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Abstract—Interconnection and damping assignment pas-
sivity-based control is a new controller design methodology
developed for (asymptotic) stabilization of nonlinear systems that
does not rely on, sometimes unnatural and technique-driven,
linearization or decoupling procedures but instead endows the
closed-loop system with a Hamiltonian structure with a desired en-
ergy function—that qualifies as Lyapunov function for the desired
equilibrium. The assignable energy functions are characterized
by a set of partial differential equations that must be solved to
determine the control law. We prove in this paper that for a class
of mechanical systems with underactuation degree one the partial
differential equations can be explicitly solved. Furthermore, we
introduce a suitable parametrization of assignable energy func-
tions that provides the designer with a handle to address transient
performance and robustness issues. Finally, we develop a speed
estimator that allows the implementation of position-feedback con-
trollers. The new result is applied to obtain an (almost) globally
stabilizing scheme for the vertical takeoff and landing aircraft
with strong input coupling, and a controller for the pendulum
in a cart that can swing-up the pendulum from any position in
the upper half plane and stop the cart at any desired location. In
both cases we obtain very simple and intuitive position-feedback
solutions.

Index Terms—Energy shaping, Hamiltonian systems, nonlinear
control, passivity, underactuated mechanical systems.

I. INTRODUCTION

I N [31], we introduced a controller design technique, called
interconnection and damping assignment passivity-based

control (IDA-PBC), that achieves stabilization for underactu-
ated mechanical systems invoking the physically motivated
principles of energy shaping and damping injection. IDA-PBC
endows the closed-loop system with a Hamiltonian structure
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where the kinetic and potential energy functions have some
desirable features, a minimal requirement being to have a
minimum at the desired operating point to ensure its stability.
Similar techniques have been reported for general port-con-
trolled Hamiltonian and Lagrangian systems in [30], [40] and
[32], respectively; see also [12]–[14] for the case of Lagrangian
mechanical systems and [29] which contains an extensive list of
references on this topic. The success of these methods relies on
the possibility of solving a set of partial differential equations
(PDEs) that identify the energy functions that can be assigned
to the closed-loop. The PDE associated to the kinetic energy
defines the admissible closed-loop inertia matrices and is non-
linear, while the PDE of assignable potential energy functions
is linear. In [12] the authors identify a series of conditions on
the system and the assignable inertia matrices such that the
PDEs can be solved. Also, techniques to solve the PDEs have
been reported in [8] and [11] and some geometric aspects of the
equations are investigated in [23]. In [18] it is shown that the
kinetic energy PDE reduces to an ordinary differential equation
(ODE) if the system is of underactuation degree one, that is, if
the difference between the number of degrees of freedom and
the number of control actions is one—see also [9] for a detailed
study of this case for the Controlled Lagrangian Method. In
spite of all these developments the need to solve the PDEs
remains the main stumbling block for a wider applicability of
these methods.

In this paper we are interested in the application of IDA-PBC
to mechanical systems with underactuation degree one. The
main contributions of the paper are as follows.

1) Identification of a class of underactuation degree one
mechanical systems for which the PDEs of IDA-PBC
can be explicitly solved. Roughly speaking, we assume
that the open-loop systems inertia matrix and the force
induced by the potential energy (on the unactuated co-
ordinate) are independent of the unactuated coordinate.

2) Derivation of conditions to effectively assign a min-
imum to the energy function at the desired operating
point—providing in this way a complete constructive
procedure for stabilization. The conditions are given in
terms of single algebraic inequality that measures our
ability to influence, through the modification of the in-
ertia matrix, the unactuated component of the force in-
duced by potential energy.

0018-9286/$20.00 © 2005 IEEE
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3) Development, using the recently introduced method of
Immersion and Invariance [6], [22], of a speed esti-
mator that allows the implementation of the proposed
controllers measuring position only. To the best of our
knowledge, this is the first position-feedback solutions
reported for these systems—at this level of generality.

4) Last, but not least, the introduction of a suitable
parametrization of assignable energy functions—via
two free functions and a gain matrix—giving the de-
signer the possibility to address transient performance
and robustness issues. In spite of their great practical
importance these issues are rarely studied in the lit-
erature. Indeed, most of the controllers reported for
this class of systems rely on the rather unnatural, tech-
nique-driven and fragile operations of linearization
and decoupling. Other existing schemes give very little
freedom to the designer to tune the controller—basi-
cally only the selection of saturation and domination
functions or the adjustment of high-gain injection or
damping.

The new result is applied to obtain an (almost) globally stabi-
lizing scheme for the vertical takeoff and landing aircraft with
strong input coupling, and a controller for the pendulum on a
cart that can swing-up the pendulum from any position in the
(open) upper half plane and stop the cart at any desired location.
In both cases we obtain very simple and intuitive position-feed-
back solutions that endow the closed-loop system with a Hamil-
tonian structure with desired potential and kinetic energy func-
tions. For other applications we refer the reader to to [1]–[3].

II. IDA-PBC METHOD FOR (SIMPLE) MECHANICAL SYSTEMS

In this section, we briefly review the material of [31] that
introduces the IDA-PBC approach to regulate the position of
underactuated mechanical systems with total energy

(1)

where are the generalized position and mo-
menta, respectively, is the inertia matrix, and
is the potential energy. If we assume that the system has no nat-
ural damping, then the equations of motion can be written as1

(2)

where and with .
In IDA-PBC stabilization is achieved assigning to the closed-

loop a desired total energy function. The main result of [31] is
contained in the proposition below, that we prove for the sake
of completeness.

1All vectors in the paper are column vectors, even the gradient of a scalar
function: r = (@=@( � ))—when clear from the context the subindex in r
will be omitted. We will also assume that all functions are sufficiently smooth
and, whenever rank conditions are imposed, we assume that they hold uniformly
with respect to their arguments.

Proposition 1: Assume there is
and a function that satisfy the PDEs

(3)

(4)

for some and a full rank left
annihilator of , i.e., and

. Then, the system (2) in closed-loop with
the IDA-PBC

(5)

where , takes the Hamiltonian form

(6)

where the new total energy function is

(7)

Further, if is positive definite in a neighborhood of and

(8)

then is a stable equilibrium point of (6) with Lyapunov
function . This equilibrium is asymptotically stable if it is
locally detectable from the output . An estimate
of the domain of attraction is given by where

and corresponds to the largest bounded
sub-level set of .

Proof: The first equations of (6) are established noting
from (2) that while . On the other
hand, multiplying the last equations of (2) and (6) by the

full-rank matrix and setting them equal yields the equa-

tion shown at the bottom of the next page. Equating the second
and the fourth identities, and using the fact that is full
rank, we obtain precisely equations (3)–(5).

To prove the stability claim we see, from (7), (8) and positivity
of , that is a positive definite function in a neighborhood
of . A straightforward calculation shows that, along tra-
jectories of (6), satisfies

because is skew-symmetric and is positive defi-
nite—where is the Euclidean norm and is the
minimum eigenvalue. Hence, is a stable equilibrium.
Furthermore, since (by definition) is proper on its sub-level
set , all trajectories starting in are bounded. Asymptotic
stability, under the detectability assumption, is established
invoking Barbashin–Krasovskii’s theorem and the arguments
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used in the proof of [40, Lemma 3.2.8]. Finally, the estimate
of the domain of attraction follows from the fact that is the
largest bounded sub-level set of and LaSalle’s Principle.

The main contribution of the present paper is the identifica-
tion of a class of mechanical systems for which we can explicitly
solve the PDEs (3), (4). In spite of the presence of the free ma-
trix , the kinetic energy PDE (3) is a complicated nonlinear
matrix PDE. In order to solve it we propose in this paper to fix

transforming the PDE into an algebraic equation that we
will solve for . Toward this end, we make first the assump-
tion that the inertia matrix does not depend on the unactu-
ated coordinates, thus eliminating the term
of (3). Second, introducing suitable parameterizations for
and , we will prove that—for the case of underactuation de-
gree one—we have enough degrees of freedom in to solve the
algebraic equations. These developments are presented in Sec-
tion III.

The potential energy PDE (4), even though linear, may also
be difficult to solve analytically. To be able to provide an explicit
solution we impose in Section IV the additional assumption that
the unactuated component of the force induced by the potential
energy, that is , is a function of only one of the actuated
coordinates and make a function of this coordinate as well.
Stability will be established if we can assign a potential energy
function that satisfies (8). See Point 2 in Section I and Re-
mark I.

Remark 1: It is clear that, for position regulation prob-
lems, our main objective is to shape the potential energy
function hence we could leave and (4) becomes

. If the systems is underactuated our
ability to modify in this way is obviously limited, see
Remark 4.3.18 of [40] and [23]. To overcome this obstacle
it was proposed in IDA-PBC [31] to change also the kinetic
energy term.2 This is done through the modification of —that
introduces the “coupling term” in the potential energy
PDE. Our objective is then to find, among the set of positive
definite that solve (3), one that will allow us to shape .
The key player in this intertwined game is , that we recall
is free, thus providing degrees of freedom to assign . See
Remark 3 and [29] for additional discussions on the role of
for applications beyond the realm of mechanics.

2To the best of the authors’ knowledge the first paper where shaping the total

energy for stabilization of mechanical systems was proposed is [4], see [32, Ch.
3].

Remark 2: The class considered in the paper contains sev-
eral practically relevant examples, with two of them given in
Section VII. A particular case of this class has been studied in
[3], and a complete characterization of all underactuation de-
gree one mechanical systems which are feedback-equivalent to
it is given in [2].

Remark 3: In the light of some recent misleading novelty
claims reported in [41] we find necessary to clarify—again—the
history of the term and its role on stabilization. Already in the
first publication concerning IDA-PBC [30] we indicated that,
due precisely to the freedom in the choice of this term (that is
intrinsic to IDA-PBC), the class of mechanical systems stabi-
lized with IDA-PBC strictly contains the class stabilized via the
controlled Lagrangian method of [12] or its extension [13]. It
was shown that both methods coincide for a particular choice
of . This term was given an interpretation in terms of gyro-

scopic forces in a Lagrangian framework for the first time in
[11], with a preliminary report widely distributed to the com-
munity as early as October 2 000. As openly recognized in the
Introduction of [16], our work heavily inspired the modified
controlled lagrangian method reported in [16], and utilized in
[41]—that essentially mimics our derivations.

III. SOLVING THE KINETIC ENERGY PDE

We now proceed to define the class of mechanical systems for
which we can explicitly solve (3). Toward this end we introduce
the following:

Assumption A.1: The system has underactuation degree one,
that is, .

Assumption A.2: There exists a full rank left annihilator
of such that

(9)

Assumption A.2 essentially imposes that does not depend
on the unactuated coordinate. It is satisfied by many well-known
physical examples, for instance, the Ball and Beam [20], the
VTOL Aircraft [25] and the Acrobot [37]. It is easy to see that
the assumption may be satisfied, taking (with some minor loss

of generality) and introducing a partial feed-

back-linearization inner-loop [37]. Indeed, after some simple
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calculations we see that the partially feedback-linearized system
takes the so-called Spong’s normal form [19]

(10)

where we have partitioned the inertia matrix and defined the
function as

with and the -th vector of the -di-
mensional Euclidean basis. Under some conditions3 this system
may be written in the form (2) with a “new inertia matrix” equal
identity, hence satisfying Assumption A.2. See the example in
Subsection VII.A and [28] where a detailed study of the action
of partial feedback linearization on the PDEs of IDA-PBC is
carried out.

In the sequel we will impose some assumptions on , and
to define a class of mechanical systems for which we can

solve the PDEs. These assumptions can be considerably simpli-
fied if we proceed from Spong’s normal form. It is well-known
that, in contrast to PBC, feedback-linearization is a fragile op-
eration that requires exact knowledge of the systems parameters
and states to ensure the “double integrator” structure. Therefore,
we prefer to present the assumptions on the original system (2),
stating as remarks their implication for the system in Spong’s
normal form.

A. Equivalent Representation of the PDE

We find convenient to first express (3) in an alternative equiv-
alent form. For, we introduce a suitable parametrization of the
free matrix . It is clear from (3) that should be linear in

. We make now the important observation that, without loss of
generality (see Remark 4), can be parameterized in the form

...
...

...
. . .

...

where the vector functions
, are free parameters and we have defined for no-

tational convenience the (partial) coordinate

(11)

Alternatively, we can write

(12)

3As explained in [28] partial feedback linearization does not necessarily pre-
serve the Hamiltonian structure (2).

with the , defined as follows. First,
we construct matrices of dimension , that we denote

, according to the rule

if and

Notice that only matrices are different from zero. Then, we
define . Finally, we set (in an obvious way)

For instance, for the case , for which also , we get

Using this parameterization some simple calculations establish
that the term that appears in (3) becomes

(13)

where we defined

...
...

...

which is a free matrix, and

(14)

Proposition 2: Under Assumptions A.1, A.2 the kinetic en-
ergy PDE (3) becomes

(15)

where4

(16)

Proof: Using Assumption A.1, (13) and notation (16) the
kinetic energy PDE (3) can be written as

That, using the relation

4Notice that, under Assumption A.1, G is a row vector.
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and factoring , becomes

(17)

The proof is completed taking the symmetric part of the matrix
and setting the expression in brackets, which is indepen-

dent of , equal to zero.
Remark 4: An skew-symmetric matrix contains at most

nonzero different terms. Hence, the proposed contains all
skew-symmetric matrices which are linear in , that is, all ma-
trices of the form , and the parametriza-
tion is done without loss of generality as claimed above.5

B. A Parametrization of That Solves the PDE

In this section we present a parametrization of the desired
inertia matrix for which there exists a that sets to zero the
term in brackets of (17), that we write here for ease of reference
as

(18)

recalling that , as defined in (16), are functions of . It is
important to underscore that the set of that satisfies (18) is
strictly contained in the set that satisfies (15)—which, as stated
in Proposition 2, characterizes all solutions of (3).6 We decide
to work with this smaller set because, as will be shown below,
we can in this way give a simple explicit expression for . Of
course, all solutions of (18) are solutions of (3).

As explained in the introduction, we solve (18) as an algebraic
equation in the unknown for a given . Toward this end, we
note from (14) and skew-symmetry of the matrices that

(19)

The equation above indicates that Im which, in view
of (18), suggests to select such that Im as
well. The question on whether there will exists to solve (18)
will depend on the rank of as shown in the following simple
linear algebra lemma.

Lemma 1: Consider a matrix with ,
rank , and such that for some .
Then, for all vectors such that there exists a
vector such that .7

Proof: First, recall that given and , there exists such
that if and only if

Let us denote with the space of all -dimensional vec-
tors orthogonal to , which is an -dimensional space. Now,

implies that all columns of are in . Also, from

5The space of skew-symmetric matrices, usually denoted so(n), can be al-
ternatively defined noting that so(n) is isomorphic to via the hat operator
�̂ : ! so(n), and then use the basis fê ; . . . ; ê g. We thank the reviewer
for this remark.

6We thank the reviewer for this insightful observation.
7The proof of the lemma for the case n = 2, hence n = 1, follows from

basic plane geometry considerations and is omitted for brevity.

we have that . Since the rank of is there
are linearly independent columns that span the whole space

. Therefore, the rank of cannot be increased by adding an-
other vector in the same ( -dimensional) space and the rank
identity above holds.

In order to use Lemma 1 we now establish that satisfies the
required rank condition.

Lemma 2: For the matrix defined in (14) we have

Proof: We first recall (19). To establish the proof we will
show that spans the left kernel of —which will imply
that dim ker . To simplify the notation we define

and assume, without loss of gener-
ality, that —see below.

From the construction of the matrices given in the pre-
vious section, we have

if
if
otherwise

Consider now a vector in the left kernel of .
We thus have

The latter is a set of equations with unknowns (the
coefficients ) that, invoking the assumption of , has the
form

...
...

Clearly, all solutions of this equation are co-linear with , com-
pleting the proof.

To present the main result of this section—a parametrization
of such that (3) can be explicitly solved—we require the
following.

Assumption A.3: The input matrix is function of a single
element of , say , with an integer taking values in the set

.
Obviously, the assumption will be always satisfied if it is pos-

sible to (via an input change of coordinates and re-ordering of

the variables ) transform the input matrix into .

On the other hand, referring to Spong’s Normal Form (10), we
see that the assumption is satisfied for the partially-linearized
system if the column of corresponding to the unactuated co-
ordinate depends only on .

Proposition 3: Let Assumptions A.1–A.3 be satisfied. Under
these conditions, for all desired (locally) positive definite inertia
matrices of the form

(20)
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where the matrix function and the
constant matrix , may be
arbitrarily chosen, there exists a matrix such that the kinetic
energy PDE (3) holds in a neighborhood of .

Proof: First, note that the integration limits have been
chosen such that . Therefore, on some
neighborhood of . Second, as is only a function of
(18) becomes

(21)

We have to prove that, for the proposed inertia matrix (20), there
exists that solves this algebraic equation. This follows, in-
voking Lemma 1 and Lemma 2, from (19) and the fact that

by construction.

IV. SOLVING THE POTENTIAL ENERGY PDE

The potential energy PDE (4) can be written using (16) as

(22)

where, to simplify the notation, we have defined the scalar func-
tion

(23)

This function, that is uniquely determined by the open-loop
system, plays a critical role in the stabilization problem and we
propose to take a brief pause to analyze it. First of all, notice
that for all admissible equilibria , we have

(24)

This follows from the dynamic equations for momenta in (2),
whose right hand side evaluated for becomes .
Secondly, the vector contains the forces induced by the po-
tential energy, in particular, are those forces that cannot
be (directly) affected by the control. Referring back to the orig-
inal potential energy PDE (4), we recall that the mechanism to
shape the potential energy is through the introduction of the term

. Since we have imposed that depends on a single
coordinate it is reasonable to require that also depends only on

, as will be done below.
Once is fixed, as given by (16) is also fixed, and (22)

is a linear PDE that may be solved using, for instance, the tech-
niques of [10]. See the examples worked out in [31]. Since our
interest in this paper is to give a constructive solution to the sta-
bilization problem we make two additional assumptions to be
able to explicitly solve (22).

Assumption A.4: The vector and the function , defined in
(16), (23), respectively, are functions of only, with as in
Assumption A.3.

Assumption A.5: .
Under Assumption A.3 and with defined by (20) is a

function of if is a function of . Clearly, for systems in
Spong’s Normal Form, where the new inertia matrix is iden-
tity , Assumption A.4 will be satisfied if does not
depend on . Assumption A.5 is a generic condition that is im-
posed to ensure that the PDE (22) admits a well-defined solution

in a neighborhood of . This stems from the fact that the are
functions of and, in view of (24), vanishes at .

We are in position to present our next result whose proof fol-
lows from the equivalence of (4) and (22) and some direct com-
putations.

Proposition 4: Let Assumptions A.1–A.5 be satisfied and
be given by (20). Under these conditions, all solutions of

the potential energy PDE (4) are given by

(25)

with given in (16), (23), respectively, and ,8 defined
as

(26)

with an arbitrary differentiable function.
Remarks 5: Propositions 3 and 4 characterize a set of as-

signable energy functions of the form (1) in terms of the triplet
. The construction proposed for ensures only
. To enlarge the domain of positivity of —and

consequently enlarge the domain of stability—suitable selec-
tions of and must be found. The same comment applies to
Assumption A.5 that should be satisfied in some (quantifiable,
and hopefully big) neighborhood of . We note that the func-
tions and appear explicitly in the control law (5)
through the term (implicit in ).

V. MAIN STABILIZATION RESULT

In the previous section we proposed a parametrization of the
assignable energy functions in terms of the triplet .
Here we will impose some additional constraints on these pa-
rameters to ensure asymptotic stability of the closed-loop. As
expected, for stability we will require (besides positivity of )
assignment of the desired minimum to , i.e., (8). To articulate
this condition we note first that the change of coordinates

is a diffeomorphism that preserves the extrema—hence
we analyze the potential energy function in these new coordi-
nates, see [31] for a discussion on this issue. Now, from (25),
and the fact that is arbitrary, it is clear that restrictions
will only be imposed on the term . Recalling (24) and
Assumption A.5 we note that this function already has an ex-
tremum at . To ensure that it is a minimum we verify that its
second derivative, evaluated at , is positive. Some simple cal-
culations show that this condition is equivalent to the following.

Assumption A.6:

The assumption has the following interpretation. First, we re-
call from (23) that represents the forces induced by the po-
tential energy function that are unactuated. Second, corre-
sponds to an equilibrium that will, typically, be open-loop un-
stable therefore the open-loop potential energy function will

8z(q) is the, so-called, characteristic of the homogeneous part of the PDE
[10]. Notice that z is an n-dimensional vector but z = 0. We have introduced
this (awkward) definition for notational compactness.



1942 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

have a maximum at this point and . Finally,
from (4) and (16) we see that is the element of the “coupling
term,” , through which we can modify the (unactu-
ated coordinates of the) open-loop potential energy (see Remark
1). In summary, Assumption A.6 reflects our ability to shape, for
the purposes of stabilization, the potential energy through mod-
ification of the kinetic energy. See Examples in Section VII.

Interestingly, we will show in the proposition that the only
additional condition imposed for asymptotic stability is as fol-
lows.

Assumption A.7:

Furthermore, for the particular case of quadratic , a very
simple explicit expression for the control law is given.

Proposition 5: Consider the underactuated mechanical
system (2) verifying Assumptions A.1–A.3. Assume there
exists matrices and such that Assumptions A.4-A.6
hold with given by (20). Under these conditions, for all
differentiable functions the IDA-PBC (5) ensures that the
closed-loop dynamics is a Hamiltonian system of the form
(6) with total energy function (7), with defined in (25).
Moreover, is a locally stable equilibrium with Lyapunov
function provided the root of is isolated,
the function satisfies

(27)

and this minimum is isolated. It will be asymptotically stable if
Assumption A.7 holds.

Furthermore, if we select

with , the control law is of the form

...

(28)

where is free, is obtained
removing the -th row from the -dimensional identity matrix,
and the matrices , are of dimensions

Proof: The first matching claim follows immediately from
Propositions 3 and 4 and our previous derivations.

Some simple calculations establish that the equilibrium set of
the closed-loop system is

To prove stability of the desired equilibrium we note that
ensures is (locally) positive definite in ,

therefore to qualify as a Lyapunov function candidate we only
need to prove that satisfies the minimum condition (8). As
discussed above, we analyze the potential energy function in
the coordinates . Condition (27) assures the required
property for the coordinates. In view of (24) and Assumption
A.6—which pertain, respectively, to the first and second deriva-
tive of with respect to evaluated at —the minimum is
also at the desired equilibrium for .

The control expression (28) is obtained, after some lengthy
but straightforward calculation, from (5) selecting the free func-
tion in (25) as indicated in the proposition.

It only remains to establish asymptotic stability. The deriva-
tive of along the dynamics (6) is given by

From positivity of and the expression above we conclude
boundedness of all solutions starting sufficiently close to the
equilibrium. We will prove that the dynamics restricted to the
residual set

are described by a two-dimensional dynamical system subject
to algebraic constraints. We will show then that this
planar system has no limit cycles close to the desired equilib-
rium. Since unbounded trajectories are ruled out by the stability
property this establishes the claim of local asymptotic stability.

We proceed now to characterize the residual dynamics. First
we prove that, for all trajectories in , the following holds:

(29)

(30)

(31)

Proof of (29).: Equation (29) follows from the fact that
and the definition of .

Proof of (30): We note first the following chain of impli-
cations:

(32)

where we have replaced the expression of obtained in the
fourth implication into the second one to get the last equation.
Integrating the last equation in (32) we get the first alge-
braic equations that constrain the residual dynamics

(33)
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where is a constant vector, with
.9

Computing the gradient of from (25) we get

where we have used the fact that to get
—a constant vector. Now, any point is ob-

viously in the residual dynamics, therefore, we can invoke (24)
to get

(34)

Equation (30) is obtained replacing in the expression
on above.

Proof of (31): From the first implication of (32) we have

(35)

and, consequently

where we have used (13) and skew-symmetry of to get the
second identity, and (21) for the third. The proof is completed
invoking (29).

To derive the residual dynamics let us repeat here, for conve-
nience, the momentum equations of the closed-loop system (6),
(7):

Recalling that

and replacing (29), (30) and (31) yields

(36)

Now, differentiating (35) we get

(37)

where we have used to set to zero the first
right hand term of the first identity, and used the third line of
(32), namely

(38)

9From z, we conclude that the characteristic z(q) is constant.

to obtain the right hand term of the second equation. Equating
(36) and (37) and eliminating yields

Pre-multiplying by the full-rank matrix it is pos-

sible to show that this equation is equivalent to the differential
equation

(39)

together with the algebraic constraints

(40)

where

Summarizing, we have established that the residual dynamics
are described by the 2-dimensional dynamical system (38), (39)
subject to the algebraic constraints (40).

To complete the proof of stability it only remains to show
that the planar system has no limit cycles (in a neigh-
borhood of ). For, we first note from (38)—and the fact that

—that on any half vertical line does not change sign.
Therefore, if a limit cycle exists it has to encircle the point

. Assume there exists one, then there is a time such that
for some . On the other hand,

the constraint (40)—which obviously holds along all trajecto-
ries—imposes . Now, Assumption A.7 en-
sures10

Fix this and select such that all trajectories starting
in the ball remain in the ball of radius for all
time—the existence of follows from the stability of the system.
Since the trajectories cannot cross the plane through the
interval limit cycles cannot exist and trajectories
have to converge to completing the proof.

Remark 6: To quantify the domain of attraction, e.g., to ob-
tain an (almost) global version of the asymptotic stability claim,
we need to rule out the existence of limit cycles in the whole
space as well as stable equilibria, different from the de-
sired one. See the example of Section VII.B.

VI. IMPLEMENTATION OF THE CONTROLLER VIA POSITION

FEEDBACK

In this section, we prove that, using the recently introduced
method of immersion and invariance [6], [22], we can design a
speed estimator that allows the implementation of the proposed

10We recall that s(q ) = 0 and this root is isolated.
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controllers measuring only position for the following particular
class of systems:

(41)

that clearly satisfies Assumptions A.1–A.4 and contains the ex-
amples considered in Section VII. To ensure stability we will
impose the (rather weak) additional assumption that the matrix

(that defines ) is bounded.
Proposition 6: Consider the system (41) assuming, without

loss of generality, that is bounded.11 Select bounded and
in (20) such that Assumptions A.5 and A.6 hold. Define the

position feedback controller

...

(42)

where , and is an estimate of generated via

(43)

Then there exists a neighborhood of the point such
that all trajectories of the closed-loop system starting in this
neighborhood are bounded and satisfy

Furthermore, if Assumption A.7 holds and the full state feed-
back controller (28) ensures global asymptotic stability then the
neighborhood is the whole space , thus boundedness and
convergence are global.

Proof: To carry out the proof we follow verbatim the Im-
mersion and Invariance procedure of [6], [22]. For, we define
the partial coordinate

whose derivative, upon replacement of the system dynamics
(41) and the estimator above, takes the simple form

From boundedness and positivity of we immediately con-
clude that exponentially fast—for instance, evaluating
the derivative of .

We will show now that the proposed position-feedback con-
trol law can be expressed as the sum of the full-state feedback
control plus a perturbation term that depends on , that as shown
above, exponentially goes to zero. Indeed, using ,
the controller (42) can be written as ,

11This assumption is without loss of generality, because we can always re-
define the control signal with a scalar normalizing factor without affecting the
stabilizability properties.

Fig. 1. Pendulum on a cart.

where we use to denote the full state feedback con-
troller (28), and we have defined

...

(44)

Replacing (44) in (41) and denoting , we have
that the closed-loop system can be written in the perturbed form

where are the dynamics of the system in closed-loop
with the full state feedback controller. From Proposition 4, we
have that the latter is asymptotically stable. Furthermore, the
disturbance term is such that . Invoking well-
known results of asymptotic stability of cascaded systems [36]
completes the proof of local asymptotic stability.

To complete the global claim we invoke the recent result of
[38], and see that the proof will be completed if we can es-
tablish boundedness of the trajectories . Toward this end,
we proceed as follows. As shown in Proposition 5 the desired
total energy qualifies as Lyapunov function for the unperturbed
system . Computing its time derivative for the com-
plete system we get the bounds

where the second bound has been obtained using the assumption
of bounded is a positive constant, and we recall that is
defined in (11). From the expression above it is clear that the
key step to prove boundedness of trajectories is to establish a
suitable bound for . The third right hand term of (44)
is an exponentially decaying disturbance whose effect on the
inequality above can be dominated invoking standard (Young’s
inequality) arguments. The second right hand term stems from
the quadratic term in of , more precisely from the term

. Replacing (20) we see, after some
simple calculations, that it has the form
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Fig. 2. Trajectories with the pendulum starting near the horizontal (q(0); p(0)) = (�=2� 0:2;�0:1; 0:1; 0), (full state feedback.)

If is bounded—hence the need for the additional assump-
tion—this term is (linearly) bounded by where

is an exponentially decaying term.
From the bound and the remarks made

above we can prove the existence of an integrable function
such that , from which, invoking the Comparison
Lemma [40] we immediately conclude boundedness of trajec-
tories and complete the proof.

VII. EXAMPLES

In this section we apply the preceding design methodology
to the problem of stabilizing the positions of the pendulum on a
cart, and an arbitrary position with zero roll angle and zero speed
of the vertical takeoff and landing aircraft. For other applications
we refer the reader to [1]–[3].

A. The Pendulum on a Cart

The dynamic equations of the pendulum on a cart depicted
in Fig. 1 are given by (2) with , hence satisfying
Assumption A.1, and

where denote the cart position and the pendulum angle
with the upright vertical, and are, respectively, the mass
and the length of the pendulum, is the mass of the cart and

is the gravity acceleration. The equilibrium to be stabilized is
the upward position of the pendulum with the cart placed in any

desired location, which corresponds to and an arbitrary
.
Since this system clearly does not satisfy Assump-

tion A.2. However, applying partial feedback linearization, as
done in [39], we can rewrite the system as

(45)

where is the new control input. This system is still a mechan-
ical system of the form (2) with the same potential energy , but
with and . Hence, satisfies As-
sumptions A.2, A.3 with . Notice that .

Let us denote

Then
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Fig. 3. Trajectories with the pendulum starting near the horizontal (q(0); p(0)) = (�=2� 0:2;�0:1; 0:1;0), (position feedback.)

thus verifying Assumption A.4. We will construct the matrix as
suggested in Proposition 3. For simplicity we take to be a
scalar function and compute from (20)

Unfortunately, the function cannot be taken to be a constant,
say , because this leads to

that contains a linear term in that is clearly unbounded. To
select this function we look at the stability condition of As-
sumption A.6, which imposes . We propose then

, with a free parameter that yields,
on one hand, —that satisfies Assump-
tion A.6. On the other hand, we get

(46)

with arbitrary. Furthermore, it is easy to prove
that this matrix is positive definite and bounded for all

—a domain where Assumption A.5
holds and to which we will restrict our system to operate.

Finally, we compute that clearly ver-
ifies Assumption A.7.

We have the following result.
Proposition 7: A set of energy functions of the form (7)

assignable via IDA-PBC to the (partially feedback-linearized)
pendulum on a cart system (45) is characterized by the locally

positive definite and bounded inertia matrix (46), for all
, and the potential energy function

that satisfies (8) for all constants .
Moreover, the IDA-PBC

(47)

where the matrices are given in the Appendix, ensures
asymptotic stability of the desired equilibrium with
a domain of attraction containing the set .

Proof: The expressions for the control and the poten-
tial energy function are obtained, from Proposition 5, with a
quadratic .

Taking into account Proposition 5 it only remains to prove
the claim regarding the estimate of the domain of attraction.
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For, we note that is a radially unbounded function on the set
, hence any trajectory that starts inside

this set will remain in it—eventually converging to the desired
equilibrium. This completes the proof.

Simulations were made with the normalized values
, the constant for the damping injection was fixed to

and the other parameters given by
and . We tested a set of “limiting” initial conditions
with the pendulum starting near the horizontal

and the desired position for the cart
, that is, very far away from the origin. The result for

full state feedback is shown in Fig. 2 where an excellent per-
formance is observed. We should underscore that, in contrast
with the proposed scheme, most of the existing controllers for
this problem can stabilize the upward position of the pendulum
with zero cart velocity, but the cart position cannot be arbitrarily
fixed. Also, we would like to bring to the readers attention the
shape of the control action, which is a smooth low amplitude
signal that moves the cart at the right time instants in the right
direction. Again, this should be compared with other controllers,
e.g., those stabilizing the homoclinic orbit, where the control ac-
tion is essentially bang-bang—even when the initial conditions
of the pendulum are in the upper half plane.

We also have made simulations of the proposed position

feedback controller. The result is shown in Fig. 3. As expected,
a slower performance is observed, due to the time needed
by the nonlinear speed estimator to converge. To improve
the transient performance the gain of the nonlinear speed
estimator (43) was taken as a diagonal matrix with values

.
Remark 7: There exists an obstacle for swinging up the

pendulum with the proposed technique because Assumptions
A.5 and A.6 are impossible to satisfy—with a positive definite

—outside the interval . Indeed, Assumption
A.6 requires to be negative at zero, while Assumption A.5
hampers the function to cross through zero, consequently
should always be negative. Unfortunately, this is in contradic-
tion with , that requires , because

The obstacle, that comes from the use of partial feedback lin-
earization, obviously prevails independently of the choice of the
free functions . It is interesting to compare this ex-
ample with the Inertia Wheel Pendulum, that was (almost) glob-
ally stabilized via IDA-PBC in [31], and which differs from (45)
only in the input matrix— in the latter.

Remark 8: As explained in Subsection III-B the proposed
is a particular case of all possible solutions of the kinetic

energy PDE (3), or equivalently (15). (This is true even if we
restrict to be function of only.) Some simple calculations
for the Cart on the Pendulum example show that the general
solution is given by any triplet satisfying

Obviously, all matrices of the form (20) satisfy this equation but
not vice versa.

Fig. 4. Schematic picture for the VTOL problem.

B. Strongly Coupled Vertical Takeoff and Landing Aircraft

Our second example is the vertical takeoff and landing
(VTOL) aircraft depicted in Fig. 4 whose dynamics are given
by [20], [35]

(48)

where is the roll angle, the VTOL moves in the plane,
is the gravity acceleration, are the control actions and is
a parameter that captures the effect of the “slopped” wings—and
clearly induces a coupling between the vertical and the roll dy-
namics. Control requirements for the VTOL are typically ex-
pressed in terms of asymptotic regulation from any initial condi-
tion to an arbitrary position with zero roll angle and zero speed,
that is, the asymptotic stabilization of all equilibria of the form

.
To apply the theory developed in this paper we introduce the

(globally defined) change of input [35]

where is the new control vector. This transforma-
tion yields the VTOL dynamics

(49)

where we have introduced the notation
and defined the matrix

The system is in the form (2) with
—hence, satisfying Assumption A.1–A.3 with .

Notice that , thus Assumption A.4,
with , also holds.

In Proposition 3, we fixed —according to (20). Our in-
terest with this example is to provide an alternative parametriza-
tion of the set of assignable energy functions that satisfy (18),
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still keeping a function of only. We recall that the 3 3
matrix is free, hence, (18) can be alternatively expressed as

, where

To verify the key stability Assumption A.6, and at the same
time Assumption A.5, we fix , a positive constant. Since

this restricts the third column of to have a
constant projection along . Then, define the two remaining
columns of to obtain a positive definite matrix, with deriva-
tives also living in the range space of .

The lemma below characterize all admissible 3-dimensional
vectors .12

Lemma 3: Fix a constant and define the set

and

All elements of the set are generated as

where is an arbitrary differentiable function.
Proof: Express in polar coordinates as

Using the trigonometric identity
, and the definition of we see that if

and only if

This equation has a solution for some and if and only if

(50)

Extracting from the expression above, replacing it in
and using the identity we conclude
that all functions which satisfy are generated as

where is arbitrary and is any function verifying (50).
Now, since and ker then

Im if and only if . Some simple calculations
show that this is true if and only if (50) holds with the equality
sign.

In the sequel, we pick one element of the class characterized
in the lemma above and—for the sake of simplicity—choose

12The second author thanks W. Pasillas for help with the proof of this lemma.

the function that parameterizes the set to be a constant, that is
, this yields

(51)

where, for ease of notation, we have defined

(52)

Notice that, since Assumption A.6 imposes we require
. We still have to decide the two remaining columns

of the inertia matrix, that is (using the notation )
we look for functions such that

(53)

Our first observation is that, since is not in the range space of
, we cannot take the to be constant.
Computing for the first column, we get

for some function . Similarly for the second column

for some function . Equating both expressions of
we get . To satisfy this equation we
pick

Replacing these functions into the expressions above and inte-
grating we finally get

(54)

where is an integration constant added to ensure posi-
tivity of .

Finally, we compute

that clearly verifies Assumption A.7.
We are in position to present the following proposition.
Proposition 8: A set of energy functions of the form (7) as-

signable via IDA-PBC to the VTOL system (49) is characterized
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Fig. 5. “Badly” tuned controller for VTOL; q = (x; y; �). Initials conditions (q(0); p(0)) = (�5; 0; 0:1;�0:1;�0:1;0:1) and references q = (5; 0; 0).

by the globally positive definite and bounded inertia matrix (54)
with an arbitrary positive number and verifying

and the potential energy function

(55)

with

that satisfies (8) for all .
Moreover, the IDA-PBC law

(56)

where the matrices are given in the Appendix, ensures
almost global asymptotic stability of the desired equilibrium

.13

Proof: Since we have already verified all Assumptions
A.1–A.6 of Proposition 5, it only remains to prove positivity
of the inertia matrix. For, we note that . We will prove

13That is, the domain of attraction is the whole state space minus a set of
Lebesgue measure zero, see e.g., [31].

positivity decomposing into the sum of two matrices. For,
we write and start with the matrix

It is easy to show that ensures positive
definiteness, and is consistent with the additional requirement

, imposed by the potential energy shaping. On the other
hand, the matrix

is positive semidefinite if and only if . Adding the lower
bounds on and completes the proof of positivity of the inertia
matrix.

The expression for the potential energy and the control law
are immediately obtained replacing (54) in (25) and (26) and
doing some simple calculations.

Finally, to prove the almost global claim we note that the
system lives in the set , and that the energy
function is positive definite and proper throughout this set.
Then, since , we have that all solutions are bounded.
From the previous analysis, we know that the desired equilib-
rium is asymptotically stable. Invoking the argument used for
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Fig. 6. “Well” tuned controller for VTOL; q = (x; y; �). Initials conditions (q(0); p(0)) = (�5; 0; 0:1;�0:1;�0:1;0:1) and references q = (5; 0; 0).

the proof of asymptotic stability in Proposition 5, we rule out the
existence of limit cycles. We will now show that the other equi-
libria are unstable. Indeed, the linearization of the closed-loop
system at these equilibria has eigenvalues with strictly positive
real part and at least one eigenvalue with strictly negative real
part. Associated to the latter there is a stable manifold, and tra-
jectories starting in this manifold will converge to these equi-
libria. However, it is well-known that an -dimensional invariant
manifold of an -dimensional system has Lebesgue measure
zero if . Consequently, the set of initial conditions that
converges to the “bad” equilibrium has zero measure.

Simulations were carried out with a twofold objective, first to
show how the energy shaping controller proposed in this paper
ensures a satisfactory response for strong coupling coefficients

, and second to illustrate the tuning flexibility provided by
the design parameters. All simulations are made with a strong
value of coupling, i.e., . The damping injection matrix was

fixed to .

The normal conditions of maneuvering for the VTOL air-
craft is to keep an accurate lateral motion near the ground. This
problem has been normally solved in two steps (see for instance
[35]): Decoupling the altitude output from the lateral motion and
rolling moment by means of a prefeedback control law and then,
designing a control law for the new decoupled system; this pro-
cedure renders satisfactory results for small enough . With the
energy shaping controller, independently of the value of , it is
possible to “virtually decouple” the outputs using the weighting
matrix in the potential energy (25). To illustrate this point

two simulations were made, first with a “bad” potential energy
taking diagonal and the weights equal to 1 and 0.1. This sim-
ulation for a lateral motion is shown in Fig. 5. The same simula-
tion was made for a “good” potential energy taking the again
diagonal but with the weights now and 1, with the response
shown in Fig. 6—notice the different scales in the graphs. The
posture of the VTOL aircraft along the trajectory for both cases
is shown (at the same scale) in Fig. 7. It can be seen that, for the
first case, the altitude makes very large excursions to
drive the VTOL to rest, while in the second one a simple slow
amplitude rocking motion achieves the objective.

The third simulation, depicted in Fig. 8, shows the behavior
of the controlled system in an aggressive maneuver, from a limit
position, upside down, for the roll angle and a great step on
the lateral motion and altitude . The high performance
of the controlled system is clearly seen from the figure. The
posture of the VTOL aircraft along the trajectory is shown in
Fig. 9.

We also have made the third simulation using only position

measurements. The result is shown in Fig. 10. A slower perfor-
mance is observed again, as in the pendulum example. A matrix
gain, , was used for the nonlinear
speed estimator.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper, we have identified a class of underactuated
mechanical systems for which the IDA-PBC design method-
ology gives a complete constructive solution to the stabiliza-
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Fig. 7. Posture of the VTOL along the trajectory; q = (x; y; �). (a) “Badly” tuned controller. (b) “Well” tuned controller.

Fig. 8. Upside down simulation; q = (x; y; �). Initials conditions (q(0); p(0)) = (5;�5; �; 0:1;�0:1;0:1) and references q = (�5;5; 0).

tion problem—without the need to solve any PDE. The main
assumptions made on the system are that it has underactuation
degree one and that, roughly speaking, the dynamics that are not
directly affected by the control, e.g., “in ker ,” can be modi-
fied through the action of one actuated coordinate . The un-
deractuation degree Assumption A.1 is needed to ensure there
are enough degrees of freedom in the free IDA-PBC parameter

to solve the kinetic energy PDE as an algebraic equation.

Assumptions A.2 and A.3 ensure that we can construct the so-
lution choosing . Assumptions A.4 and A.5,
needed to solve the potential energy PDE, specify the role of .
Finally, Assumption A.6 measures our ability to affect the po-
tential energy function through the modification of .

We have also presented a position feedback implementa-
tion—with provable stability properties—for a subclass of
the class considered in the paper. (In [2] a characterization
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Fig. 9. Upside down simulation. Posture of the VTOL along the trajectory for the simulation of Fig. 8.

of all mechanical systems that are feedback-equivalent to this
subclass is given in terms of solvability of a set of PDEs with
algebraic constraints.) This class contains several practically
interesting benchmark examples, some of which are studied in
the paper. In particular, we present an almost globally stabi-
lizing controller for the VTOL aircraft that ensures asymptotic
regulation from any initial condition to an arbitrary position
with zero roll angle and zero speed; and a controller for the
pendulum on the cart that can swing-up the pendulum from any
position in the (open) upper half plane and stop the cart at any
desired location.

Besides ensuring asymptotic stability the IDA-PBC method-
ology provides the designer with some degrees of freedom to
improve transient performance and robustness. These degrees
of freedom are given in terms of parameterized expressions for
the assignable energy functions. More precisely, the total en-
ergy function can be effectively shaped via the selection of the
scaling matrix , the constant matrix in the inertia matrix
(20) and the choice of the function in the potential energy
(25). An additional tuning parameter is the damping injection
gain that may be any positive definite (possibly state-de-
pendent) matrix.

For simplicity we have chosen in our simulations a quadratic
function for the potential energy, but motivated by other con-
siderations, e.g., input constraints or rate saturations, we could
have also taken other (logarithmic or saturated) functions. An
advantage of a quadratic function is that the control law takes a
very nice expression (28), which consists of the sum of three
types of terms that are modulated by functions of the distin-
guished coordinate

— (“proportional-like”) linear terms on the additional co-
ordinate error that contribute to the potential
energy shaping;14;

— (“derivative-like”) linear terms in due to the damping
injection that enforce asymptotic stability;

— (“gyroscopic-like”) quadratic terms in that come
from the interconnection matrix . These terms,
which serve to propagate the damping through the
well-known mechanism of feedback interconnection
of passive and strictly passive systems [29], are es-
sential for the solution of the present problem. See
Remark 3.

Current research is under way to extend the present work in
the following directions.

• In [24], we worked out two examples, the Acrobot and
the Furuta’s Pendulum, that do not satisfy Assump-
tions A.2 nor A.4. The term, intro-
duces a quadratic term in in the kinetic energy
PDE, but it can still be solved with a suitable choice of

. Similarly, even though Assumption A.4 does not
hold, we can solve the potential energy PDE with a
machinery specifically tailored for these examples. De-
veloping a general theory for a well-identified class of
systems containing these examples is currently under
investigation.

• In the proof of asymptotic stability in Proposition A.7,
we have established that in the residual set the char-

14We have shown with examples the importance of a suitable selection of the
relative weights (the matrix P ) of the configuration coordinates.
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Fig. 10. Upside down simulation; q = (x; y; �). Initials conditions (q(0); p(0)) = (5;�5; �; 0:1;�0:1;0:1) and references q = (�5;5; 0), (position
feedback.)

acteristic of the potential energy PDE is constant. This
seems to be a geometric property of the PDEs that
needs to be further clarified. In particular, it would be
desirable to use it to simplify the proof and remove
the, rather awkward, Assumption A.7. (We point out
that this property of holds for other classes of
mechanical systems—for instance, the Ball-and-Beam
and the Acrobot systems which do not satisfy Assump-
tions A.2 nor A.4.)

• To relax Assumptions A.3 and A.4 we need to explore
the complete set of solutions for defined by (3), or
equivalently (15). See Remark 8. In particular, it seems
necessary to make function of all coordinates.

• Working out a general theory without Assumption A.1
seems a difficult task. On one hand, we cannot trans-
form the kinetic energy PDE into an algebraic equa-
tion. On the other hand, as indicated in [23], some geo-
metric obstacles that hamper our ability to shape
may appear in this case.

• Comparison of the class studied here with the one iden-
tified, via elegant geometric conditions, in [12]. See
also [11]. Also, it would be interesting to explore the
connections with the recent work [19], where the au-
thors consider underactuation degree one mechanical
systems with a cyclic coordinate.

• The examples presented in the paper are transformed
into Spong’s Normal Form via partial feedback lin-

earization. It has been argued in this paper that this op-
eration is fragile so it would be interesting to avoid it.15

In [28] it is shown that this is indeed possible, as the
PDEs are invariant to partial feedback linearization.

• The proposed controllers should be tested experimen-
tally and confronted with other existing schemes. The
outcome of this research will be reported elsewhere.

APPENDIX

In this appendix, the matrices , for the
controllers of both examples, are given explicitly. The elements
of the vectors are denoted .

PENDULUM ON A CART

The matrices , in the controller (47) of Propo-
sition 7 are

15This extension is also of interest if a true position feedback controller on the
actual system is to be realized. Toward this end, the result of Section VI should
be extended to a broader class of systems.
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Fig. 11. Matrices A ; i = 1; . . . ; 5 for the VTOL controller given by (56).

where

STRONGLY COUPLED VTOL AIRCRAFT

The matrices for the controller (56) of
Proposition 8 are given in Fig. 11, where
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