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There is growing realization that on-line model maintenance is the key to realizing long term benefits of a
predictive control scheme. In this work, a novel intelligent nonlinear state estimation strategy is pro-
posed, which keeps diagnosing the root cause(s) of the plant model mismatch by isolating the subset
of active faults (abrupt changes in parameters/disturbances, biases in sensors/actuators, actuator/sensor
failures) and auto-corrects the model on-line so as to accommodate the isolated faults/failures. To carry
out the task of fault diagnosis in multivariate nonlinear time varying systems, we propose a nonlinear
version of the generalized likelihood ratio (GLR) based fault diagnosis and identification (FDI) scheme
(NL-GLR). An active fault tolerant NMPC (FTNMPC) scheme is developed that makes use of the fault/fail-
ure location and magnitude estimates generated by NL-GLR to correct the state estimator and prediction
model used in NMPC formulation. This facilitates application of the fault tolerant scheme to nonlinear
and time varying processes including batch and semi-batch processes. The advantages of the proposed
intelligent state estimation and FTNMPC schemes are demonstrated by conducting simulation studies
on a benchmark CSTR system, which exhibits input multiplicity and change in the sign of steady state
gain, and a fed batch bioreactor, which exhibits strongly nonlinear dynamics. By simulating a regulatory
control problem associated with an unstable nonlinear system given by Chen and Allgower [H. Chen,
F. Allgower, A quasi infinite horizon nonlinear model predictive control scheme with guaranteed stability,
Automatica 34(10) (1998) 1205–1217], we also demonstrate that the proposed intelligent state estima-
tion strategy can be used to maintain asymptotic closed loop stability in the face of abrupt changes in
model parameters. Analysis of the simulation results reveals that the proposed approach provides a com-
prehensive method for treating both faults (biases/drifts in sensors/actuators/model parameters) and
failures (sensor/ actuator failures) under the unified framework of fault tolerant nonlinear predictive
control.
1. Introduction

The need to operate continuous processes over wide operating
ranges and semi-batch/batch processes efficiently has motivated
the development of nonlinear MPC (NMPC) techniques over last
two decades. These techniques employ nonlinear models for pre-
diction. The prediction model is typically developed once in the
beginning of implementation of an NMPC scheme. However, as
time progresses, slow drifts in unmeasured disturbances and
changes in process parameters can lead to significant mismatch
in plant and model behavior. Also, NMPC schemes are typically
developed under the assumption that sensors and actuators are
free from faults. However, soft faults, such as biases in sensors or
actuators, are frequently encountered in the process industry. In
addition to this, some sensor(s) and/or actuator(s) may fail during
operation, which results in loss of degrees of freedom for control.
Occurrences of such parametric changes, soft faults and failures
progressively result in severe model-plant mismatch. This can lead
to a significant degradation in the closed loop performance of the
NMPC scheme and may also lead to instability. Thus, to arrest
the degradation in controller performance, it is extremely impor-
tant to isolate the root causes of the plant model mismatch and,
if possible, compensate for them on-line.

The conventional approach to deal with the model-plant mis-
match in the NMPC formulations is through the introduction of
additional artificial states in the state observer [2–4]. The main lim-
itation of this approach is that the number of extra states intro-
duced cannot exceed the number of measurements. This implies
that it is necessary to have a priori knowledge of which subset of
faults are most likely to occur or which parameters are most likely
to drift. In such a formulation where the state vector is permanently
augmented with subset of parameters to be estimated, the state
estimates can become biased when unanticipated abrupt
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changes/faults occur. Moreover, the permanent state augmentation
approach cannot systematically deal with the difficulties arising out
of sensor biases or actuator/sensor failures. The difficulties encoun-
tered while selecting such a subset in design of extended Kalman
filter (EKF) for a complex large dimensional system (Tennessee
Eastman problem) have been highlighted by Ricker and Lee [2].

Attempts to develop fault-tolerant MPC schemes have mainly
focused on dealing with sensor or actuator failures [5–7]. Yu et
al. [6] have proposed to develop a failure tolerant cascaded Kalman
filter with online tuning parameters. This approach involves the
design of main and auxiliary Kalman filter (KF) based on reliable
set of measurements and complete set of measurements, respec-
tively. The auxiliary KF is used to remove the bias from the esti-
mates given by the main KF. The steady state gain of auxiliary KF
is modified online based on the failed measurements. Though this
approach achieves fault tolerance while maintaining the integrity
in the estimate of the lost output, the fault detection and isolation
aspect does not feature in the formulation. Recently, Prakash et al.
[8] have proposed an active fault tolerant linear MPC (FTMPC)
scheme, which can systematically deal with soft faults in a unified
framework. The FTMPC scheme is developed by integrating gener-
alized likelihood ratio (GLR) method, a model based fault detection
and identification (FDI) scheme, with the state space formulation
of MPC based on Kalman filter. The GLR method performs fault
identification using innovation sequence generated by the Kalman
filter over a moving window of data in the past and this facilitates
very close integration of the FDI and MPC schemes. The main lim-
itation of these approaches arises from the use of linear perturba-
tion model for performing control and diagnosis tasks. The use of
linear models not only restricts its applicability to a narrow oper-
ating range but also limits the diagnostic abilities of fault detection
and identification (FDI) components to only linear additive type
faults. As a consequence, many faults that have a nonlinear effect
on the system dynamics, such as abrupt changes in model param-
eters or unmeasured disturbances, have to be approximated as lin-
ear additive faults. Moreover, the FTMPC scheme does not deal
with failures of sensors or actuators.

Recently, Mhaskar et al. [9,10] have presented an approach that
deals with control system or actuator failure in nonlinear processes
subject to constraints. They have presented an approach for design
of robust hybrid predictive candidate controllers, which guaran-
tees stability from an explicitly characterized set of initial condi-
tions, subject to uncertainty and constraints. Reconfiguration or
controller switching is done to activate or deactivate the constitu-
ent control configuration in order to achieve fault tolerance. The
Fault tolerant controller uses the knowledge of the stability regions
of the back up control configurations to guide the state trajectory
within the stability regions of the back up control configurations
to enhance the fault tolerance capabilities. Their approach, how-
ever, requires nonlinear system under consideration to have input
affine structure. In another article, Mhaskar et al. [11] have pre-
sented an integrated fault detection and fault-tolerant control
structure, for SISO nonlinear systems with input constraints sub-
ject to control failures. A bounded Lyapunov based controller has
been developed, which depends on construction of control Lyapu-
nov function. Upon failure of the primary controller, the faulty con-
figuration is shut down and a well functioning fall back
configuration is switched on. It may be noted that various control
structures are developed by exploiting specific structural features
of a nonlinear system, as no standard method is available for con-
struction of these control Lyapunov functions. Also, these ap-
proaches, as proposed, do not address difficulties arising from
abrupt changes in model parameters, mean shift in unmeasured
disturbances, sensor/actuator biases and failed sensors.

Examination of various fault tolerant MPC/NMPC formulations
proposed in literature reveals that the design of state observer is
the key to integration of fault tolerance with predictive control. If
it is desired to achieve tolerance with respect to a broad spectrum
of faults (abrupt changes in unmeasured disturbance, parameter
drifts, sensor/actuator biases) and sensor/actuator failures in a typ-
ical situation where the number of degrees of freedom available for
observer design (synonymous with the number of measurements
available for observer construction) is limited (i.e. far less than
the number faults and failures to be dealt), then it becomes imper-
ative to introduce some degree of intelligence in the state estima-
tion to overcome these limitations [12]. In the present work, an
intelligent nonlinear state estimation strategy is proposed, which
keeps diagnosing the root cause(s) of the plant model mismatch
by isolating the subset of active faults and auto-corrects the model
on-line so as to accommodate the isolated faults. To carry out the
task of fault diagnosis in multivariate nonlinear time varying sys-
tems, we propose a nonlinear version of the generalized likelihood
ratio (GLR) based FDI scheme, which is referred to as nonlinear GLR
(NL-GLR) in the rest of the text. The NL-GLR scheme, along with the
fault location, also generates an estimate of the fault magnitude,
which is used to correct the prediction model used in the proposed
fault tolerant NMPC (FTNMPC) formulation. As the proposed NL-
GLR scheme is computationally demanding, it is further simplified
for online implementation (SNL-GLR). This simplification is based
on linearization of nonlinear process model around a nominal tra-
jectory. The significant contributions of the work described in this
paper are

� Development of an active fault tolerant control scheme for non-
linear processes by suitably integrating a nonlinear version of
the GLR method for FDI with a nonlinear model based controller.

� Development of fault/failure isolation strategy when multiple
faults and failures occur simultaneously.

� Development of a comprehensive method for treating both
faults (biases/drifts in sensors/actuators/model parameters)
and failures (sensor/actuator failures) in fault diagnosis and
accommodation.

The above contributions allow application of the fault tolerant
scheme to nonlinear and time varying processes including batch
and semi-batch processes. The proposed fault tolerant scheme also
overcomes the limitation on the number of extra states that can be
added to the state space model in NMPC for offset removal and al-
lows bias compensation for more variables than the number of
measured outputs. The advantages of the proposed state estima-
tion and control scheme are demonstrated by conducting simula-
tion studies on a benchmark CSTR system, which exhibits input
multiplicity and change in the sign of steady state gain, and a fed
batch bioreactor, which exhibits strongly nonlinear dynamics. By
simulating regulatory control problem associated with a unstable
nonlinear system given by Chen and Allgower [1], we also demon-
strate that the proposed intelligent state estimation strategy can be
used to recover closed loop stability in the face of abrupt changes
in model parameters.

The rest of this article is organized as follows. To begin with, we
develop the nonlinear version of GLR method. A fault tolerant
NMPC formulation is presented in the subsequent section. We then
proceed to present the results of simulation case studies. The main
conclusions reached based on the analysis of these results are pre-
sented in the last section.
2. Fault diagnosis

In this section we develop an FDI method based on a nonlinear
version of GLR scheme for diagnosing faults in nonlinear dynamic
systems. To begin with, the method is described as applied once
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when a single fault is detected for the first time. Modifications nec-
essary for on-line implementation of the FDI scheme when multi-
ple faults occur sequentially are described later.

2.1. Model for normal behavior

Consider a continuous time nonlinear stochastic system de-
scribed by the following set of equations:

xðkþ 1Þ ¼ xðkÞ þ
Z ðkþ1ÞT

kT
F½xðsÞ;uðkÞ;p;dðkÞ�ds ð1Þ

dðkÞ ¼ �dþwðkÞ ð2Þ
yðkÞ ¼ H½xðkÞ� þ vðkÞ ð3Þ

where x 2 Rn; y 2 Rr and u 2 Rm represent the state variables, mea-
sured outputs and manipulated inputs, respectively, and T repre-
sents sampling interval. The variables p 2 Rp and d 2 Rd represent
the vector of parameters and unmeasured disturbance variables,
respectively, which are likely to undergo deterministic changes. In
addition, the unmeasured disturbances are also assumed to under-
go random fluctuations. For mathematical tractability, these are
simulated as piecewise constant between each sampling period
and changing randomly from their nominal value at each sampling
instant. Here, vðkÞ and wðkÞ are zero mean Gaussian white noise se-
quences with known covariance matrices. When process is not fully
understood or when it is not possible to develop mechanistic mod-
els of each component of a system, it is often possible to develop
grey box model by combining equations arising from first principles
with some black box model components.

Eqs. (1) and (3) represent the normal or fault free behavior of
the process, which can be used to develop a state estimator under
normal operating conditions. In the present work, the state estima-
tion is carried out using the standard linearized version of EKF [13]
as follows:

x̂ðkþ 1jkÞ ¼ x̂ðkjkÞ þ
Z ðkþ1ÞT

kT
F½xðsÞ;mðkÞ; �p; �d�ds ð4Þ

x̂ðkjkÞ ¼ x̂ðkjk� 1Þ þ LðkÞcðkÞ ð5Þ

It may be noted that we distinguish between the controller output,
mðkÞ, and manipulated input, uðkÞ, entering the process. Under
ideal and fault-free conditions, the controller output equals the
manipulated input. The innovation sequence under normal operat-
ing condition is computed as

cðkÞ ¼ yðkÞ �H½x̂ðkjk� 1Þ�

The state and innovation covariance estimates are updated as
follows:

Pðkjk� 1Þ ¼ UðkÞPðk� 1jk� 1ÞUðkÞT þ CdðkÞQCdðkÞT ð6Þ
VðkÞ ¼ CðkÞPðkjk� 1ÞCðkÞT þ R ð7Þ
LðkÞ ¼ Pðkjk� 1ÞCðkÞT½VðkÞ��1 ð8Þ
PðkjkÞ ¼ ½I� LðkÞCðkÞ�Pðkjk� 1Þ ð9Þ

where

UðkÞ ¼ exp½AðkÞT�; AðkÞ ¼ oF
ox

� �
ðx̂ðkjk�1Þ;mðk�1Þ;�p;�dÞ

CðkÞ ¼ oHðxÞ
ox

� �
ðx̂ðkjk�1ÞÞ

;

BdðkÞ ¼
oF
od

� �
ðx̂ðkjk�1Þ;mðk�1Þ;�p;�dÞ

; CdðkÞ ¼
Z T

0
exp½AðkÞs�BdðkÞds

Here, �p and �d are assumed to be the nominal values of parameters
and the unmeasured disturbances, respectively. In remainder of the
text, we refer to this EKF as normal EKF.
2.2. Fault detection

When process starts behaving abnormally, the first task is to de-
tect the deviations from the normal operating conditions. To sim-
plify the task of fault detection, it is further assumed that, under
normal operating conditions, the innovation sequence fcðkÞg is a
zero mean Gaussian white noise sequence with covariance VðkÞ.
The whiteness of innovation sequence generated by the normal
EKF is taken as an indicator of absence of plant-model mismatch.
A significant and sustained departure from this behavior is as-
sumed to result from model plant mismatch. To detect such depar-
tures systematically, a simple statistical test namely fault detection
test (FDT) as given in Prakash et al. [14] is modified based on the
innovations obtained from the normal EKF. This test is applied at
each time instant to estimate the time of occurrence of a fault.
The test statistic for this purpose is given as follows:

�ðkÞ ¼ cðkÞTVðkÞ�1
cðkÞ ð10Þ

Since it is assumed that innovation sequence is a zero mean Gauss-
ian white noise process, the above test statistic follows a central
chi-square distribution [15,16] with r degrees of freedom, which
can be used to fix the threshold. Here r is the number of measure-
ments. If FDT is rejected, the occurrence of a fault is further con-
firmed by examining innovation sequence in the time interval
½t; t þ N�. The test statistic given by Eq. (11) is used for this purpose,
which follows a central chi-square distribution with rðN þ 1Þ de-
grees of freedom:

�ðt;NÞ ¼
XtþN

k¼t

cðkÞTVðkÞ�1
cðkÞ ð11Þ

If this test statistic exceeds the threshold, the occurrence of the fault
or failure is confirmed. Window size for FDI computations is the
tuning parameter. A large size of window reduces false alarms
and also improves the magnitude estimates of the fault. However
a very high value of N may result in operating the process in a de-
graded mode for a long time, which may have a deteriorating effect
on the performance.

2.3. Fault and failure models

Once the occurrence of a fault is confirmed, the next step is to
isolate the fault and estimate its magnitude. To identify the fault(s)
that might have occurred, it is necessary to develop a model for
each hypothesized fault or failure that describes its effect on the
evolution of the process variables. A fault can either develop as
an abrupt (step-like) change or as a slow drift from its nominal va-
lue. For example, an abrupt change in jth parameter can be mod-
elled as

ppj
ðkÞ ¼ �pþ bpj

epj
rðk� tÞ ð12Þ

Here, bpj
represents change in the parameter value from its nominal

value, epj
represents parameter fault vector with jth element equal

to unity and all other elements equal to zero and rðk� tÞ represents
a unit step function defined as

rðk� tÞ ¼ 0 if k < t; rðk� tÞ ¼ 1 if k P t

Similarly, if bias occurs in jth sensor at instant t, then, subsequent to
the occurrence of bias in the sensor, the behavior of measured out-
puts is modeled as follows:

yyj
ðkÞ ¼ H½xðkÞ� þ byj

eyj
rðk� tÞ þ vðkÞ ð13Þ

On the other hand, if jth unmeasured disturbance changes as a slow
drift, then the corresponding fault model
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ddj
ðkÞ ¼ �dþwðkÞ þ bdj

edj
1ðk� tÞ

1ðk� tÞ ¼ 0 if k < t; 1ðk� tÞ ¼ t if k P t
ð14Þ

Here, bdj
represents the magnitude of the unmeasured disturbance

variable change and edj
represents the corresponding fault location

vector.
When an actuator or a sensor fails abruptly, then the models for

failure modes have to be developed in a different manner [17]. For
example, if jth actuator is stuck abruptly at instant t, then plant in-
put uðkÞ subsequent to the failure (denoted as uuj

ðkÞ) can be repre-
sented as

uuj
ðkÞ ¼mðkÞ þ ½buj

� eT
uj

mðkÞ�euj
rðk� tÞ ð15Þ

where buj
represents constant value at which the jth actuator is

stuck. Model given in Eq. (15), indicates that though the controller
manipulates mðkÞ in the usual manner, the signal going to the plant
from an actuator becomes constant due to some fault in the
actuator.

When jth sensor fails abruptly at instant t, it is often observed
that we get a constant reading close to the value measured by dig-
ital to analog converter before the failure occurs. Thus, if jth sensor
fails at instant t, we propose to model the behavior of the measure-
ment vector subsequent to the failure as follows:

yyj
ðkÞ ¼ H½xðkÞ� þ ½byj

� eT
yj

H½xðkÞ��eyj
rðk� tÞ þ vðkÞ ð16Þ

where byj
represents constant value at which the jth sensor reading

is stuck. According to Eq. (16), the measurement coming from a par-
ticular sensor in a plant gives a signal with constant mean when a
sensor fails, though the true plant output is changing.

2.4. Review of linear GLR method

In this work, a new approach has been proposed for fault iden-
tification based on EKF. As motivation for developing the new ap-
proach is derived from the version of linear GLR, method proposed
by Narasimhan and Mah [18] and Willsky and Jones [19], a brief re-
view of their method is presented here. The linear GLR method
makes use of the innovation sequences generated by the normal
Kalman filter and Kalman filters obtained under different fault
assumptions. Let fcðtÞ . . . cðt þ NÞg represent the sample of innova-
tion vectors generated by the normal Kalman filter over a window
for time ½t; t þ N� after a fault is detected. This innovation sequence
obtained from the normal Kalman Filter is viewed as a Gaussian
random process with unknown means lðk; tÞ and covariance
matrices Vðk; tÞ. The hypothesis H0 for absence of a fault in the ob-
served data can be written as

H0 : lðk; tÞ ¼ 0

which is referred to as null hypothesis and the alternate hypothesis
H1 for the presence of a fault in the observed data can be written as

H1 : lðk; tÞ ¼ bfj
Gfj
ðk; tÞefj

þ gfj
ðk; tÞ

k 2 ½t; t þ N� and f 2 p;d; y;u

where bfj refers to magnitude of a fault fj;Gfðk; tÞ and gfj
ðk; tÞ repre-

sent fault signature matrix and fault signature vector, respectively,
which describe the effect of fault fj on the innovations. Fault identi-
fication (fault location and magnitude estimation) is carried out by
maximizing the log-likelihood function

T ¼ sup
bfj
;fj

Tfj
ð17Þ

Tfj
¼
XtþN

k¼t

cTðkÞVðkÞ�1
cðkÞ � inf

bfj

XtþN

k¼t

cT
fj
ðkÞVðkÞ�1

cfj
ðkÞ ð18Þ
where cfj
ðkÞ ¼ ½cðkÞ � bfj Gfj ðk; tÞefj � gfj

ðk; tÞ� represents the innova-
tion sequence generated by the fault mode Kalman filter developed
under the assumption that fault fj has occurred. Thus, the fault iso-
lation can be viewed as finding the observer that best explains data
in window ½t; t þ N�. It may be noted that the first term in Eq. (18) is
same for all hypothesized faults. Thus, once a fault is detected, then
the fault type together with its magnitude (i.e. bfj and fj) is deter-
mined by solving the following set of optimization problems:

inf
bfj
;fj

XtþN

k¼t

cT
fj
ðkÞVðkÞ�1

cfj
ðkÞ ð19Þ
2.5. Nonlinear GLR method

In the GLR method, linearity of the process model/observers and
additive nature of faults can be exploited to develop recursive rela-
tionships between the innovation sequences generated by the nor-
mal Kalman filter and fault mode Kalman filters developed under
different fault assumptions (ref. [14] for details). However, for a
general nonlinear system governed by Eqs. (1) and (3), most of
the faults affect system dynamics in a nonlinear manner and sim-
ilar recurrence relationships cannot be derived. Thus, to develop a
nonlinear analog of the GLR method, we formulate a separate EKF
for each hypothesized fault model over the time window ½t; t þ N�,
with the assumption that a fault has occurred at time instant t. We
then pose the problem of fault isolation as ‘‘finding the fault mode
observer that best explains the measurement sequence
fyðtÞ . . . yðt þ NÞg collected over a window for time ½t; t þ N�”.

To understand the proposed FDI method, consider an observer
developed under the assumption that an actuator has failed.
Assuming that actuator j has failed at instant t, the process behav-
ior over window ½t; t þ N� can be described as follows:

xuj
ðiþ 1Þ ¼ xuj

ðiÞ þ
Z ðiþ1ÞT

iT
F½xuj

ðsÞ;uuj
ðiÞ;p;d�ds ð20Þ

yuj
ðiÞ ¼ H½xuj

ðiÞ� þ vðiÞ ð21Þ

where uuj
is given by Eq. (15). Assuming that a fault has occurred at

t, the corresponding fault mode observer can be formulated as
follows:

x̂uj
ðiji� 1Þ ¼ x̂uj

ði� 1ji� 1Þ þ
Z ðiÞT

ði�1ÞT
F½xuj

ðsÞ;muj
ði� 1Þ; �p; �d�ds

ð22Þ
muj
ðiÞ ¼mðiÞ þ ½buj

� eT
uj

mðiÞ�euj
ð23Þ

x̂uj
ðijiÞ ¼ x̂uj

ðiji� 1Þ þ Luj
ðiÞcuj

ðiÞ ð24Þ
cuj
ðiÞ ¼ yðiÞ �H½x̂uj

ðiji� 1Þ� ð25Þ
x̂uj
ðtjtÞ ¼ x̂ðtjtÞ ð26Þ

where i 2 ½t; t þ N� and Luj
ðiÞ represents the Kalman Gain matrices

for this fault mode observer computed using equations of the form
(6)–(9). For each hypothesized fault, a separate fault mode observer
is developed in a similar manner over window ½t; t þ N�.

The next step is to generate estimates of the parameters of the
fault model for each hypothesized fault. Taking motivation from
linear GLR method, the fault magnitude estimation problem is for-
mulated as a nonlinear optimization problem as follows:

min
bfj

ðJfj
Þ ¼

XtþN

i¼t

cT
fj
ðiÞVfj

ðiÞ�1
cfj
ðiÞ ð27Þ

where cfj ðiÞ and Vfj ðiÞ are the innovations and the innovations covari-
ance matrices, respectively, computed using the fault mode observer
corresponding to fault fj. The fault mode observer that best explains
the measurement sequence fyðtÞ . . . yðt þ NÞg is one for which the va-
lue of ðJfj

Þ is minimum. Thus, the fault fj that corresponds to
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min
fj2ðp;d;y;uÞ

½ðJfj
Þ� ð28Þ

is isolated as the fault that has occurred at time t and its corre-
sponding magnitude estimate b̂fj is taken as fault magnitude. This
proposed approach for fault identification, which is motivated by
linear GLR method, is referred to as Nonlinear GLR (NL-GLR) method
in the rest of the text.

2.6. Simplification of NL-GLR method

The NL-GLR method proposed above involves solving multiple
nonlinear optimization problems, which are subjected to nonlinear
ODE constraints. Such NLPs are notoriously difficult to solve and
computationally demanding from the viewpoint of on-line imple-
mentation. To simplify the task of on-line fault isolation, we pro-
pose a simplified version of the proposed NL-GLR method. This
simplification is based on linearization of the nonlinear process
model along a nominal trajectory defined as follows:

f½x̂ðijiÞ;mði� 1Þ; �d; �p� : i 2 ½t � 1; t þ N � 1�g

which is generated using the Normal EKF under the assumption that
no fault has occurred over window ½t; t þ N�. Now, for small magni-
tude faults, the system dynamics under faulty conditions
fxfj ðiÞ : i 2 ½t; t þ N�g can be viewed as deviation from the nominal
trajectory generated by Normal EKF. Under the hypothesis of occur-
rence of fault fj, let the deviation in the state estimates from the
nominal trajectory be represented as

dxfj
ðiÞ ¼ xfj

ðiÞ � x̂ðijiÞ ð29Þ

Then, using the Taylor series expansion in the neighborhood of the
nominal trajectory and neglecting higher order terms, a time vary-
ing linear perturbation model in the neighborhood of the nominal
trajectory can be obtained as follows:

dxfj
ðiþ 1Þ ¼ ,ðiÞ þUðiÞdxfj ðiÞ þ CuðiÞdmðiÞ þ CdðiÞdd

þ CpðiÞdpþ CdðiÞwðiÞ ð30Þ
dyfj
ðiÞ ¼ CðiÞdxfj

ðiÞ þ vðiÞ ð31Þ
dmðiÞ ¼mðiÞ �mði� 1Þ ð32Þ
yfj
ðiÞ ¼ CðiÞx̂ðijiÞ þ dyfj

ðiÞ ð33Þ
i 2 ½t � 1; t þ N � 1�

where dd and dp represent vectors of abrupt changes in unmea-
sured disturbances and model parameters from their nominal val-
ues, respectively. The time varying vector ,ðiÞ and matrices
UðiÞ;CuðiÞ;CdðiÞ;CpðiÞ;CðiÞ appearing in the above set of equations
are computed by linearizing the normal process model along the
nominal trajectory as follows:

,ðiÞ ¼
Z T

0
expðAðiÞqÞF½x̂ðijiÞ;mði� 1Þ; �p; �d�dq ð34Þ

UðiÞ ¼ exp½AðiÞT�; AðiÞ ¼ oF
ox

� �
ð�Þ

; CðiÞ ¼ oH
ox

� �
ð�Þ

ð35Þ

CuðiÞ ¼
Z T

0
expðAðiÞqÞBuðiÞdq; BuðiÞ ¼

oF
om

� �
ð�Þ

ð36Þ

CpðiÞ ¼
Z T

0
expðAðiÞqÞBpðiÞdq; BpðiÞ ¼

oF
op

� �
ð�Þ

ð37Þ

CdðiÞ ¼
Z T

0
expðAðiÞqÞBdðiÞdq; BdðiÞ ¼

oF
od

� �
ð�Þ

ð38Þ

ð�Þ � ðx̂ðijiÞ;mði� 1Þ; �p; �dÞ ð39Þ
Based on the above perturbation model a separate linearized obser-
ver is formulated over a time window ½t; t þ N� for each hypothe-
sized fault. For example, consider a case where jth actuator has
failed. Let buj

denote the magnitude at which the jth input is stuck.
Assuming that the fault has occurred at t, the linearized observer
can be formulated as follows:

dx̂uj
ðiji� 1Þ ¼ ,ði� 1Þ þUði� 1Þdx̂uj

ði� 1ji� 1Þ ð40Þ
þ Cuði� 1Þdmuj

ði� 1Þ
ĉuj
ðiÞ ¼ dyðiÞ � CðiÞdx̂uj

ðiji� 1Þ ð41Þ
dx̂uj
ðijiÞ ¼ dx̂uj

ðiji� 1Þ þ LðiÞĉuj
ðiÞ ð42Þ

dmuj
ðiÞ ¼muj

ðiÞ �mði� 1Þ ð43Þ
¼ dmðiÞ þ ½buj

� eT
uj

mðiÞ�euj
ð44Þ

dyðiÞ ¼ yðiÞ � CðiÞx̂ðijiÞ ð45Þ

for i 2 ½t; t þ N� starting from the initial condition
dx̂uj
ðt � 1 j t � 1Þ ¼ �0. It may be noted that the Kalman gain matri-

ces fLðiÞ : i 2 ½t; t þ N�g obtained from the normal EKF are used for
state correction. Also, the time varying matrices UðiÞ;CuðiÞ, and
CðiÞ have to be computed only once by this approach, which signif-
icantly reduces on-line computational burden. The fault magnitude
for each hypothesized fault is estimated from the following optimi-
zation problem:

minbfj
ðJfj
Þ ¼

XtþN

i¼t

ĉT
fj
ðiÞ½VðiÞ��1

ĉfj
ðiÞ ð46Þ

f 2 y; p;d; u ð47Þ

where VðiÞ is the covariance matrix for the innovations from the
normal EKF and cfj ðiÞ is the innovation sequence from the linearized
observer under fault hypothesis fj. The fault isolation can now be
carried out by finding fault fj that corresponds to minimum value
of Jfj

.
Once a fault fj is isolated, a refined estimate of the fault magni-

tude is generated by formulating a nonlinear optimization problem
(27) as described in the previous sub-section. This simplification of
NL-GLR, referred to as SNL-GLR in the rest of the text, reduces the
on-line computational burden significantly. The nonlinear optimi-
zation is carried out only once for refinement of fault magnitude
estimate for the fault that has been isolated.

2.7. Multiple simultaneous faults

In the previous section, the proposed FDI method has been de-
scribed for the case when a single (root cause) fault occurs. If mul-
tiple (root cause) faults occur simultaneously (i.e. at the same time
instant), the above formulation can be extended to isolate and esti-
mate magnitudes of multiple simultaneous faults as follows. In this
case, we propose to enumerate all possible combinations of multi-
ple faults that can occur simultaneously and develop fault mode
observers for each hypothesized combination. For example if
simultaneous faults are to be hypothesized in jth sensor and lth
parameter, then the observer for this combination of faults can
be formulated as follows:

x̂ðplyjÞðiji� 1Þ ¼ x̂ðpl;yjÞði� 1ji� 1Þ þ
Z iT

ði�1ÞT
F½x̂ðpl;yjÞðtÞ;mðiÞ;

ð�pþ bpl
epl
Þ; �d�dt ð48Þ

x̂ðpl;yjÞðijiÞ ¼ x̂ðpl;yjÞðiji� 1Þ þ Lðpl;yjÞðiÞcðpl;yjÞðiÞ ð49Þ
cðpl;yjÞðiÞ ¼ yðiÞ � ½H½x̂ðpl;yjÞðiÞ� þ byj

eyj
� ð50Þ

for i 2 ½t; t þ N� with x̂ðpl;yjÞðt � 1jt � 1Þ ¼ x̂ðt � 1jt � 1Þ ð51Þ

Fault magnitude estimation problem for each hypothesized combi-
nation is then formulated and solved similar to formulation (27)
discussed in Section 2.5. However, when multiple simultaneous
faults are hypothesized together with single faults the fault models
have unequal number of unknown parameters (i.e. different degrees
of freedom). Consequently, the fault isolation step cannot be carried
out using the minimum value of Jfj

as described in Section 2.5. To
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alleviate this difficulty, we propose to use Akaike Information Crite-
rion (AIC) for fault isolation when multiple simultaneous faults are
hypothesized together with single faults. Thus, the test statistic
used for fault isolation is as follows:

min
fj2 all hypothesized faults

ðAICÞfj
¼ N ln

1
N
ðJfj
Þ

� �
þ 2/ ð52Þ

where Jfj
represents the value of the prediction error term obtained

after solving the magnitude estimation problem and / represents
the total number of parameters estimated when fault fj has oc-
curred. The fault, i.e. either a single fault or a set of simultaneous
faults, that yields minimum value for AIC is isolated as the fault that
has occurred. It may be noted that

� The proposed fault isolation strategy based on AIC can also be
employed when fault models with different number of unknown
parameters (e.g. step jump in a parameter and slow drift in the
parameter) are hypothesized.

� The number of faults that can be hypothesized to occur simulta-
neously cannot exceed the number of measurements due to
observability considerations.
Remark 1. It may be noted that the choice of window length N
determines the trade-off between ‘delay in diagnosis’ and ‘accu-
racy of diagnosis’. A large value of N results in less false alarms and
smaller variance errors in fault magnitude estimate. However,
choosing larger N also introduces a longer delay in fault identifi-
cation. On the other hand, choosing N to be small reduces delay in
fault isolation. However, it can increase false alarms and results in
larger variance errors in fault magnitude estimates. Based on
simulation studies, Prakash et al. [14] have suggested that the
window length N can be chosen approximately equal to half the
time required for the estimator to converge after a change occurs.
3. Intelligent state estimation for fault tolerant NMPC

NMPC techniques use nonlinear model for prediction, which is
typically developed once in the beginning of implementation of
an NMPC scheme. However, as time progresses, slow changes in
unmeasured disturbances and/or process parameters and faults
such as biases in sensors or actuators results in significant mis-
match in plant and model behavior (behavior mismatch). In addi-
tion, hard failures, like failures of actuators and sensors can lead
to significant structural plant model mismatch (structure mis-
match). The conventional approach to deal with the behavior mis-
match in the NMPC formulations is through the introduction of
additional artificial states in the state observer [2–4]. The main
limitation of this permanent augmentation approach is that the
number of extra states that can be introduced cannot exceed the
number of measurements. This implies that it is necessary to have
a priori knowledge of a subset of faults that are most likely to occur
or a subset of parameters that are most likely to drift. In such a for-
mulation, the state estimates can become biased when unantici-
pated faults and/or parameter drifts occur. When NMPC
formulation is used for inferential control of some unmeasured
quality variables, the biased state estimates can have detrimental
effect on the closed loop performance. The accuracy of the state
estimates, which is the prime concern in the inferential control for-
mulation, can be maintained only if identical model is used for
fault diagnosis and control and the model is corrected at the cor-
rect location when a fault or abrupt change occurs [12]. Moreover,
the permanent augmentation of state space model cannot system-
atically deal with the difficulties arising out of sensor biases and
sensor/actuator failures.
In this section, we describe the integration of the conventional
state space based NMPC formulation with NL-GLR or SNL-GLR
scheme, which is capable of generating unbiased state estimates
by intelligently correcting the state estimator. To begin with, we
describe the modifications necessary in the state estimator used
for FDI a well as NMPC, when a fault is detected for the first time
by FDI component. Modifications necessary for dealing with recur-
rence of the fault, occurrence of another fault at subsequent time
instants and drifting (non-stationary) changes in unmeasured dis-
turbances/model parameters are described later. We then proceed
to propose NMPC formulation that can deal with behavioral as well
as structural changes in the model and state estimator. A sche-
matic representation of the proposed FTNMPC scheme is shown
in Fig. 1.
3.1. On-line modifications to state estimator and predictor

Consider a situation where FDT has been rejected at time in-
stant t and subsequently FCT has been rejected at time t þ N for
the first time. Further assume that at instant t þ N a fault fj has
been isolated using NL-GLR/SNL-GLR method and the fault magni-
tude has been estimated using data collected in the interval
½t; t þ N�. During the interval ½t; t þ N�, the NMPC formulation is
based on the prediction model given by equations

x̂ðkþ lþ 1jkÞ ¼ x̂ðkþ ljkÞ þ
Z ðkþlþ1ÞT

ðkþlÞT
F½x̂ðtÞ;mðk

þ ljkÞ; �p; �d; t�dt ð53Þ

However after the identification of the fault at instant t þ N, the
model for k P t þ N is modified as follows:

� Step jump in unmeasured disturbance/model parameter: When FDI
component isolates abrupt change in unmeasured disturbance,
the prediction equations in the state estimator and future pre-
dictions in NMPC are modified as follows:

x̂ðkjk� 1Þ ¼ x̂ðk� 1jk� 1Þ þ
Z kT

ðk�1ÞT
F½x̂ðtÞ;mðk� 1Þ; �p; �d

þ b̂dj
edj
�dt ð54Þ

x̂ðkjkÞ ¼ x̂ðkjk� 1Þ þ LðkÞcðkÞ ð55Þ

x̂ðkþ lþ 1jkÞ ¼ x̂ðkþ ljkÞ þ
Z ðkþlþ1ÞT

ðkþlÞT
F½x̂ðkþ ljkÞ;mðkÞ; �p; �d

þ b̂dj
edj
�dt

If an abrupt change is detected in a parameter, then the state esti-
mator and predictor can be modified in analogous manner.
� Sensor faults: If jth sensor bias is isolated, the measured output is

compensated as

ycðkÞ ¼ yðkÞ � b̂yj
eyj

ð56Þ

and used in FDI as well as NMPC formulation for computing innova-
tion sequence.
� Compensation for actuator bias:

x̂ðkjk� 1Þ ¼ x̂ðk� 1jk� 1Þ þ
Z kT

ðk�1ÞT
F½x̂ðtÞ;mðk� 1Þ

þ b̂uj
euj
; �p; �d�dt ð57Þ

x̂ðkjkÞ ¼ x̂ðkjk� 1Þ þ LðkÞcðkÞ ð58Þ

x̂ðkþ lþ 1jkÞ ¼ x̂ðkþ ljkÞ þ
Z ðkþlþ1ÞT

ðkþlÞT
F½x̂ðtÞ;mðkþ ljkÞ

þ b̂uj
euj
; �p; �d�dt ð59Þ
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� Failed actuator: In state estimation and prediction, the failed
actuator is treated as constant mjðkÞ ¼ b̂uj

for k P t þ N, where
b̂uj

is the estimate of stuck actuator signal for jth actuator.
� Failed sensor: When the FDI component isolates a sensor failure,

the failed sensor measurement is removed from the set of mea-
surements used for state estimation.

After a fault, say fj, is diagnosed and corrections are made to the
state estimator, it becomes necessary to correct the state estimates
while re-starting the state estimator at k ¼ t þ N based on the
modified model. The state vector and state error covariance matrix
estimated at k ¼ t þ N in the magnitude refinement step is used to
re-start the state estimation with the modified model and state ob-
server by setting

x̂ðt þ Njt þ NÞ ¼ x̂fj
ðt þ Njt þ NÞ

Pðt þ Njt þ NÞ ¼ Pfj
ðt þ Njt þ NÞ

and these values are used subsequently for state propagation and
covariance update.

3.2. Correction for drifting disturbances, parameters and multiple
sequential faults

The main concern with the above approach is that the magni-
tude and the position of the fault may not be accurately estimated.
Thus, there is a need to introduce integral action in such a way that
the errors in estimation of fault magnitude or position can be cor-
rected in the course of time. Furthermore, other faults may occur at
subsequent times. Thus, in the on-line implementation of NMPC,
application of FDI method resumes at t þ N þ 1. The FDI method
may identify a fault in the previously identified location or a new
fault/parameter change/mean shift in unmeasured disturbance
may be identified. In either case, the Eqs. (54)–(59) can be modified
using cumulative estimate of the corresponding biases [14], which
are computed as

~bfj ¼
Xnf

l¼1

b̂fj
ðlÞ with initial value b̂fj

ð0Þ ¼ 0 ð60Þ

where f 2 ½u; y� denotes the fault type occurring at jth position and
nf represents the number of times a fault of type f was confirmed
and isolated in the jth position. Similarly, cumulative unmeasured
disturbance vector, ~dðtdl

Þ, can be defined as follows:

~dðtdl
Þ ¼ ~dðtdl�1

Þ þ
Xd

j¼1

b̂dj
ðtdl
Þedj

~dð0Þ ¼ �d

ð61Þ
where tdl
represent the last time instant when unmeasured distur-

bance fault was isolated, tdl�1
represent the time instant previous to

tdl
when such fault was isolated and d̂ðtdl

Þ represents the fault vec-
tor (point) estimate at time instant tdl

. Cumulative parameter vector
can be defined in a similar manner as follows:

~pðtpl
Þ ¼ ~pðtpl�1

Þ þ
Xp

j¼1

b̂pj
ðtpl
Þepj

~pðtpl
Þ ¼ �p

ð62Þ

The cumulative bias estimates given by Eqs. (60)–(62) are used in
Eqs. (54)–(59) in place of the point estimates b̂fj efj ;

�dþ b̂dj
edj

and
�pþ b̂pj

epj
. The use of cumulative bias estimates can be looked upon

as a method of introducing integral action to account for plant mod-
el mismatch, in which some of the states (cumulative bias esti-
mates) are integrated at much slower rate and at irregular
sampling intervals. It may be noted that the use of cumulative bias
estimates to correct the EKF also implies that the definition of nor-
mal behavior model keeps changing as and when faults are detected
and subsequently the model is compensated for the faults. Thus,
after sufficiently long time, the normal behavior model used for state
estimation and fault diagnosis can be represented as follows:

xðkþ 1Þ ¼ xðkÞ þ
Z ðkþ1ÞT

kT
F½xðtÞ; ~uðkÞ; ~pðtpl

Þ; ~dðtdl
Þ þwdðkÞ�dt ð63Þ

~uðkÞ ¼mðkÞ þ
Xm

j¼1

~buj
euj

ð64Þ

yðkÞ ¼ H½xðkÞ� �
Xr

j¼1

~byj
eyj
þ vðkÞ ð65Þ

provided no actuator/sensor failures are diagnosed. When a new
fault is detected, the on-line diagnosis problem is now formulated
as follows:

inf
b̂fj
ðtflþ1Þ;fj

Xtflþ1þN

k¼tflþ1

cT
fj
ðkÞVðkÞ�1

cfj
ðkÞ ð66Þ

x̂fj
ðiji�1Þ ¼ x̂fj

ði�1ji�1Þ

þ
Z ðiÞT

ði�1ÞT
F½xfj
ðsÞ; ~uði�1Þ; ~pðtpl

Þ; ~dðtdl
Þ; b̂fj
ðtflþ1Þefj

�ds ð67Þ

x̂fj
ðijiÞ ¼ x̂fj

ðiji�1ÞþLfj
ðiÞcfj
ðiÞ ð68Þ

cfj
ðiÞ ¼ yðiÞ� H½x̂fj

ðiji�1Þ��
Xr

j¼1

~byj
eyj

( )
ð69Þ

x̂fj
ðtjtÞ ¼ x̂ðtjtÞ ð70Þ

where i 2 ½tfl ; tflþ1 þ N� and b̂fj ðtflþ1Þefj influence the system dynam-
ics through the cumulative bias expressions given by Eqs. (60)–
(62). In abstract form, if h represents the set of all corrections that
are made to the model subsequent to diagnosis, then the above for-
mulation followed by the model correction (i.e. fault accommoda-
tion) step is equivalent to a slow rate recursion of the form:

hðtflþ1Þ ¼ W½hðtfl
Þ;Xðtflþ1; tflþ1 þ NÞ�

Xðtflþ1; tflþ1 þ NÞ ¼ f½yðiÞ;uðiÞ� : i 2 ½tfl
; tflþ1 þ N�g

where tfl represent the last time instant when a fault was isolated,
tfl�1

represent the time instant previous to tfl when a fault was iso-
lated and W½�� represents update rule through NL-GLR. This is tanta-
mount to using all the data collected after each fault detection for
updating the model. As a consequence, the use of cumulative bias
estimate improves parameter/bias estimates and reduces the vari-
ance errors if a fault is isolated in the same location multiple times.
In fact, Eqs. (60)–(65) together represent a multi-rate model with
expected values of unmeasured disturbances and parameters
changing at a significantly slower and irregular sampling rates.
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The minimum gap between two such changes equals the window
length used for fault isolation. Thus, this model effectively separates
unmeasured disturbances into two components: (a) stationary col-
ored noise modelled through extended Kalman filter; (b) non-sta-
tionary low frequency mean changes captured through ~dðtdl

Þ and
~pðtpl
Þ. The above self-adapting form of model with slowly time vary-

ing parameters is used in the proposed NMPC formulation.

Remark 2. It may be noted that Eqs. (61) and (62) slowly model
drifting disturbances as sequence of step changes. However, it is
likely that in some situations drift model given Eq. (14) is more
appropriate and has to be used. The mechanism for model
correction has to be suitably modified when a fault is modelled
as a drift. If the mean value of some unmeasured disturbance/
parameter changes continuously and at a much faster rate, then
the time scale separation that is implicit in the proposed formu-
lation may not be acceptable. In such a situation, that specific
parameter or unmeasured disturbance variable can be included in
the state vector and its value can be estimated together with the
other states. While such permanent augmentation will reduce a
degree of freedom available for diagnosis, the proposed approach
can still be used for diagnosing remaining faults without requiring
any significant modifications.
3.3. Fault tolerant NMPC formulation

At any sampling instant k, the nonlinear model predictive con-
trol problem is formulated as a constrained optimization problem
whereby the future manipulated input moves denoted as

fmðkjkÞ;mðkþ 1jkÞ . . . mðkþ Np � 1jkÞg

are determined by minimizing an objective function involving pre-
dicted controller errors. Typical objective function used in an NMPC
formulation is of the form

min
mðkjkÞ;mðkþ1jkÞ...mðkþNp�1jkÞ

J ¼ Je þ JDm ð71Þ

Je ¼
XNp

l¼1

efðkþ ljkÞTWEefðkþ ljkÞ ð72Þ

JDm ¼
Xq�1

l¼0

Dmðkþ ljkÞTWmDmðkþ ljkÞ ð73Þ

subject to following constraints:

efðkþ ljkÞ ¼ yrðkÞ � ŷðkþ ljkÞ
Dmðkþ ljkÞ ¼mðkþ ljkÞ �mðkþ l� 1jkÞ
x̂ðkþ lþ 1jkÞ ¼ x̂ðkþ ljkÞ

þ
Z ðkþlþ1ÞT

ðkþlÞT
F½x̂ðtÞ;mðkþ ljkÞ

þ
Xm

j¼1

~buj
euj
; ~pðtpl

Þ; ~dðtdl
Þ; t�dt ð74Þ

~yðkþ ljkÞ ¼ G½x̂ðkþ ljkÞ� ð75Þ

mL
6mðkþ ljkÞ þ

Xm

j¼1

~buj
euj
6mU

DmL
6 Dmðkþ ljkÞ 6 DmU

where l 2 ½0;Np�. Here, Np represents prediction horizon, q repre-
sents control horizon, yrðkÞ represents the future setpoint trajectory
and ~y ¼ G½x� represents the vector of controlled outputs, which may,
in general, differ from the measured outputs y ¼ H½x�. It may be
noted that constraints on manipulated input are modified to accom-
modate bises in manipulated inputs. While the above modified
model can deal with faults, actuator failure may require additional
measure such as modification of the control objective to accommo-
date the failure. For example, if dimension of the setpoint vector
equals the number of manipulated inputs and an actuator failure
is diagnosed, then, the NMPC objective function is modified by
relaxing setpoint on one of the controlled outputs.

In an ideal situation where all the behavioral changes in the
plant are detected and isolated by the proposed FDI scheme, NMPC
formulated using model (71)–(75) can provide offset free control.
However, since we are dealing with a stochastic system, all faults/
changes that occur in the plant may not get diagnosed correctly. To
achieve offset free control in such a scenario, the prediction equa-
tions can be modified as follows:

~xðkþ lþ 1jkÞ ¼ x̂ðkþ ljkÞ þ
Z ðkþlþ1ÞT

ðkþlÞT
F½x̂ðtÞ;mðkþ ljkÞ

þ
Xm

j¼1

~buj
euj
; ~pðtpl

Þ; ~dðtdl
Þ; ;t�dt ð76Þ

x̂ðkþ lþ 1jkÞ ¼ ~xðkþ lþ 1jkÞ þ LðkÞcðkÞ ð77Þ
ŷðkþ ljkÞ ¼ G½x̂ðkþ ljkÞ� þ eðkÞ ð78Þ
eðkÞ ¼ yðkÞ � ŷðkjkÞ ð79Þ

where ŷðk=kÞ is computed using Eq. (75). When the sets of mea-
sured and controlled outputs are identical, this simple modification
in the prediction equation can eliminate offset without requiring
state augmentation [20].
3.4. Closed loop stability

The above finite horizon formulation of NMPC does not guaran-
tee closed loop stability even under nominal conditions. Chen and
Allgower [1] have shown that inclusion of terminal weighting in
the NMPC objective function (quasi-infinite horizon formulation)
can guarantee asymptotic closed loop stability under nominal con-
ditions in the absence of any unmeasured disturbances. In the qua-
si-infinite horizon formulation, the NMPC objective function is
modified by including the following additional term:

J ¼ Je þ JDm þ J1 ð80Þ
J1 ¼ xðkþ NpjkÞTW1xðkþ NpjkÞ ð81Þ

where W1 represents the terminal state penalty matrix, which is
computed by solving an appropriate Lyapunov equation (ref.
Appendix). In addition, the predicted state xðkþ pjkÞ is constrained
to lie within a terminal set Xx defined as

Xx :¼ fx 2 RnjxTW1x 6 ag

in the neighborhood of the operating steady state. If the Jacobian
linearization of the nonlinear system to be controlled is stabilizable
at the operating steady state, then, it has been shown that feasibility
of the open loop quasi-infinite horizon control problem at time
t ¼ 0 implies nominal asymptotic stability of the closed loop
system.

It may be noted that, the terminal region Xx and the penalty
matrix W1 are functions of the model parameters. As a conse-
quence, if the model parameters/unmeasured disturbances under-
go abrupt and large changes during plant operation, the closed
loop stability can no longer be guaranteed using (W1;Xx) com-
puted initially. We propose a remedy to this problem whereby
we recompute the terminal region Xx and the penalty matrix W1

every time the FDI component diagnoses an abrupt change in mod-
el parameters/unmeasured disturbance. Under the ideal condition
where a fault is correctly isolated and its magnitude is accurately
estimated, this pro-active measure can ensure nominal closed loop
stability under certainty equivalence control.



Table 1
CSTR example: controller tuning parameters

Prediction horizon 12
Control horizon 3

Error weighting matrix 10 0
0 1

� �
Set-point [0.5088 0.16]
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It may be noted that Chen and Allgower [1] assume exact
knowledge of the complete state vector in their formulation. In
our formulation, on the other hand, we make use of the state esti-
mate x̂ðkjkÞ to initialize prediction in the NMPC formulation. The
stability of NMPC and EKF pair is still an open issue as the separa-
tion principle does not hold in the nonlinear case.

4. Simulation case studies

Simulation studies are carried out to evaluate the proposed
intelligent state estimation (referred to as intelligent EKF in the rest
of the text) and FTNMPC schemes by simulating control problems
associated with the following highly nonlinear systems:

� CSTR exhibiting input multiplicity [20,21].
� Unstable nonlinear system described in Chen and Allgower [1].
� Fed-batch bioreactor [22].

The performance of the conventional NMPC (CNMPC) that em-
ploys conventional EKF for state estimation is compared with the
performance of the proposed FTNMPC scheme under different fault
scenarios. In all the three case studies the CNMPC formulation is
based on the nominal model given by Eqs. (1)–(3) and state estima-
tor given by Eqs. (6)–(9). The future trajectory predictions in
CNMPC formulation are carried out using Eq. (52). In addition, a
model-plant mismatch compensation scheme similar to (77)–
(79) has been used in CNMPC formulations used in the CSTR and
fed-batch bioreactor case studies for eliminating offset.

4.1. CSTR with input multiplicity

The system under consideration consists of a CSTR in which a
reversible exothermic reaction of type A�B is carried out. The
nominal parameters and the optimum operating steady state used
in the simulation studies can be found in Li and Biegler [21] and
Economou [23].

The dynamic model used for simulating the CSTR system is as
follows [20]:

dCa

dt
¼ F

hAc
ðCai � CaÞ � K1Ca þ K2Cb ð82Þ

dCb

dt
¼ � Fi

hAc
Cb þ K1Ca � K2Cb ð83Þ

dT
dt
¼ 1

hAc
FiðTi � TÞ þ �Hr

qCp
ðK1Ca � K2CbÞ ð84Þ

dh
dt
¼ 1

Ac
ðFi � k

ffiffiffi
h
p
Þ ð85Þ

K1 ¼ kf expð�Ef=TÞ; K2 ¼ kb expð�Eb=TÞ ð86Þ

In the present work, the concentration of component Bðy1 ¼ CbÞ and
level (y2 ¼ h) in the CSTR are treated as two controlled outputs of
the system. The inlet flow rate ðu1 ¼ FiÞ and inlet feed temperature
ðu2 ¼ TiÞ are used as manipulated variables. The constraints im-
posed on manipulated inputs are as follows:

0 6 Fi 6 2 and 300 6 Ti 6 550

The inlet concentration ðCaiÞ is treated as unmeasured disturbance
and it is assumed to be corrupted with a zero mean white noise sig-
nal of standard deviation 0:05 mol=m3. The sampling interval is
chosen as 0.4 min. This system exhibits input multiplicity and
change in the sign of the steady state gain in the operating region.
For a fixed value of flow rate, the concentration ðCbÞ as a function
of inlet flow temperature has a well defined maximum. Thus, the
objective is to control the concentration ðCbÞ at the optimum oper-
ating point of the system where the conversion is maximum. Regu-
lating the CSTR at the optimum point is a challenging task as the
steady state gain reduces to zero at the peak and changes its sign
across the peak [20,21,23].

In this case study, we hypothesize ten different faults consisting
of single faults such as (a) biases in two actuators, (b) biases and
failures of two sensors, (c) step jump in inlet concentration ðCaiÞ,
(d) step change in reaction rate parameter and simultaneous faults
as (e) simultaneous occurrence of step changes in Cai and kf (e)
simultaneous occurrence of bias in level sensor and inlet concen-
tration ðCaiÞ. The controlled outputs are concentration, Cb, and
reactor level. The tuning parameters used in the controller formu-
lation and SNL-GLR method are given in Tables 1 and 2
respectively.

4.1.1. Optimum seeking control in presence of parametric faults
In this sub-section, it is assumed that measured outputs are

same as controlled outputs, i.e.

G½x� ¼ H½x� ¼ 0 1 0 1½ �x

and measurements of Cb and h are assumed to be corrupted with a
zero mean white noise signals with standard deviations
0:005 mol=m3 and 0.002 m, respectively. The control problem is
to regulate the system at the optimum operating point in the face
of abrupt changes in parameters and unmeasured disturbances. It
may be noted that the location of the maximum conversion point
is a function of model parameters and unmeasured disturbances.
Under nominal operating conditions, the optimum operating point
is located at Cb ¼ 0:5088 mol=m3 for h ¼ 0:16 m. However, when
there is a significant shift in the mean value of model parameters
or unmeasured disturbances, the maximum concentration of Cb

predicted by the nominal model is different than the maximum
achievable output in the plant. Patwardhan and Madhavan [24]
have discussed two possible situations arising due to shift in the
optimum point: (a) sub-optimal operation when the maximum
attainable conversion in the plant shifts above the nominal maxi-
mum; (b) unattainable setpoint when the maximum shifts below
the nominal maximum. The later situation results in a steady state
offset and may lead to input saturation and loss of control. In this
section, we demonstrate that the proposed FTNMPC formulation,
in combination with on-line steady state optimization, can be used
to track the changing optimum operating point.

To begin with, we demonstrate performance of our scheme
when two faults occur sequentially. Initially, the process is con-
trolled at the nominal operating point. At t ¼ 26:4 min, the reac-
tion rate parameter kf is changed from 1 to 1.3. This increases
the maximum attainable concentration form Cb ¼ 0:5088 mol=m3

to Cb ¼ 0:5738 mol=m3. The proposed SNL-GLR method correctly
isolates this fault and magnitude estimated is k̂f ¼ 1:2263 which
is further refined using NL-GLR to k̂f ¼ 1:2945. The optimum con-
centration operating point computed based on the refined estimate
of kf is Cb ¼ 0:5728 mol=m3. Thus, the concentration setpoint is
changed to Cb ¼ 0:5728 mol=m3 subsequent to fault diagnosis.
Subsequent to this fault a step jump of 0.2 is given in inlet concen-
tration (Cai) at k ¼ 306. This increases the maximum attainable
concentration from Cb ¼ 0:5738 mol=m3 to Cb ¼ 0:6886 mol=m3.
The proposed SNL-GLR method correctly isolates this fault and
magnitude estimated after refinement is 0.2018. The optimum
concentration operating point computed based on this estimate



Table 2
CSTR example: SNL-GLR tuning parameters

Window for fault confirmation 60
Level of significance for fault detection 0.5
Level of significance for fault confirmation 0.01
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is Cb ¼ 0:6883 mol=m3. Thus, the concentration setpoint is chan-
ged to Cb ¼ 0:6883 mol=m3 subsequent to fault diagnosis. The
CNMPC, however, is unaware of the nature and type of unmea-
sured disturbance and attempts to achieve the original setpoint
of Cb ¼ 0:5088 mol=m3. This results in suboptimal operation of
the CSTR. Fig. 2 compares the performances of both the controllers
in the presence of multiple sequential faults. A better insight into
their behavior is obtained when we compare the state estimation
errors generated by conventional EKF and the proposed intelligent
EKF (see Fig. 3). It can be seen from Fig. 3 that both the conven-
tional EKF and Intelligent EKF generate biased estimates of Ca

and Cb immediately after the fault occurs. However, as soon as
the fault is correctly diagnosed and compensated, the states esti-
mated using intelligent EKF are close to their true values and bias
in state estimation is eliminated. On the other hand, the bias in the
estimates of Cb persists in case of conventional EKF even when Cb is
directly measured. This can be attributed to persistent plant model
mismatch that develops subsequent to occurrence of abrupt
changes in parameters.

In another simulation run, to evaluate the performance of the
proposed state estimation and control scheme when multiple
faults occur simultaneously, we introduce a bias of (�0.02 m) in le-
vel sensor and step jump of magnitude +0.1 in the inlet concentra-
tion (Cai) at t ¼ 26:4 min. The proposed SNL-GLR method correctly
isolates this simultaneous fault and refined fault magnitudes esti-
mated are �0.0196 m and 0.0955 mol/m3. The optimum concen-
tration operating point computed based on these estimates is
Cb ¼ 0:5574 mol=m3 (true optimum point under the changed con-
ditions is Cb ¼ 0:5597 mol=m3). Thus, the concentration setpoint is
changed to Cb ¼ 0:5574 mol=m3 subsequent to fault diagnosis and
FTNMPC shifts the average steady state concentration to 0.552. The
CNMPC that employs conventional EKF for state estimation,
however, attempts to reject these abrupt changes as an unmea-
sured disturbance to achieve the original setpoint of
Cb ¼ 0:5088 mol=m3, which results in suboptimal operation. In
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Fig. 2. CSTR example: comparison of controlled outputs of
addition, the biased level sensor gives rise to an offset in true value
of reactor level and the setpoint in the case of CNMPC. Figs. 4 and 5
compare the performances of both the controllers and state esti-
mators, respectively. Similar to the sequential fault case, the states
estimated using intelligent EKF move close to their true values and
bias in state estimation is eliminated soon after the fault is cor-
rectly diagnosed and compensated.

4.1.2. Estimator reconfiguration on sensor failure
In this subsection, we assume that the reactor temperature

measurements are also available together with measurements of
Cb and h, i.e.

H½x� ¼ ½0 1 1 1 �x ð87Þ

while the controlled outputs are

G½x� ¼ 0 1 0 1½ �x

i.e. Cb and h. The temperature measurements are assumed to be cor-
rupted with a zero mean white noise signal with standard deviation
0.02 �C. We begin simulations under the scenario that all three sen-
sors are functioning well with reactor operating at a suboptimal
operating point 0:4088 0:16½ �. At sampling instant k ¼ 71
(t ¼ 28:4 min) setpoint is changed to a new value 0:5088 0:16½ �
and just prior to this at k ¼ 66 (t ¼ 26:4 min), a failure in the sensor
for Cb is simulated by holding sensor output constant at subsequent
time instants. Fig. 6 shows the state estimation errors for the pro-
posed intelligent EKF before and after fault compensation. As can
be observed from this figure, the state estimates become biased
when concentration sensor fails. However, in the Intelligent EKF
scheme, after the failure has been identified by the SNL-GLR meth-
od, the state estimator is reconfigured using only temperature and
level measurements, i.e. by setting

H½x� ¼ 0 0 1 1½ �x ð88Þ

This measure eliminates the bias in the estimate of Cb and enables
FTNMPC to track this setpoint change using correctly estimated
concentration Cb (see Fig. 7) from the available level and tempera-
ture measurements. Before the failure is isolated and compensated,
the controller attempts to increase reactor concentration by
increasing the throughput and thereby increasing the reactor level.
However, FTNMPC is able to recover the level to the desired set-
point subsequent to the fault accommodation.
150 200 250

150 200 250
e(min)

FTNMPC and CNMPC under multiple sequential faults.
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4.1.3. Isolation and estimation of drifting disturbance
In this sub-section, we demonstrate that the proposed approach

is capable of modeling drifting disturbances through cumulative
Table 3
Chen and Allgower example: controller tuning parameters

Prediction horizon 15
Control horizon 15
Input weighting R 1
State weighting matrix Q diag[0.5 0.5]

Table 4
Chen and Allgower example: SNL-GLR tuning parameters

Window for fault confirmation 50
Level of significance for fault detection 0.1
Level of significance for fault confirmation 0.001
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bias vectors defined in Section 3.2. When a continuously drifting
disturbance is present in the process, it will get modelled (approx-
imated) as a sequence of step changes. To test the performance of
SNL-GLR in identifying such drifting faults, a drifting disturbance is
added in the inlet concentration Cai as shown in Fig. 8. As can be
expected, the SNL-GLR identifies the fault at the same location
repeatedly. As the concentration drifts, the magnitude estimate
gets refined each time the fault is isolated till it matches the chang-
ing mean value of the disturbance. Fig. 8 compares the actual dis-
turbance added and its estimated value as given by SNL-GLR. Each
time a change in Cai is isolated, the setpoint for Cb is changed to the
new optimum value as shown in this figure.

4.2. Nonlinear system by Chen and Allgower

The nonlinear system is described by following set of equations
[1]:

_x1 ¼ x2 þ u½lþ ð1� lÞ _x1�
_x2 ¼ x1 þ u½l� 4ð1� lÞx2�
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PC performances in presence of abrupt change in parameter.
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Table 6
Fed-batch bioreactor example: constraints on manipulated inputs

Manipulated variable Input constraints

Aeration rate (l/h) 0–43
Agitation power (W) 0–100
Acid flow rate (l/h) 0–0.5e�3
Base flow rate (l/h) 0–0.5e�3
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The nonlinearity of the system is a function of l;which also decides
the terminal region X and the terminal penalty matrix W1 which
are used in the NMPC objective function for ensuring nominal
closed loop stability (Refer Appendix). Here four different faults
have been hypothesized namely, actuator bias, biases in two sen-
sors and parametric fault which is change in l. Keeping the initial
(nominal) value of l ¼ 0:9, the above process is simulated using a
sampling time of 0.1 units and with following constraints on input:

�2 6 u 6 2

The tuning parameters used in controller formulation and SNL-GLR
method are listed in Tables 3 and 4 respectively.

For l ¼ 0:9, the terminal region and penalty matrix are as fol-
lows (see Fig. 11):

W1 ¼
4:96 �0:0367
�0:0367 4:96

� �
Xx :¼ fx 2 RnjxTPx 6 5:806g

The control problem is to regulate the process at the origin starting
from some arbitrary initial state (�0.685, �0.685). It is assumed
that the measurements are corrupted with a noise having a variance
of 1� 10�4 and a state noise of standard deviation 1� 10�3 entering
each state. Fig. 9 shows the controller performance under nominal
conditions.

At t ¼ 5 min, a step change is introduced in l by changing it to
0.5. The CNMPC becomes unstable after occurrence of the paramet-
ric change (see Fig. 10). In the FTNMPC formulation, on the other
hand, after the fault is correctly isolated, the estimated value of l
(l ¼ 0:5309) is used to correct the model used in the state estima-
tor as well as prediction model. Along with these modifications, the
terminal region and the penalty matrix are also recomputed as

W1 ¼
14:253 9:253
9:253 14:253

� �
Xx :¼ fx 2 RnjxTPx 6 11:66g
Table 5
Fed-batch bioreactor example: controller tuning parameters

Prediction horizon 30
Control horizon 1

Error weighting matrix 1 0
0 150

� �
Set-point [90 5]
the objective function and the constraint set is modified accord-
ingly. Fig. 11 compares the original and modified terminal regions.
It may be noted that the terminal region and the penalty matrix cor-
responding to l ¼ 0:5 are as follows:

W1 ¼
16:59 11:59
11:59 16:59

� �
Xx :¼ fx 2 RnjxTPx 6 12:57g

Fig. 11 also shows that the new terminal region computed based on
the estimated value of l is reasonably close to the terminal region
corresponding to l ¼ 0:5. Fig. 10 compares the closed loop behavior
obtained using FTNMPC and CNMPC. As evident form these figures,
the proposed FTNMPC formulation is able to retain the closed loop
stability under the changed conditions while controlled outputs be-
come unbounded in the case of CNMPC.

4.3. Fed-batch bioreactor

The unstructured model for penicillin production in a fed-batch
fermentor given by Birol et al. [22] has been used for simulation
studies. The model consists of nine differential equations relating
bioreactor states (biomass, substrate, product, dissolved oxygen,
CO2 and hydrogen ion concentrations, bioreactor temperature
and bioreactor volume) with six inputs (substrate feed and coolant
flows, acid and base flows, agitation rate and aeration). The model
equations, initial conditions and nominal values of the model
Table 7
Fed-batch bioreactor example: SNL-GLR tuning parameters

Window for fault confirmation 100
Level of significance for fault detection 0.5
Level of significance for fault confirmation 0.01



0 50 100 150 200 250 300 350 400
85

90

95

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Time(hrs)

P
en

ic
ill

in
C

o
n

c.
 (

g
m

s/
lit

)
Set-point
FTNMPC
CNMPC

FTNMPC
CNMPC

%
 D

is
so

lv
ed

 O
xy

g
en

Fig. 12. Fed-batch bioreactor example: true values of outputs of FTNMPC and CNMPC in presence of bias in DO sensor.

0 50 100 150 200 250 300 350 400
0

20

40

60

80

A
gi

ta
to

r P
o

w
e

r (
W

)

0 50 100 150 200 250 300 350 400
0

10

20

30

40

A
er

at
io

n
 R

at
e

(l
it/

hr
)

Time(hrs)

FTNMPC
CNMPC

FTNMPC
CNMPC

Fig. 13. Fed-batch bioreactor: manipulated input behavior of FTNMPC and CNMPC under bias in DO sensor.

Table 8
Fed-batch bioreactor example (sensor bias case): comparison of CNMPC and FTNMPC
performances based on ISE values

Output FTNMPC CNMPC

Dissolved oxygen 0.0184 4.6276e+005
pH 4.0325 1.9063
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parameters are given in Birol et al. [22]. While carrying out the
simulations, we assume that the bioreactor operates isothermally
and the fermentor temperature is maintained at the optimum va-
lue (25 �C) by a perfect temperature controller. We also assume
that the mean value of substrate feed rate is fixed at a constant
optimum value (0.042 l/h), which reproduces a pre-decided
growth pattern. The control objective in this case study is to main-
tain the dissolved oxygen concentration and pH of the fermenta-
tion medium at the set-point by manipulating aeration, agitation
and acid/base flows. As the culture makes transitions from one
growth phase to the other (lag phase ? exponential phase ? sta-
tionary phase), the oxygen uptake rate and acid secretion rates
change substantially. With an increase in the batch time, the bio-
mass accumulation rate increases and this results in higher oxygen
consumption. Similarly, as time progresses, the acid secretion rate
increases. Thus, the manipulated inputs have to be changed contin-
uously to keep pH and DO at desired setpoints. As the input–output
dynamics changes significantly with time, isolating faults such as
pH controller failure or sudden decrease in agitation power are
challenging problems from the viewpoint of fault diagnosis [22].

Simulations are carried out for a batch time of 400 h, with a
sampling time of 1.2 min. Measurements of pH and DO are as-
sumed to be corrupted by zero mean white noise with standard
deviations of 0.01 and 0.2, respectively. Also, a zero mean white
noise disturbance with standard deviation of 0.001 has been intro-
duced in the substrate addition rate. A total of eleven single faults
have been hypothesized, namely biases and failures in the four
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actuators and biases in sensors and step jump in substrate addition
rate. The tuning parameters and input constraints used in conven-
tional NMPC and FTNMPC are listed in Tables 5 and 6, respectively.
Also, tuning parameters used in SNL-GLR are listed in Table 7.

4.3.1. Bias in DO sensor
Fig. 12 presents the comparison of CNMPC and FTNMPC behav-

ior when a bias of �5% occurs in DO measurement at time t ¼ 30 h.
Fig. 13 compares the corresponding manipulated input behavior
for both the controllers. During the time window used for fault
diagnosis, both the controllers develop offset between the true va-
lue of % DO and the setpoint. However, after fault is correctly iso-
lated by the FDI component (estimated fault magnitude �4.854%),
FTNMPC moves the true DO percentage close to the desired set-
point. On the other hand, the large offset between the true % DO
value and the setpoint persists in the case of CNMPC. When DO
measurements become biased, the CNMPC attempts to maintain
measured % DO at the specified setpoint by increasing both the in-
puts, which increases in true values of % DO in the plant. Fig. 12
also presents the effect of bias in DO sensor on the Penicillin con-
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Fig. 15. Fed-batch bioreactor example: deviation (true � computed) b
centration over 400 h of operation. From this figure, it may be ob-
served that the Penicillin concentration reduces by 5.94% as a
result of the biased DO measurements when CNMPC formulation
is employed. On the other hand, as a consequence of accurate fault
accommodation, the FTNMPC formulation is aware of the bias in
DO measurements and manages to maintain the true value of %
DO close to the desired setpoint (see Table 8). This results in im-
proved Penicillin concentration at the end of the batch.

4.3.2. Behavior under pH controller failure
To simulate pH controller failure, in the base addition actuator

failure (stuck control valve) is simulated after initial 10 h of failure
free operation. Fig. 14 compares behavior of: (a) CNMPC under no
failure; (b) CNMPC under the actuator failure; (c) FTNMPC under
the actuator failure. Fig. 14 also compares the acid addition rates
for cases (b) and (c). In addition, Fig. 15 compares difference be-
tween the true and the computed values of base addition rates in
FTNMPC and CNMPC. Under normal operating conditions (no fail-
ure scenario), CNMPC is able to maintain pH at the desired setpoint
throughout the batch. When the base addition actuator fails,
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Table 9
Fed-batch bioreactor example (actuator failure case): comparison of CNMPC and
FTNMPC performances based on ISE values

Output FTNMPC NMPC

Dissolved oxygen 676.9423 730.0787
pH 1.2345 327.4919
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CNMPC initially recovers from the upset in pH by manipulating
acid addition rate. However, as evident from Fig. 15 CNMPC, con-
tinues to calculate changes in base addition rate even after the
valve is stuck. As a consequence, the constraint on the acid addi-
tion rate becomes active for t > 50 h. and CNMPC is unable to elim-
inate the offset that develops subsequently. Thus, failure of the
base addition actuator results in an offset in pH output in case of
CNMPC.

In the case of FTNMPC, after the failure of actuator is correctly
diagnosed by SNL-GLR, Intelligent EKF makes necessary modifica-
tions in the estimator as well as prediction model used in NMPC.
Thus, subsequent to the failure accommodation, the base addition
rate in the state estimator and prediction model is set equal to its
value estimated by FDI module and this reduces the difference be-
tween the true (i.e. stuck actuator) and computed value of base
addition rate practically to zero (see Fig. 15). The FTNMPC formu-
lation, which is now aware of loss of degree of freedom due to
actuator failure, is able to restore pH to the setpoint by t ¼ 170 h.
and subsequently maintain it at the desired setpoint by manipulat-
ing the acid addition rate alone. Thus, as FTNMPC is aware of stuck
base valve, it is able to manage the additional degree of freedom
available (i.e. acid addition rate) much better when compared to
CNMPC and meet the desired control objective. This results in
improvement in Penicillin concentration by 0.13% after 170 h of
operation. The comparison of CNMPC and FTNMPC performances
in terms of ISE values is presented in Table 9.

5. Conclusions

In this work, a novel intelligent nonlinear state estimation strat-
egy has been proposed, which keeps diagnosing the root cause(s)
of the plant model mismatch by isolating the subset of active faults
(abrupt changes in parameters/disturbances, biases in sensors/
actuators, actuator/sensor failures) and auto-corrects the model
on-line so as to accommodate the isolated faults/failures. To facil-
itate the diagnosis of faults and failures in nonlinear and time vary-
ing processes, we develop a nonlinear version of the generalized
likelihood ratio (GLR) based fault identification scheme (NL-GLR).
Since NL-GLR is computationally demanding, it has been further
simplified for online implementation using linearization of the
nonlinear model around a nominal trajectory (SNL-GLR). The pro-
posed approach can deal with sequential as well as simultaneous
occurrences of multiple faults/failures. An active fault tolerant
NMPC (FTNMPC) scheme is developed that makes use of the
fault/failure location and magnitude estimates generated by SNL-
GLR to correct the state estimator and the prediction model on-
line. The proposed model correction strategy overcomes the limita-
tion on the number of extra states that can be added to the state
space model in NMPC for offset removal and allows bias compen-
sation for more variables than the number of measured outputs.
The proposed approach can also be used for achieving fault and
failure tolerance in a semi-batch operation. These advantages of
the proposed intelligent state estimation and FTNMPC schemes
have been demonstrated by conducting simulation studies on a
benchmark CSTR system, which exhibit input multiplicity and
change in the sign of steady state gain, and a fed batch bioreactor,
which exhibits strongly nonlinear dynamics. We demonstrate that
the proposed intelligent state estimator and FTNMPC scheme can
be used for achieving on-line optimizing control of the CSTR sys-
tem. By simulating a regulatory control problem associated with
an unstable nonlinear system given by Chen and Allgower [1],
we have also demonstrated that the proposed intelligent state esti-
mation strategy can be used to maintain asymptotic closed loop
stability in the face of abrupt changes in model parameters. Anal-
ysis of the simulation results reveals that the proposed approach
provides a comprehensive method for treating both faults
(biases/drifts in sensors/actuators/model parameters) and failures
(sensor/actuator failures) under the unified framework of fault tol-
erant predictive control.

It may be noted that, in many applications, the nonlinearity is
localized in a smaller section of a plant and an NMPC scheme based
on mechanistic model is typically developed only for this sub-sec-
tion. The proposed FTNMPC approach is expected to be useful for
addressing the problems of on-line model maintenance associated
with such an NMPC implementation. Also, the proposed approach
does not address the problems associated with change in the var-
iance structure/magnitudes.

Appendix

In this Appendix, we briefly summarize the method given by
Chen and Allgower [1] for computing terminal region X for inclu-
sion in the objective function to guarantee nominal stability. The
class of systems to be controlled is described by the following gen-
eral nonlinear set of ordinary differential equations:

dx
dt
¼ F½xðtÞ;uðtÞ� ð89Þ

xð0Þ ¼ x0

yðtÞ ¼ G½xðtÞ� ð90Þ

such that dF½�0; �0� ¼ �0. Here, x 2 Rn; y 2 Rr and u 2 Rm representing
the state variables, measured outputs and manipulated inputs,
respectively. The system is subject to input constraints

uðtÞ 2 U 8t P 0

where U denotes the constraint set on manipulated inputs. The
optimal control problem over interval ½t;1� is reformulated as
follows:

min
uðsÞ

J ¼
Z tþNp

t
½xðsÞTWxxðsÞ þ uðsÞTWUuðsÞ�ds

þ xðt þ NpÞTW1xðt þ NpÞ

subject to

dx
dt
¼ F½xðtÞ;uðtÞ�

xðkÞ ¼ x�ðkÞ
uðsÞ 2 U; s 2 ½k; kþ Np�
xðkþ NpÞ 2 X

where Q 2 Rn�n and R 2 Rn�m denote positive-definite, symmetric
weighting matrices and Np is a finite prediction horizon and X rep-
resents terminal region. To evaluate terminal region X, consider the
Jacobian linearization of the system at the origin

dx
dt
¼ Axþ Bu ð91Þ

If Eq. (91) is stabilizable, then a linear state feedback u ¼ �Kx can
be determined such that Ak ¼ A� BK is asymptotically stable. Then,
the following Lyapunov equation:

ðAk þ bIÞTW1 þW1ðAk þ bIÞ ¼ �Q � ð92Þ
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admits a unique positive-definite and symmetric solution W1,
where Q � ¼Wx þ KTWuK 2 Rn�n is positive definite and symmetric,
b 2 ½0;1� satisfies

b < �kmaxðAkÞ ð93Þ

There exists a constant a 2 ð0;1Þ specifying a neighborhood X of
the region in the form of

Xx :¼ fx 2 RnjxTW1x 6 ag

such that

� Kx 2 U; for all x 2 Xx, the linear feedback controller respects the
input constraints in Xx.

� Xx is invariant for the nonlinear system (89) and (90) controlled
by the local linear feedback u 2 Kx.

� For any x1 2 Xx, the infinite horizon cost

J1ðx1;uÞ ¼
Z 1

t1

xðtÞTWxxðtÞ þmðtÞTWumðtÞdt

subject to nonlinear system (89) and (90) starting from xðt1Þ ¼ x1

and controlled by local linear state feedback u 2 Kx, is bounded
from above as follows:

J1ðx1;uÞ 6 xT
1W1x1

The procedure to determine the terminal penalty matrix W1

and a terminal region Xx (preferably as large as possible) is as
follows:

Step 1: Solve a control problem based on the Jacobian lineariza-
tion to get a locally stabilizing linear state feedback gain K.

Step 2: Choose a constant b 2 ½0;1� satisfying inequality in Eq.
(93) and solve the Lyapunov equation (92) to get a posi-
tive definite and symmetric W1.

Step 3: Find the largest possible a1 such that Kx 2 U, for all
x 2 Xa1 .

Step 4: Making iterations of a simple optimization problem

max
x
fxTW1/ðxÞ � xTW1xjxTW1x 6 ag ð94Þ

for the chosen b by reducing a from a1 until the optimum value gi-
ven by (94) is nonpositive. Here

/ðxÞ ¼ Fðx;KxÞ � Akx

It may be noted that, while using the above formulation in our
work, we propose to choose x�ðtÞ ¼ x̂ðtjtÞ, the state estimates ob-
tained by using EKF.
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