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a b s t r a c t

Microbial co-cultures have been used in several biotechnological applications. Within these co-cultures,

the microorganisms tend to interact with each other and perform complex actions. Investigating meta-

bolic interactions in microbial co-cultures is crucial in designing microbial consortia. Here, we present

a pipeline integrating modelling and experimental approaches to understand metabolic interactions

between organisms in a community. We define a new index named ‘‘Metabolic Support Index (MSI)”,

which quantifies the benefits derived by each organism in the presence of the other when grown as a

co-culture. We computed MSI for several experimentally demonstrated co-cultures and showed that

MSI, as a metric, accurately identifies the organism that derives the maximum benefit. We also computed

MSI for a commonly used yeast co-culture consisting of Saccharomyces cerevisiae and Pichia stipitis and

observed that the latter derives higher benefit from the interaction. Further, we designed two-stage

experiments to study mutual interactions and showed that P. stipitis indeed derives the maximum benefit

from the interaction, as shown from our computational predictions. Also, using our previously developed

computational tool MetQuest, we identified all the metabolic exchanges happening between these organ-

isms by analysing the pathways spanning the two organisms. By analysing the HPLC profiles and studying

the isotope labelling, we show that P. stipitis consumes the ethanol produced by S. cerevisiae when grown

on glucose-rich medium under aerobic conditions, as also indicated by our in silico pathway analyses. Our

approach represents an important step in understanding metabolic interactions in microbial communi-

ties through an integrated computational and experimental workflow.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Microbial co-cultures have been broadly used in several

biotechnological applications, owing to their abilities to produce

a broader pool of enzymes, which enable the degradation or syn-

thesis of complex molecules. They exhibit division of labour and

can be used to explore the joint metabolic capabilities of the con-

stituent organisms. Microbial co-cultures have been employed to

carry out complex functions ranging from xenobiotic degradation

[1] to synthesising novel secondary metabolites [2,3]. More

recently, the application of co-culture systems to produce biofuels

has also been gaining traction, where groups of microorganisms,

either wild-type or engineered, have been employed to convert lig-

nocellulosic biomass to ethanol [4–6].

Besides, there have also been advances in engineering microbial

co-cultures to produce fine chemicals. Such synthetic microbial

communities consist of organisms that have been engineered to

communicate with each other via metabolic exchanges. For

instance, in one such study [7], Escherichia coli cells were manipu-

lated by engineering pathways to exchange metabolites for

improving the titres of n-butanol. In a few other studies [8,9], sep-

arate E. coli cells were engineered with specialised metabolic path-

ways to communicate with one another through metabolic

exchanges. This engineered E. coli co-culture was used for the pro-

duction of industrially essential chemicals such as cis,cis-muconic

acid, 3-aminobenzoic acid and resveratrol.

In addition to industrial applications, co-cultures are also useful

to understand interactions between organisms. In a community,
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microbes orchestrate several complex functions by communicating

with one another, commonly via metabolic interactions [10]. These

interactions define the relationships between the organisms and

shape the overall structure of the microbial community. Computa-

tional studies have provided insights into the pairwise relationship

between members in a community [11–15].

Understanding the metabolism of individual organisms, as well

as investigating the metabolic interactions that happen in a com-

munity, is central to designing a microbial consortium for a given

application. There are likely multiple metabolites exchanged

between the consortium members. Experimentally identifying

and understanding the role of these metabolic exchanges and

interactions entails the profiling of both intracellular and extracel-

lular metabolites. Such untargeted metabolomic profiling becomes

very difficult [16], especially when it involves a co-culture of

organisms. Although complete exometabolomic analysis has been

recently carried out for a few microbial communities [17,18], it is

still very difficult to map the individual metabolites to the organ-

isms that produced them in the co-culture.

In this study, we design a comprehensive workflow integrating

computational and experimental approaches to predict and vali-

date the microbial interactions in a co-culture. We adopt a three-

pronged approach to study a co-culture of two industrially impor-

tant yeast species [19], viz., Saccharomyces cerevisiae and Pichia

stipitis, drawing on computational analyses, physiological studies

and 13C-labelling experiments. First, using our previously devel-

oped graph-theoretic algorithm, MetQuest [20], we quantify the

possible benefits derived by the microorganisms when they stay

together in a community. We propose a new metric called Meta-

bolic Support Index (MSI) to determine which organism derives a

relatively higher benefit from the interaction. We show that this

metric can successfully quantify the interactions between the

organisms using a few examples of previously demonstrated

microbial co-cultures. Using one of the widely used co-cultures

consisting of S. cerevisiae and P. stipitis, we test the various predic-

tions from our computational analyses. Several studies previously

performed have used these organisms not only to produce ethanol

from multiple carbon sources [21–23] but also to computationally

model and understand the interactions between the organisms

[24,6]. With this model system of organisms, we identify potential

metabolic exchanges and perform experimental verifications. Next,

using isotope-labelling studies, we highlight the metabolic

interactions between the organisms. The results from our

workflow on this model co-culture indicate that P. stipitis benefits

from the interaction and takes up the ethanol produced by

S. cerevisiae when grown on glucose-rich medium under aerobic

conditions. Our approach represents an important step in

integrating modelling with experiments to understand and

characterise microbial interactions in communities. Ultimately,

the design of such microbial communities for specific applications

is envisaged.

2. Materials and methods

2.1. Computational methods

In this section, we describe the in silicomethods to calculate the

Metabolic Support Index (MSI) and identify the metabolic exchanges

between the organisms.

2.1.1. Calculation of MSI

To quantify the benefits derived by a given organism in a com-

munity, we define a new metric, Metabolic support index (MSI).

We compute MSI for a given organism A in the community A [ B,

as the fraction of reactions stuck in the metabolic network of A,

but relieved in the presence of organism B in the community (see

Fig. 1) as

MSIðAjA [ BÞ ¼ 1�
nstuck;AjA[B

nstuck;AjA

ð1Þ

where A [ B denotes the community metabolic network comprising

both organisms A and B;A denotes the bi-partite metabolic network

of organism A, nstuck;AjA denotes the number of stuck reactions in

A; nstuck;AjA[B denotes the number of stuck reactions of A in A [ B. Fur-

ther, MSIðAjA [ BÞ ¼ 1 indicates that the organism A fully benefits

from the interaction with organism B;MSIðAjA [ BÞ ¼ 0 indicates

that organism A does not derive any benefit from the interaction

with organism B. It should be noted that not all the reactions that

have been activated would be used by the organism for the growth.

MSI indicates the increase in the metabolic capacities of the organ-

isms and does not merely capture the support an organism receives

for higher growth.

We used our previously developed algorithm, MetQuest [20],

to determine the number of reactions that can be visited or

stuck, depending on the presence of precursor metabolites. Stuck

reactions are those reactions whose precursor metabolites can-

not be synthesised by the metabolic network using the given

input conditions, while visited reactions are those reactions

whose input metabolites are all present and hence the reaction

can proceed.

To calculate MSI for a microorganism, we first constructed the

directed bipartite graph of the individual organism, followed by

the joint bipartite graphs of the combination of organisms from

their respective genome-scale metabolic models (GSMMs) using

the construct_graph module from the previously developed

metquest Python package (https://github.com/RamanLab/met-

quest). Depending on the availability of the GSMMs of the organ-

isms, we obtained them either from the respective publications

[25–29] or from the Path2Models database [30]. We applied our

algorithm using a set of starting seed metabolites, which included

the co-factors, co-enzymes and the carbon source used in the

respective experiments. For our co-culture of interest, i.e., S. cere-

visiae and P. stipitis, the seed metabolite set consisted of compo-

nents from YNB minimal medium, D-glucose as the carbon

source along with the set of co-factors and co-enzymes. All the

data files are available in Supplementary data.

Next, using the guided_bfs module in the package, we

obtained the number of stuck reactions from two different scenar-

ios: (a) when the organisms are analysed independently as ‘‘single”

graphs (nstuck;AjA), (b) when they are grown along with other organ-

isms as a ‘‘joint” graph (nstuck;AjA[B). Using Eq. (1), we calculated the

MSI of the organisms. Also, in both the cases, we also obtained the

scope, i.e., the set of metabolites that can be produced from the

given set of seed metabolites. All the simulations were carried

out in Python 3.6 on an Intel�Core i7-2600 Desktop with 24 GB

RAM, running Ubuntu 18.04.1 LTS.

2.1.2. Pathway analyses on the community metabolic network

To identify the potential metabolic exchanges happening

between S. cerevisiae and P. stipitis, we first enumerated all the

pathways until a pathway length cut-off 75 using the

find_pathways function in MetQuest package. We constructed

the joint bipartite graph of S. cerevisiae and P. stipitis from their

respective GSMMs [29,27] using the construct_graph module.

We used the components of YNB medium as seed metabolites

along with D-glucose as the carbon source. Using home-grown

Python scripts, we analysed every pathway from S. cerevisiae that

lead to every scope metabolite in P. stipitis for the presence of

metabolites from S. cerevisiae. We carried out these simulations

on an Intel�Xeon�CPU E7-4850 v4 @ 2.10 GHz workstation with
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1 TB RAM, running CentOS 7.5.1804. The scripts and the data

used in these analyses are available in online datasets (Supple-

mentary data).

2.2. Experimental methods

2.2.1. Yeast strains used

In this study, we used S. cerevisiae (MTCC 171) and P. stipitis

(NCIM 3497), procured from Microbial Type Culture Collection,

Chandigarh, India, and National Collection of Industrial Microor-

ganisms, Pune, India, respectively.

2.2.2. Culture maintenance and inoculum preparation

The yeast strains were independently maintained on YPD agar

consisting of 3 g/L Yeast extract, 10 g/L Peptone, 20 g/L Glucose

and 1% agar (HiMedia Laboratories Pvt Ltd, Mumbai, India). From

the agar plate, one colony was picked and inoculated in YPD med-

ium and was grown at 30 �C. For the long-term storage, cultures

from mid-log phase were collected and maintained as 30% (v/v)

glycerol stocks and stored at �80 �C.

Glycerol stocks of the respective yeast strains were revived by

streaking them onto a YPD Agar plate and incubating at 30 �C for

24 h. The primary cultures were initiated as suspension cultures

by inoculating single colony on YPD medium, followed by YNB

Fig. 1. Metabolic Support Index (MSI) calculations. (I) Bipartite graph of individual organisms. (II) Community metabolic network showing the metabolic exchanges. Circular

nodes are metabolites (eg M1;M2), square nodes are the reactions (eg R1;R2), green coloured circular nodes represent the metabolites in the scope of M1 and A1 , orange

coloured circular nodes represent the metabolites that is not present in the scope, orange coloured square nodes represent the stuck reactions, blue coloured square nodes

represent the visited nodes. Here we see that nstuck;AjA = 2, nstuck;AjA[B = 0,MSIðAjA [ BÞ = 1; similarly nstuck;BjB = 5, nstuck;BjA[B = 3,MSIðBjA [ BÞ = 0.4. Thus, we see that the Organism A

benefits more from this interaction with Organism B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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minimal medium without amino acids (Sigma–Aldrich, Germany)

supplemented with 10 g/L glucose (Carl Roth GmBH, Germany).

The culture was grown in minimal medium until mid-

logarithmic phase and used for subsequent experiments. All the

experiments were carried out in YNB minimal medium using glu-

cose (Carl Roth GmBH, Germany) as the carbon source.

2.2.3. Growth kinetics of mono-culture and co-culture

To determine the substrate utilisation and product secretion

profiles, growth kinetic experiments of both the yeast strains, S.

cerevisiae and P. stipitis were carried out. The culture from the

well-grown primary inoculum was inoculated in 500 mL Erlen-

meyer flasks consisting of 25 mL of YNB medium with 10 g/L Glu-

cose. For all the experiments, we maintained the starting Optical

Density (OD) as 0.17. The experiment was carried out at

300 rpm, 30 �C and the growth was continuously monitored online

using the Cell Growth Quantifier (CGQ; Aquila Biolabs GmBH, Ger-

many). Samples were withdrawn at regular intervals for analysing

the spent metabolites through High-Performance Liquid Chro-

matography (HPLC).

2.2.4. Growth analysis in the spent medium

We designed a two-step shake flask experiment to determine if

there were any interactions between the organisms. Briefly, in the

first stage, S. cerevisiae and P. stipitis were independently grown in

minimal YNBmediumwith 10 g/L Glucose. The growth was contin-

uously monitored online using CGQ (Aquila Biolabs GmBH, Ger-

many), and the samples were withdrawn at the start of the

experiment, early and late exponential phase. CGQ measures the

backscattered light emitted by the growing microbial cells. Data

analysis, processing and visualisation, were carried out using

CGQuant software version 7.3 (Aquila Biolabs GmBH, Germany).

Sampleswere analysed inHPLC to check if the carbon sourcewas

completely depleted. At this stage, the cellswere separated from the

broth by centrifuging at 8000 rpm, 4 �C for 10 min, and the super-

natant was filter sterilised. In the next step, to these supernatants,

YNBmediumand 5 g/L glucosewere added. Thiswas done to ensure

that these organisms could grow and build the necessarymachinery

to take up the nutrients from the supernatant. The working volume

was 20mL.We designated the spent medium obtained from S. cere-

visiae and P. stipitis as SupSce and SupPst respectively.We inoculated

these supernatantswith either of these organisms, i.e., to the SupSce

weadded P. stipitis and to the SupPstweadded S. cerevisiae, such that

the initial OD was 0:17� 0:1. We continuously monitored the

growth of these organisms using CGQ and analysed the samples

for residual carbon source and the extracellular metabolites using

HPLC at the start and end of experiments. Also, we compared the

growth of the organisms with that in the control, where the super-

natant was replaced with sterile distilled water. The experimental

scheme is as shown in Fig. 2.

To check for the metabolic interactions, we repeated the same

two-stage experiments as above, with a single modification.

Instead of naturally labelled glucose, we used 100% uniformly

labelled (U-13C) glucose as the carbon source in the first step to cul-

tivate the microorganisms individually. Samples withdrawn were

analysed through HPLC for the residual carbon and the extracellu-

lar metabolites. The biomass at the end of 24 h was analysed using

Gas chromatography-mass spectrometry (GC–MS) to identify the

labelling patterns of the amino acids alanine, valine, serine and

aspartate.

2.3. Analytical methods

2.3.1. Quantification of glucose and other by-products

The yeast supernatant was quantified using High Performance

Liquid Chromatography (HPLC) (System Gold125 Solvent Module,

Beckman Coulter, USA) with an organic acid stationary phase

(300� 8 mm, 10 lm particle size) (CS Chromatographie Service

GmbH, Langerwehe, Germany) under the following conditions:

Mobile phase 5 mM Sulfuric acid, Flow rate – 0.5 mL/min, Column

Temperature – 50 �C using a Refractive Index Detector (KNAUER

Wissenschaftliche Geráte, Berlin, Germany). Standard plots (with

R2 = 0.98) for the metabolites ethanol (Carl Roth GmbH, Germany)

(0.25–2 % (v/v)) and glucose (2–15 g/L) were prepared by injecting

known quantities and measuring the area under the respective

peaks.

2.3.2. GC–MS to identify labelling patterns in biomass

To identify the labelling patterns in the biomass, we adapted

the protocol from [31]. Briefly, 0.3–0.4 mg of the biomass were

resuspended in 150 lL 6 M Hydrochloric acid (HCl) and trans-

ferred to 1.5 mL glass vials (Part Number AR0-3940-12 Phenom-

enex). The suspension was incubated at 105 �C for 6 h for

hydrolysis, and dried overnight at 85 �C. To the dried hydrolysate,

30 lL acetonitrile and 30 lL N-methyl-N-tert-butyldimethylsilyl-

trifluoroacetamide (MBDSTFA) was added and incubated at 85 �C

for 1 h. The samples were cooled and immediately analysed using

a GC–MS single quadrupole system using the ‘‘Full scan” mode.

The system consisted of a TRACETM GC Ultra, a TSQ 8000 XLS

Triple-Quadrupole MS equipped with PTV-injector (Thermo Fisher

Scientific, Waltham, MA, USA) and a ThermoScientific TriPlus RSH

Autosampler. The separation of the amino acids was achieved

using Trace GOLD TG-SilMS fused silica column (length 15 m;

inner diameter 0.25 mm; film thickness 0.25 lm). The injector

temperature was set at 270 �C, and the column oven was set at

140 �C for 1 min, and the temperature was steadily increased to

310 �C with a ramp of 10 �C/min, and a hold time of 1 min.

The equipment was operated under a steady gas flow of 1 mL/

min of helium with a split ratio of 1/15. For every measurement,

1 l L of the sample was injected. The resulting chromatogram

and the mass spectra of the samples were analysed by comparing

with those of amino acids standards (Sigma Aldrich, Germany).

All the mass spectra and the chromatograms were analysed on

Thermo XCalibur 2.2 software (Thermo Fisher Scientific, Wal-

tham, MA, USA).

2.3.3. In silico methods to identify the isotopomer distribution in

amino acids

From the chromatogram and the mass spectra, the peaks were

identified by comparing the retention times of different amino

acids with that of standards. The mass spectrum of each deriva-

tised amino acid was also compared against the NIST Library using

NIST MS Search software (https://www.nist.gov/srd/nist-standard-

reference-database-1a-v17) to confirm the presence of corre-

sponding amino acid. Also, we determined the average carbon

labelling and the relative abundance of every fragment after per-

forming corrections for proton gain and original biomass using

the iMS2Flux software [32]. For all our calculations, we used the

(M-57) fragment of the amino acids, since it captures information

about all the carbon atoms in an amino acid.

3. Results

In this study, we present a workflow integrating modelling and

experimental approaches to understand the microbial interactions

between organisms in a community. In the current section, we pre-

sent the results from our three-pronged approach, which includes

computational, physiological and labelling studies.
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3.1. Metabolic support index quantifies the benefits derived by

organisms in a community

To quantify the benefits derived by the organisms in a commu-

nity, we computed the metric, Metabolic Support Index (MSI), as

described in Methods §2.1.1. MSI essentially quantifies the fraction

of an organism’s metabolic network that is ‘‘enabled” by the pres-

ence of the other organism. An MSI of zero indicates that the

organism does not receive any metabolic support from the other,

while an MSI of unity indicates that the organism receives all the

metabolites required to ‘‘enable” the stuck reactions. In essence,

MSI points to the metabolic exchanges between the organisms.

We calculated MSI for several pairs of organisms, which have

been experimentally demonstrated to grow together as a commu-

nity and where mutual interactions between the organisms have

been reported (Table 1). By comparing the MSI of individual organ-

isms, we determined the organism from the pair that derives the

maximum benefit. In addition, we also quantified the interactions

based on the increase in the number of metabolites produced by

one organism in the presence of the other (Supplementary Table 1).

Such an increase points to the synergy and the possible metabolic

interactions between the organisms. Our observations also point to

an increase in metabolic co-operation as reported previously [11].

In all the cases considered, organism A (Column 1) derives a

higher benefit in the co-culture than organism B (Column 2). These

observations are in exact agreement with those made by the exper-

imental studies (Column 5) evaluating the relative biomasses of

the two organisms and their ability to co-exist. For instance, we

observe that the MSI of Ketogulonicigenium vulgare is 0.1, while

that of Bacillus megaterium is 0. This indicates that no additional

pathways have been activated in B. megaterium, in the presence

of K. vulgare. On the other hand, in K. vulgare, 41 additional reac-

tions were visited in the co-culture (Supplementary Table 1), which

were originally stuck in the mono-culture. These results indicate

the additional metabolic support K. vulgare receives from B. mega-

terium. It is interesting to note that this co-culture system has been

widely studied for its applications in vitamin C production; these

studies also indicate that B. megaterium is a helper strain that

enhances the growth and proliferation of K. vulgare [33–35].

In another co-culture consisting of Yarrowia lipolytica and Cellu-

lomonas fimi, we observe that MSI of Y. lipolytica (0.119) is almost

10 times that of C. fimi (0.014). This is because of the additional 123

reactions in Y. lipolytica that have now been visited, in the presence

of C. fimi. The conversion of these stuck reactions to visited reac-

tions in the co-culture also points to the enrichment in the meta-

bolic capabilities of Y. lipolytica, as also observed from the

increase in the scope size of joint metabolic networks (Supplemen-

tary Table 1). These results indicate that Y. lipolytica derives the

maximum benefit when grown as a co-culture with C. fimi. These

metabolic exchanges could have led to the increase in its growth

in co-culture, as observed in the experimental studies previously

reported [17]. Similarly, in all the other cases we have considered,

we show that the trends in MSI agree exactly with the results

demonstrated experimentally (Table 1).

Next, we calculated the MSI for the co-culture of our interest,

consisting of S. cerevisiae and P. stipitis. Here, we compute a MSI

of P. stipitis of 0.063, nearly three times higher than that of S. cere-

visiae (0.025). In addition, we observe 21 reactions in P. stipitis that

have been enabled in the presence of S. cerevisiae. These results

indicate that P. stipitis benefits from the interaction with S. cere-

visiae, which we proceeded to verify using growth kinetic

experiments.

Fig. 2. Two-stage experimental setup to identify metabolic interactions. In stage 1 (top panel), the first organism is grown in a minimal medium consisting of glucose. In stage

2 (bottom panel), the supernatant from the first organism is used as the medium to grow the second organism, and the growth is compared with that of the control where

sterile distilled water is used instead of the supernatant.
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3.2. In silico pathway analyses reveals several interesting metabolic

exchanges

To investigate the metabolic exchanges between S. cerevisiae

and P. stipitis, we exhaustively enumerated all the pathways on a

community metabolic network, using our previously developed

algorithm MetQuest (see Methods). MetQuest identifies all possi-

ble pathways from a given set of seed metabolites to all the reach-

able metabolites, whose size is less than or equal to a given cut-off.

The pathway so obtained is complete, i.e., it contains all the reac-

tions necessary to produce every metabolite constituting the

pathway.

We computed all the pathways starting from D-glucose in S.

cerevisiae that lead to various metabolites in P. stipitis. In total,

we observed multiple pathways in P. stipitis that were involved

in the production of 668 different metabolites (Supplementary

Table 2). A closer analysis of these pathways revealed the presence

of 45 different exchange metabolites from S. cerevisiae. These

exchange metabolites were involved in the production of 634

metabolites (Supplementary Table 2). Of these 45 metabolites,

we note that acetaldehyde, a-ketoglutarate, ethanol and sorbitol

were the most commonly exchanged metabolites since they

involved in the production of over 400 metabolites in P. stipitis

(Supplementary Fig. S1). Further, we checked for the presence of

transporters for these 45 metabolites from their GSMMs and iden-

tified that 22 metabolites had putative protein transporters, 9

metabolites were transported via proton symport or antiport and

the rest 14 were transported via passive transport/diffusion (Sup-

plementary Table 3).

Further, to determine if there were any additional benefits in

terms of metabolic exchanges leading to the overall biomass pro-

duction, we analysed all the pathways from S. cerevisiae D-

glucose to the amino acids in P. stipitis. Amongst the 45 metabolites

listed above, we observed a total of 34 exchange metabolites to be

involved in the pathways producing different amino acids (Supple-

mentary Table 4). It was interesting to note that of the most com-

monly exchanged metabolites, acetaldehyde, a-ketoglutarate,

ethanol and sorbitol take part in the production of more than ten

amino acids.

Several studies previously carried out on this co-culture have

demonstrated its ability to produce ethanol from a variety of sub-

strates [21,22]. However, from our computational predictions, we

observed ethanol transfer from S. cerevisiae and P. stipitis. The etha-

nol so transferred was involved in multiple pathways, which pro-

duced 418 metabolites in P. stipitis (Supplementary Table 5). We

then decided to experimentally check if ethanol was indeed

exchanged between the organisms, as predicted from our pathway

analyses. This would help in designing better processes with a pre-

defined harvest time where this co-culture of organisms is used for

ethanol production from other carbon sources.

3.3. P. stipitis exhibits higher cell density in cell-free supernatant of S.

cerevisiae

To check for the existence of mutual interactions between S.

cerevisiae and P. stipitis, we carried out mono- and co-culture

growth kinetics experiments with these organisms on a minimal

medium containing 10 g/L D-glucose as the carbon source. From

the growth curves (Fig. 3a), we observed that the co-culture cell

density was in between that of the respective mono-cultures. This

provided indications on the ability of the organisms to co-exist.

Further, the co-culture showed a diauxic pattern of the growth

curve, indicating that a few metabolites from the supernatant

may serve as the carbon source.

Next, to identify the organism that benefits from the interac-

tions, we designed and carried out the two-stage experiment. In

stage 1, the first organism was grown in a minimal medium con-

sisting of glucose. In stage 2, the supernatant from the first organ-

ism was used as the medium to grow the second organism, and the

growth was compared with that of the control where sterile dis-

tilled water was used instead of the supernatant (refer x2.2.4 for

more details). Interestingly, from the growth curves of the stage

2 (Fig. 3b), we observed that at the end of 24 h, P. stipitis exhibited

a 1.34-fold higher cell density (520) when grown in the super-

natant of S. cerevisiae, in comparison to that seen in the control

(310). In addition to the increased cell density, P. stipitis clearly

exhibited a diauxic growth pattern, indicating the presence of an

alternate metabolite in the supernatant that was used as the car-

bon source. We did not observe any increase in the cell density

of S. cerevisiae when grown in the supernatant of P. stipitis. This

observation also corroborates the higher MSI for P. stipitis in the

community, indicating that P. stipitis derives a higher benefit when

grown together with S. cerevisiae under these conditions.

3.4. In silico pathway analyses and isotope labelling experiments

confirm ethanol transfer from S. cerevisiae to P. stipitis

In the next step, we experimentally determined the metabolic

exchanges happening between S. cerevisiae and P. stipitis using

the same two-stage experimental setup. We performed HPLC anal-

yses on the samples withdrawn at 0 h and 24 h time points of the

second stage, where P. stipitis was grown in the supernatant of S.

cerevisiae. Interestingly, we observed that the concentration of

ethanol had reduced from 2.4 g/L (in 0 h) to 0.0 g/L (24 h).

Motivated by the reduction in the ethanol concentration and

the predictions of metabolic exchanges from our computational

studies (§3.2), we hypothesised that P. stipitis was consuming the

ethanol produced by S. cerevisiae. To confirm this, we studied the
13C labelling patterns of amino acids. We used the metabolic net-

work of S. cerevisiae [40,41] to line-out the ethanol metabolism

in P. stipitis (Fig. 4). As in all yeast, the carbon skeleton of ethanol

Table 1

MSI to quantify pairwise interactions. The table presents pairwise MSI for examples from the literature. The higher the value of MSI, the better is the benefit the organism derives

through this interaction. The references in Column 1 and 2 pertain to the source of the respective GSMMs. The value in bold in each row indicates the MSI of the organism that

benefits from the interaction.

Organism A Organism B MSI(A) MSI(B) Comments

Ketogulonicigenium vulgare [25] Bacillus megaterium [25] 0.107 0.0 B. megaterium acts as a helper strain for K. vulgare by

providing additional metabolites [36,37]

Clostridium cellulolyticum [28] Clostridium acetobutylicum [26] 0.039 0.001 C. acetobutylicum helps C. cellulolyticum to grow and

metabolize cellulose under non-favourable conditions

through metabolic exchanges [38]

Pichia stipitis [29] Saccharomyces cerevisiae [27] 0.063 0.025 P. stipitis benefits from the interaction with S. cerevisiae by

taking up additional metabolites from the latter (this study)

Yarrowia lipolytica [30] Cellulomonas fimi [30] 0.119 0.014 C. fimi provides additional metabolites to Y. lipolytica in a

co-culture setup [17]

Desulfovibrio vulgaris [30] Methanococcus maripaludis [30] 0.176 0.03 D. vulgaris benefits from the interaction with M. maripaludis

[39]

1254 A. Ravikrishnan et al. / Computational and Structural Biotechnology Journal 18 (2020) 1249–1258



is incorporated into the TCA cycle [42], while the anaplerotic reac-

tion is the glyoxylate shunt. Hence, one would expect label to be

present in aspartate (from oxaloacetate) and glutamate (from

ketoglutarate). The malate and oxaloacetate can be converted to

pyruvate to fuel gluconeogenesis, which is one of the indispensable

pathways when yeasts grow on non-fermentable carbon sources

[43]. The incorporation of the C2 of ethanol into the C3 of, e.g.,

pyruvate (a compartmented metabolite) and later into phosphory-

lated C3 of glycolysis in the cytosol can be tracked via alanine,

valine, and serine, respectively. We checked for the incorporation

of 13C-labelled carbon in these amino acids specifically in the (M-

57)+ fragment of the respective amino acids. Interestingly, in all

these amino acids, we observed isotopomers with a higher fraction

of 13C incorporated (Fig. 5). For instance, from the pool of amino

acid aspartate, we find 28% of m4 isotopomer where all the four

carbon atoms carry a 13C label. In addition, we also noted that there

is a negligible fraction of m1 isotopomer in all the four amino acids.

Further, we observed that the average carbon labelling (0.39) in

Fig. 3. Growth curves: (a) Growth curves of mono- and co-cultures of P. stipitis and S. cerevisiae. These experiments were carried out in YNB (defined) medium. Here,

represents the co-culture of P. stipitis and S. cerevisiae, represents the mono-culture of P. stipitis and represents the mono-culture of S. cerevisiae. Note that the

growth curve of co-culture exhibits a diauxic pattern and lies between those of mono-cultures of P. stipitis and S. cerevisiae. (b) Comparison of the growth curve of P. stipitis

grown on the supernatant of S. cerevisiaewith that grown in control. This experiment was performed according to the scheme showed in Fig. 2. Here, represents control

and represents experimental condition. Note the diauxic pattern of growth curve when P. stipitis is grown in the supernatant of S. cerevisiae. All the experiments were

carried out at 30�C and 300 rpm. In both the cases, the growth was monitored online using CGQ (Aquila Biolabs). The experiments were performed in triplicates. Error bars

represent the standard deviation values obtained from CGQuant software version 7.3. For more details on methods, see §2.2.3 and §2.2.4.

Fig. 4. Metabolic network showing the central carbon metabolism in P. stipitis. Ethanol is directly involved in the production of amino acids aspartate, alanine and valine,

which is produced from oxaloacetate and pyruvate. Through gluconeogenesis pathway, which has been reported to be observed when yeasts grow on non-fermentable

carbon sources, ethanol is also involved in the production of serine.
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these amino acids is significantly higher than that found in the

control (0.005), indicating the uptake of a labelled metabolite from

the supernatant (Table 2). In addition, the average carbon labelling

observed in the amino acids (0.39) was almost equal to the fraction

of labelled substrate present in the supernatant (0.42 � 0.01) indi-

cating that nearly all the observed labels in the amino acids origi-

nated from ethanol.

4. Discussion

Microbial co-cultures have been used for several biotechnolog-

ical applications, where the metabolic capabilities of two different

organisms have been exploited. Several recent studies have

designed co-cultures with microorganisms that have been geneti-

cally modified to exchange metabolites with one another. More-

over, these microbial co-cultures also serve as a models to study

the fundamental cell-cell communication and community life in

general. There has indeed been a growing interest in studying

these microbial co-cultures/communities and identifying the inter-

actions therein.

In this study, we systematically identify the metabolic interac-

tions between the microorganisms in a co-culture by integrating

modelling with experiments. To this end, we applied our previ-

ously developed graph-theoretic algorithm that operates on the

metabolic networks of the microorganisms. We defined a new

metric termed Metabolic Support Index (MSI) that quantifies the

metabolic support each organism receives from the other in a com-

munity, in terms of the number of reactions ‘‘enabled”. We com-

puted this metric on several co-cultures presented in literature

and demonstrated that this metric can correctly identify the bene-

ficiaries from the microbial interactions.

There have been a few studies carried out in the past that incor-

porate the nutrient conditions and quantify the co-operation

between the organisms in a community. These studies identify

the synthesising capabilities of ‘‘joint metabolic networks”

[11,44] and compute the benefits in terms of the metabolites pro-

duced by the individual organisms in a community. Our metric,

MSI, on the other hand, determines the number of additional reac-

tions that can be activated in one organism in the presence of other

due to the metabolic exchanges. In addition, MSI also gives an idea

about the metabolic enrichment arising out of microbial co-

operation. Further, the reactions facilitating metabolic exchanges

between the organisms can be used as a potential target for

over-expression. Such reactions could be used to improve the co-

operation between the organisms through the exchange of

metabolites. Experimentally, MSI can be easily verified by design-

ing appropriate medium conditions depending on the input seed

metabolites.

Further, to integrate the predictions with the experiments, we

calculated MSI for a well-known yeast co-culture system [19] con-

sisting of P. stipitis and S. cerevisiae and identified that P. stipitis,

with a higher MSI, benefits from this interaction. Moreover, we also

identified the pathways spanning the two organisms and identified

the set of metabolites that can be exchanged between the two

Fig. 5. Mass isotopomer distributions of four different amino acids arising from ethanol metabolism. (A) Aspartate, (B) Alanine, (C) Serine, (D) Valine. The relative abundance

of heavier isotopomers of amino acids is much higher in comparison to that of control, indicating the uptake of a labelled carbon source. Note that we considered (M-57)+

fragment for our analysis. The three bars indicate the results from the experiment, the control and the standard, as indicated in the legend.
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organisms. Interestingly, we also note that our computational anal-

yses indicate some benefit for S. cerevisiae (MSI = 0.025), while

experimentally we observe no such benefit. This is because the cal-

culation of MSI involves only the stuck reactions in one organism

that have been relieved in the presence of other organisms. Due

to the redundancy in metabolic pathways [45], we observe that

metabolites synthesised by these stuck reactions are already pro-

duced by other reactions in alternate pathways. However, in the

presence of other organisms, these stuck reactions get activated

and hence contribute to the MSI value. On the other hand, in exper-

iments, these metabolites would be synthesised by S. cerevisiae

using its alternate pathways since they are a part of essential

components of the cells. Hence this benefit is not observed

experimentally.

We also performed two-stage experiments using this co-culture

and found that: (a) P. stipitis benefits from the interaction, as

shown by a higher value of MSI compared to that of S. cerevisiae

and (b) P. stipitis consumes the ethanol produced by S. cerevisiae

as also observed in previous studies. Also, from the labelling stud-

ies, it is also interesting to note the complete absence of m1 iso-

topomer in all the amino acids analysed. Moreover, since the

labelling patterns in alanine and valine are different, it can be

inferred that both cytosolic and mitochondrial routes of their syn-

thesis were operational [42].

Our two-stage experiment is a simple methodology to establish

a proof-of-concept for identifying the microbial interactions in a

community. Indeed, the dynamics of the organisms in the co-

culture may be different from that observed when the organisms

are independently cultivated on the cell-free supernatants. Never-

theless, this study provides first glimpse into interactions in micro-

bial communities. Also, deciphering the co-culture dynamics

would entail the use of advanced molecular biological techniques.

Moreover, isotope labelling patterns of the individual organisms

from the co-culture experiments are difficult to obtain. Although

recent studies seek to identify labelling patterns in co-culture,

these methods either require extraction of a large number of pep-

tides [46] or are restricted to a co-culture of organisms with iden-

tical biomass composition [47].

Also, our computational method to determine the relationship

between the organisms in a co-culture, captures only the positive

interactions between the organisms, as with other graph-based

method based on network expansion [11]. Also, alternate metrics

may be required to capture the resource allocation benefits, espe-

cially in natural communities where microbes have to adapt to the

continually changing niche conditions. Further, the pathways iden-

tified by MetQuest is an exhaustive set consisting of all possible

exchange metabolites. It is important to note that not all these

exchange reactions are likely to occur and there may be few

exchange metabolites in undetectable quantities. Pruning this set

would require additional information such as thermodynamic val-

ues and fluxes of reactions. Weighing the pathways based on their

importance could help in ranking these exchanges and further

improving the power of MSI to predict interactions. Moreover, it

is important to note that not all the reactions that have been acti-

vated would have a positive effect on the organism. However, our

method gives important information about the reactions that have

been activated, which can be used to make informed choices while

designing microbial consortia.

In sum, this study provides a systematic methodology to under-

stand the interactions in a microbial community by integrating

computational and experimental paradigms. A model-integrated

approach, combining data frommodelling and experiments, allows

to identify the complex metabolic interactions possible between

the microbes in a co-culture. Our study also underlines the utility

of computational analyses to generate testable hypotheses regard-

ing the interactions between various microbes. This generic work-

flow can be extrapolated to study the metabolic interactions in

many microbial communities. For instance, in a community of

three organisms, a simple weighting scheme could be followed

using the set of stuck reactions. This unique set, relieved by two

individual organisms can be suitably weighed by comparing with

the common set of reactions relieved by both the organisms. Mul-

tiple pair-wise interactions within the larger communities can be

compared to identify how different organisms interact with one

another. Overall, our integrated workflow can pave the way for

rationally designing and engineering microbial consortia tailored

towards specific industrial applications.
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