO2 in other 

bacteria and microalgae have also been reported (Bardaweel et al. 2018; Roy et al. 2018).  

 

R. opacus PD 630 showed 97% uptake of nTiO2 under the influence of MUV 

The total nTiO2 uptake by R. opacus PD 630, resulting from attachment and internalization, was 

quantified by ICP–OES. As seen from figure 2a, the specific nTiO2 uptake increased with 

increasing concentration of nTiO2 under dark, CUV, and MUV. The nTiO2 was not detected in 

the control as expected (data not shown). The maximum difference in specific nTiO2 uptake 

observed was with nTiO2 concentration of 1000 µg L-1 across different conditions. The specific 

nTiO2 uptake was 0.8 and 1.1 mg (g cell)-1 under dark and CUV, respectively. The data suggested 

that exposure to CUV during the treatment process had a positive effect on the removal of nTiO2 

from the medium, as there was an increased specific nTiO2 uptake under UV.  Similar 

observations have been reported with few eco-toxicological studies, wherein exposure to UV 

during bacteria–nanoparticle interaction resulted in increased nanoparticle uptake, possibly due 

to increased membrane permeabilization (Dalai et al. 2014; Mathur et al. 2015). The 

corresponding percentage uptake of nTiO2 by R. opacus PD 630 were 57 and 73% under dark 

and CUV, respectively (Fig. 2b). 
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Further, the positive effect of UV on nTiO2 uptake was more pronounced, when the UV exposure 

was initiated from mid-log phase (MUV), rather than the continuous exposure. The specific 

nTiO2 uptake under MUV for nTiO2 concentration of 1000 µg L-1 increased to 1.4 mg (g cell)-1 

that corresponded to a percentage uptake of 97. Thus, recovery of nTiO2 by R. opacus PD 630 

was almost complete with UV light assistance.  Similar to R. ruber (Dayan et al. 2017) originally 

isolated by Shatbai and Fleminger (1994), R. opacus PD 630 showed strong adherence for nTiO2.  

Further, other than nTiO2, Rhodococcus strain also shows a strong affinity for a few other metal 

oxides such as zinc oxide (ZnO) (Gertler et al. 2003). The accumulation of EC, such as NPs in 

one organism might reduce their exposure risk to other organisms in a contaminated environment 

(Liu et al. 2018).  

 

nTiO2 induced oxidative stress in R. opacus PD 630 

One of the commonly observed responses in an organism, when exposed to nTiO2, is the 

induction of oxidative stress through the generation of RS (Marslin et al. 2017; Roy et al. 2018). 

Thus, induction of oxidative stress in R. opacus PD 630 via nTiO2 exposure was studied by 

measuring intracellular levels of hydroxyl radicals ( .𝑂𝐻), the most reactive form of oxygen (Nita 

and Grzybowski 2016). Since UV light has been used in the study to induce photocatalysis of 

nTiO2, the sole effect of UV on specific intracellular levels of  .𝑂𝐻 (si–OH) in R. opacus PD 630 

was also studied because UV itself, can induce oxidative stress (Balan and Suraishkumar, 2014). 

However, no change was observed in si–OH levels in R. opacus PD 630 with either CUV or 

MUV when compared to control (Fig. S2).  

Nevertheless, when nTiO2 was present in the medium, a dose-dependent increase in si–OH levels 

were observed (Fig. 3). In the case of CUV, the increase in si–OH levels were 39, 50, 71 and 

83% w.r.t control for nTiO2 concentrations of 50, 100, 200 and 1000 µg L-1, respectively. As 

observed with specific nTiO2 uptake, the si–OH levels increased further, when UV exposure was 



14 

 

initiated from the mid-log phase. The increase in si–OH levels were 39, 69, 97 and 114% w.r.t 

control for nTiO2 concentration of 50,100, 200 and 1000 µg L-1, respectively.  

While TiO2 is known to induce oxidative stress under the influence of UV (Iswarya et al. 2015; 

Ripolles-Avila et al. 2019), TiO2 itself can generate RS regardless of UV irradiation (Manzo et 

al. 2015; Thiagarajan et al. 2019). In support of this phenomenon, in the current study, we found 

that nTiO2 uptake, in the absence of UV, induced oxidative stress in R. opacus PD 630 and a 

dose-dependent increase in si–OH levels were observed (Fig. 3). The increase in si–OH levels 

were 88, 122, 241 and 315% w.r.t control for nTiO2 concentration of 50,100, 200 and 1000 µg 

L-1, respectively. The increase in si–OH levels were predominant under dark, when compared to 

UV light which was surprising as nTiO2 is expected to be catalytically more active in the presence 

of light (Roy et al. 2018; Ripolles-Avila et al. 2019). Possibly, the increased specific nTiO2 

uptake under UV exposure, as discussed in the previous section may have triggered certain 

defense systems to lower the oxidative stress levels, and further research is needed for a better 

understanding.  

 

R. opacus PD 630 was resistant to nTiO2 induced oxidative stress 

The toxic nature of nTiO2 is often attributed to its ability to increase RS generation in a cell 

(Manzo et al. 2015; Marslin et al. 2017). The resulting oxidative stress is known to damage the 

cell membrane and decreases cell viability (Mathur et al. 2015; Roy et al. 2018). However, the 

bacteria from the genus Rhodococcus survives in the most recalcitrant and toxic environment 

(Ivshina et al. 2019). In the current study, in spite of high nTiO2 uptake and oxidative stress, no 

significant change in the growth of R. opacus PD 630 was observed when exposed to nTiO2 for 

24 hours, either under dark, CUV or MUV (Fig. S3) and the growth rates under all the conditions 

were comparable (Table S1).  
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Since optical density measurement cannot distinguish viable cells from dead cells, the cell 

viability was confirmed through LDH assay. The assay which showed a negligible change in 

absorbance at 340 nm (Fig. S4), suggested that there was no release of LDH into the extracellular 

space. The unchanged absorbance confirms that there was no appreciable loss in cell viability 

and membrane integrity. A positive control that contained LDH from cell lysate was maintained 

to confirm the results better.   

The SEM analysis also showed no significant change in morphology of R. opacus PD 630 

exposed to nTiO2 for 24 hours, either under dark, CUV, or MUV (Fig. 4). There was no change 

in size either, as the dimensions of the bacteria exposed to nTiO2 under dark, CUV or MUV were 

comparable to control both at 12th h and 24th h (Fig. 4). The above observations suggested R. 

opacus PD 630 was resistant to nTiO2. In contrast to bacteria such as Shewanella oneidensis and 

a few other genera including Escherichia, Staphylococcus, Lactobacillus, Salmonella, which 

were found to be sensitive to  nTiO2 (100 µg L-1) induced oxidative stress (Maurer-Jones et al. 

2013; Ripolles-Avila et al. 2019), R. opacus PD 630 displayed resistance even at higher 

concentration nTiO2 of 1000 µg L-1.  Since the bacteria was resistant to anatase which is, in 

general, more toxic than rutile (Tong et al. 2015; De Matteis et al. 2016), it is reasonable to 

expect their resistance to relatively less toxic rutile nTiO2.  

The resistance of Rhodococcus to ENP like nTiO2 and their uptake is of significance since they 

are one of the major bacteria that colonize a biologically active filter (Zhang et al. 2018), which 

can be employed for tertiary treatment of effluent (Zhang et al. 2017)  or in drinking water 

treatment facility for ECs removal (McKie et al. 2016).  

The resistance of R. opacus PD 630 to nTiO2 induced oxidative stress is indicated by the fact 

that it prefers the Entner–Doudoroff pathway for its catabolism (Hollinshead et al. 2016), which 

is considered as an important trait for tolerance to increased oxidative stress in certain soil 

bacteria (Chavarría et al. 2013). 
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Oxidative stress improved biodiesel production from R. opacus PD 630 

RS that causes oxidative stress is known to have dual roles; both deleterious and beneficial based 

on their concentrations (Bardaweel et al. 2018). While considered harmful in general, oxidative 

stress has positively influenced the lipid accumulation in microalgae (Balan and Suraishkumar 

2014; Fan et al. 2014). Similarly, oxidative stress induced by nTiO2 in R. opacus PD 630 was 

found to improve TAG production concomitantly. As with oxidative stress, the sole effect of UV 

on the FAMEs content of R. opacus PD 630 was also studied and was observed to cause no 

change (Fig. S2). But with nTiO2, dose-dependent increases in FAMEs content were observed 

under all conditions (Fig. 5a).  

Under dark conditions, the FAMEs content increased by 17, 28, 43 and 60% w.r.t control for 

nTiO2 concentration of 50,100, 200 and 1000 µg L-1, respectively. Similarly, under CUV, the 

FAMEs content increased by 17, 32, 36 and 62% w.r.t control for nTiO2 concentration of 50,100, 

200 and 1000 µg L-1, respectively. When UV irradiation was initiated from the mid-log phase, 

further improvement in FAMEs content was observed for 1000 µg L-1 nTiO2. The percentage 

increase in FAMEs was found to be 8, 26, 42 and 81% w.r.t control for nTiO2 concentration of 

50,100, 200 and 1000 µg L-1, respectively. Overall, a positive correlation was observed between 

FAMEs content and specific hydroxyl radical levels (Fig. 5b). However, for si–OH levels above 

60 nmol (g cell)-1, there was no significant improvement in FAMEs content with increasing si–

OH levels, which implies that the beneficiary effects of RS are best observed if the levels are 

maintained below 60 nmol (g cell)-1. The specific mechanism of RS in enhancing the lipid 

accumulation is not yet understood. However, as a secondary messenger, RS are believed to be 

an important mediator in carbon partitioning and lipid accumulation (Shi et al. 2017).  

The findings indicated that apart from nTiO2 uptake, a simultaneous increase in TAG (biodiesel) 

was also achieved. Thus, similar to microalgae which have been proposed for secondary 
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treatment of wastewater containing degradable ECs and biomass recovery (Matamoros et al. 

2015),  an integrated approach of nTiO2 removal and biomass recovery for industrial application 

is a viable option.  

 

Exposure of R. opacus PD 630 to nTiO2 did not alter their native properties of biodiesel 

The fatty acid properties such as chain length, composition, degree of saturation, etc., affect the 

biodiesel quality (Lamaisri et al. 2015; Kachel et al. 2018).  The fatty acid composition of an 

oleaginous species changes with their culture conditions and any stress in the environment tend 

to alter their fatty acid profile (Minhas et al. 2016). Therefore, we studied the effect of nTiO2 on 

the fatty acids profile produced by bacteria and on their final product quality. The list of general 

fatty acids obtained from the bacteria cultured under different conditions as analyzed through 

GC-MS is presented in table 2. The fatty acid chain length of the biodiesel ranged from C12 to 

C23; the degree of saturation was high. We did not observe poly–unsaturation in fatty acid 

chains.  

The variations in individual fatty acid content across the samples were analyzed through a heat 

map (Fig. 6).  Under all conditions, the major saturated fatty acids (SFAs) were palmitic acid 

(C16:0) and margaric acid (C17:0), and predominant monounsaturated fatty acids (MUFAs) 

included oleic acid (C18:1) and heptadecenoic acid (C17:1).  

When compared to control, variations were observed in the relative content of certain fatty acids 

in other samples. The relative content of the SFA, C16:0 showed a decrease under certain 

conditions, especially for nTiO2 exposure under dark, when compared to control. Whereas, the 

relative content of MUFAs when compared to control, increased for nTiO2 exposure under dark. 

Thus, for nTiO2 exposure under dark, the overall %SFAs significantly decreased, and %MUFAs 

significantly increased, while for others they were comparable to control (Fig. 7) with around 

61% SFAs and 39% MUFAs. The increased percentage of unsaturation in R. opacus PD 630, 
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when exposed to nTiO2 under dark can be a defense strategy against their higher si–OH levels 

(Yu et al. 2015). 

Fortunately, the variations observed in the relative percentage of certain fatty acids across the 

samples were not significant enough to cause significant changes in certain biodiesel properties 

such as Iodine value (IV), cetane number (CN), density (), viscosity (), and calorific value 

(CV) (Fig. S5). Values of all the properties were highly comparable between control and other 

samples. Further, their values were in accordance with already established Indian and 

international standards, and comparable to conventional petroleum diesel. The unaltered fuel 

properties showed that the quality of biodiesel is not affected (Qi et al. 2019) by R. opacus PD630 

exposure to nTiO2. The finding is of significance if Rhodococcus is employed for a coupled 

process of NP release mitigation and valuable metabolite production.  

 

Conclusion 

This work showed that the bacteria, R. opacus PD630 belonging to the genus  Rhodococcus that 

predominantly inhabits the contaminated water and soil, was resistant to nTiO2, a new class of 

environmental pollutant. While bacteria are known to attach, internalize, and uptake NPs when 

exposed to them, the Rhodococcus bacteria seem superior because of their high uptake and 

unique resistance to RS induced by nTiO2. In addition to nTiO2 uptake, the bacteria accumulate 

TAG, and the accumulation is further increased by nTiO2-induced oxidative stress.  
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FIGURE CAPTIONS 

Fig. 1: FT-IR spectrum of Control and R. opacus PD 630 exposed to nTiO2 concentration of 

1000 µg L-1under dark, CUV, and MUV. Bands in the fingerprint region (900-450 cm-1) of 

samples exposed to nTiO2 and its cell lysate confirmed the attachment and internalization of 

nTiO2 respectively 

 

Fig. 2: Specific nTiO2 uptake (a) and % uptake (b) from media by R. opacus PD 630 under dark, 

CUV, and MUV. A dose-dependent increase in specific uptake and %removal was observed, 

with MUV showing maximum nTiO2 removal of 97%. Data points are represented as mean ± 

SD, n = 3 

Fig. 3: Specific intracellular levels of hydroxyl radicals in R. opacus PD 630 when exposed to 

nTiO2 under dark, CUV, and MUV. A dose-dependent increase in si-OH levels was observed 

under all conditions, with dark conditions showing a maximum increase. Data points are 

represented as mean ± SD, n = 3. *p<0.01, **p<0.05, ***p<0.005 

 

Fig. 4: Scanning electron micrographs of R. opacus PD 630, when exposed to 1000 µg L-1of 

nTiO2 under dark, CUV, MUV. Cell size is represented as Length X Width (µm). No appreciable 

change in morphology was observed 

 

Fig. 5: FAME content of R. opacus PD 630 when exposed to nTiO2 under dark, CUV, and MUV 

(a). A dose-dependent increase in FAME content was observed under all conditions, with MUV 

exposure showing a maximum increase. A positive correlation was observed between oxidative 

stress (si-OH levels) and FAME content in R. opacus PD 630 (b). Data points are represented as 

mean ± SD, n = 3. *p<0.01, **p<0.05, ***p<0.005 

 

Fig. 6: Heat map of the relative percentage of individual FAMEs in biodiesel of R. opacus PD 

630 when exposed to nTiO2 under dark, CUV and MUV. When compared to control, variations 

were observed in C16:0 and C17:1, under other conditions 

 

Fig. 7: Relative percentage of SFAs and MUFAs of biodiesel from R. opacus PD 630 when 

exposed to nTiO2 under dark, CUV, and MUV. When compared to control, the %SFAs 

decreased, and %MUFAs increased for nTiO2 exposure under dark conditions. Data points are 

represented as mean ± SD, n = 3. **p<0.05, ***P<0.005 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Table 1: Details of different study medium used in the study 

 

  

Study medium nTiO2  

(µg L-1) 

Light Condition 

Control 0 Dark 

 

CUV 

 

0 

 

UVB exposure throughout the 

study period (Continuous UV) 

 MUV 

 

0 UVB exposure from mid log 

phase of growth (10th h) 

T_50 50  

 

Dark 
T_100 100 

T_200 200 

T_1000 1000 

 

T_CUV_50 

 

50 

 

 

UVB exposure throughout the 

study period (Continuous UV) 
T_CUV_100 100 

T_CUV_200 200 

T_CUV_1000 1000 

 

T_MUV_50 

 

50 

 

 

UVB exposure from mid log 

phase of growth (10th h) 
T_MUV_100 100 

T_MUV_200 200 

T_MUV_1000 1000 



40 

 

  

Fatty acid chain Compound 

C12:0 Methyl Laurate 

C13:0 Methyl Tridecanoate 

C14:0 Methyl myristate 

C15:0 Methyl pentadecanoate 

C16:0 Methyl Palmitate 

C16:1 Methyl palmitoleate (cis-9) 

C17:0 Methyl margarate 

C17:1 Methyl heptadecenoate (cis 8) 

C18:0 Methyl stearate 

C18:1 Methyl oleate(cis-9) 

C19:0 Methyl nonadecanoate 

C19:1 Methyl nonadecanoate (Trans-10) 

C20:0 Methyl arachidate 

C22:0 Methyl Behenate 

C23:0 Methyl tricosanoate 

 

Table 2: Fatty acid profile of biodiesel obtained from the bacterium, R. opacus PD630 

 

 

 

 

 


