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Integral Resonant Control of a Piezoelectric Tube
Actuator for Fast Nanoscale Positioning
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Abstract—There is a need, in the wide ranging scientific commu-
nity, to perform fast scans using scanning tunneling microscopes
(STMs) and atomic force microscopes (AFMs) with nanoscale pre-
cision. In this paper, a piezoelectric tube of the type typically used
in STMs and AFMs is considered. The resonant mode that ham-
pers the fast scanning is identified and damped using a feedback
control technique known as integral resonant control (IRC). The
piezoelectric tube is then actuated to perform fast and accurate
scans. IRC is a new feedback control technique suitable for damp-
ing highly resonant structures. Here, the IRC control technique
is suitably modified to damp the resonance of a piezoelectric tube
and achieve fast tracking of a wideband set point.

Index Terms—Control systems, piezoelectric transducers, vibra-
tion control.

I. INTRODUCTION

S
CANNING tunneling microscopes (STMs) and atomic

force microscopes (AFMs), when used at extreme mag-

nifications, are capable of generating topographical maps of

solid surfaces at micro to atomic resolution. In many STMs and

AFMs, a probe is placed in close proximity, typically a few

nanometers, to the material surface for which a topographical

map is desired. The given material surface is scanned by mov-

ing the sample in a raster pattern, so that the probe interacts

with the entire region of interest [10]. In general, scanning is

performed by placing the sample on top of a piezoelectric tube

and actuating the tube in a raster pattern.

Dynamics of piezoelectric tubes can be well approximated,

under certain experimental conditions, by linear models [1],

[19], [33], [35], [37]–[39]. The linear models normally reveal

the presence of lightly damped resonance modes that make the

piezoelectric tubes susceptible to mechanical vibrations. Non-

linear phenomenon such as creep and hysteresis can also be ob-

served, when actuating the tube using low-frequency and high-

amplitude inputs, respectively, [24], [25]. In such scenarios, the

linear approximations become inadequate. The objective of this

paper is to perform fast scans using a piezoelectric tube. Current

scanning frequencies are limited to less than 0.01fr , where fr is

the first resonance frequency of the piezoelectric tube. In this pa-

per, the piezoelectric tube is scanned at frequencies comparable
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to 0.1fr . The main impediments to such scans are the presence

of mechanical vibrations and hysteresis.

Slow scans are fast becoming a bane to the users of AFMs.

Slow scans, though accurate, lead to inordinate waiting peri-

ods before an image can be obtained. Moreover, fast scans are

also necessary to study fast processes in many diverse areas of

science [16], [27], [28]. A good case for the design of control

systems to perform fast scans is presented in [2].

Mechanical vibrations can be compensated by designing suit-

able feedback controllers to damp the resonant modes. This has

been done by several authors in different contexts [1], [3], [7],

[8], [12], [22], [30], [32], [33], [37]. The feedback controllers

designed in all the aforementioned papers, though have been

very effective, are very hard to design. Their design methodol-

ogy may require the knowledge of advanced mathematics, and

in some cases, they may warrant the solution of a nonconvex op-

timization problem, thereby making them computationally com-

plex. Other active damping controllers such as positive position

feedback (PPF) [23] and direct velocity feedback (DVF) [13]

have also been used to damp flexible structures. DVF needs the

implementation of a differentiator, and has the tendency to am-

plify high-frequency noises that come into picture when using

external sensors. In the context of piezoelectric tubes, PPF can

be designed using standard root-locus technqiue. However, as it

is of second order, determination of three parameters from the

root locus is not tractable [29]. A new feedback scheme, called

integral resonant control (IRC), was introduced in [9]. In this

scheme, an integral controller was used to damp the resonant

modes of a cantilever beam. IRC is relatively straightforward

and easy to design and implement. The computational complex-

ity involved in their design is also insignificant. In this paper,

this scheme is modified to damp the resonant mode of a piezo-

electric tube, resulting in fast tracking of a high-bandwidth set

point with nanoscale precision.

Nonlinearity in the form of hysteresis becomes visible when

piezoelectric tubes are actuated using voltage signals of high

amplitudes. At low-range scans (i.e., when actuating a piezo-

electric tube with voltage signals of low amplitude), hysteresis

can be neglected. A popular approach to compensate for hys-

teresis is to model it as a nonlinear function H(·), and then,

eliminate it by cascading its inverse H−1(·) with piezoelectric

tube actuator [17], [20], [36], [40]. Feedback control schemes

have also been used to compensate for hysteresis in [15], [33],

and [37]. Since the late 1980s, it has been known that actu-

ating piezoelectric transducers with current or charge sources

rather than voltage sources significantly reduces hysteresis [34].

In fact, it has been noted that using current or charge sources,

at least a fivefold reduction in hysteresis can be achieved [26].

Creep is another nonlinearity that occurs when low-frequency
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signals are used for actuating piezoelectric materials [14], [21].

Creep is not dealt within this paper, as this paper is about fast

actuation of a piezoelectric tube.

Nonlinear modeling of hysteresis has always been a tedious

task. Even in cases where the hysteresis is rate-independent,

constructing a good model is both complex and computationally

involved [31]. In cases where the hysteresis is rate-dependent, as

in the case of piezoelectric materials, current modeling schemes

offer little help. Use of charge or current sources does not neces-

sitate the modeling of hysteresis. However, herein, the problem

lies with the instrumentation of the charge or current sources

capable of driving highly capacitive loads, as they are not com-

mercially available at present. Invariably, the only resort is to

make a “home made” charge or current source. The authors

in [4] and [5] designed a dc-accurate charge source for the

general purpose of exciting piezoelectric actuators without en-

countering hysteresis. In this paper, this charge amplifier is used

for applying signals to the piezoelectric tube in order to avoid

hysteresis.

This paper is formatted as follows. In the next section, the con-

trol scheme presented in [9] is discussed from the perspective

of using it for a piezoelectric tube. In Section III, a piezoelectric

tube of the type typically used in STMs and AFMs is consid-

ered, and its resonance mode is identified and damped using the

scheme presented in Section II. The tube is also actuated in a

raster pattern in Section III.

II. INTEGRAL RESONANT CONTROL OF A PIEZOELECTRIC

TUBE ACTUATOR

Piezoelectric tubes, like most other flexible structures, have

an infinite number of resonant modes. However, from a compu-

tational perspective, and for practical control design purposes,

one has to consider only a finite number of modes. Most piezo-

electric tubes used in STMs and AFMs would have their first

resonant mode within a bandwidth of 1 kHz,1 while the other

resonances would lie beyond 2 kHz [1], [12], [19], [38], [39]. In

order to actuate the piezoelectric tube at a rate of 0.1fr , where

fr is the first resonance frequency, it is enough to consider the

first resonance alone. Therefore, here, the resonances beyond

the first are neglected while modeling.

The transfer functions characterizing the dynamics of piezo-

electric tubes, up to a bandwidth of 2fr Hz, are typically of the

form

G(s) =
Γ

s2 + 2ζpωps + ω2
p

(1)

where Γ > 0, ωp denotes the natural frequency, and ζp denotes

the damping coefficient [1], [12], [19], [38]. Since the piezo-

electric tubes are flexible structures, with poles close to the

1The actual resonance frequencies depend on the physical dimensions of the
tube. It is possible to use small tubes that have very high resonance frequencies.
However, most commercially available STMs and AFMs use relatively large
tubes. This is needed to scan large areas, e.g., 100 µm × 100 µm. Such tubes
have relatively large frequencies.

Fig. 1. Closed-loop system with the integral controller C(s) = (K/s) around
G(s).

Fig. 2. Transfer function Ḡ(s) obtained by adding a d to G(s).

imaginary axis, (1) can be approximated by

G(s) =
Γ

s2 + ω2
p

. (2)

Wrapping an integral controller C(s) = (K/s) around G(s),
[see (2) and Fig. 1], would lead to a closed-loop system of the

form

G(cl)(s) =
G(s)C(s)

1 + G(s)C(s)
. (3)

It can be checked that the poles of (3) are the roots of the

polynomial

p(s) = s
(

s2 + ω2
p

)

+ KΓ. (4)

This implies that

p(iω) = iω
(

−ω2 + ω2
p

)

+ KΓ (5)

can never satisfy the Hermite–Biehler theorem (HB theorem),

[11, p. 41]. Hence, p(s) can never be Hurwitz for any K >
0. Alternatively stated, p(s) can never be stabilized using the

integral controller.

Consider the transfer function

Ḡ(s) =
Γ

s2 + ω2
p

+ d (6)

which is obtained by adding a feedthrough d term to (2) (see

Fig. 2). Note that wrapping an integral controller C(s) = (K/s)
around Ḡ(s) would lead to the closed-loop system (see Fig. 3)

Ḡ(cl)(s) =
Ḡ(s)(K/s)

1 + (K/s)Ḡ(s)

=
Kd

(

s2 + ω2
p + (Γ/d)

)

s
(

s2 + ω2
p

)

+ Kd
(

s2 + ω2
p + (Γ/d)

) . (7)

It can also be checked that the closed-loop system corresponding

to the plant input and output [i.e., with respect to G(s)] is given

by

G(cl)(s) =
G(s)(K/s)

1 + (K/s)Ḡ(s)
(8)
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Fig. 3. Closed-loop system with the integral controller C(s) = (K/s) around
Ḡ(s).

The poles of (7) and (8) are the roots of the polynomial

p̄(s) = s
(

s2 + ω2
p

)

+ Kd

(

s2 + ω2
p +

Γ

d

)

(9)

which implies

p̄(iω) = iω
(

−ω2 + ω2
p

)

+ Kd

(

−ω2 + ω2
p +

Γ

d

)

. (10)

For (9) to satisfy the Hermite–Biehler theorem, the absolute

value of the roots of the imaginary part of (10) must be less than

the absolute value of the roots of the real part. Furthermore, the

product Kd has to be positive. In other words,

0 < ωZ < ωP (11)

where

ωZ =

√

ω2
p +

Γ

d
(12)

and

ωP = ωp (13)

and Kd > 0. It can be inferred that for (11) to hold, d has to be

negative. And hence, K < 0 for Kd > 0 to hold. A preferred

position for ωZ would be to lie in the midpoint between the

origin and ωP , which is achieved when

d = − 4Γ

3ω2
p

. (14)

Note that the static gain of (8) is given by

|G(cl)(0)| =

∣

∣

∣

∣

∣

Γ

d
(

ω2
p + Γ

d

)

∣

∣

∣

∣

∣

. (15)

This implies that the static gain would be equal to 1, or 0 dB if

d = (−2Γ/ω2
p ).

It does not escape our notice that (8) boils down to

G(cl)(s) =
G(s)(K/s)

1 + (K/s)Ḡ(s)

=
G(s)(K/s)

1 + (K/s)(G(s) + d)

=
G(s)(K/s)

1 + (K/s)G(s) + d(K/s)

△
=

G(s)C̄(s)

1 + G(s)C̄(s)
(16)

Fig. 4. Illustration of the piezoelectric tube. (a) Side view. (b) Top view.

where

C̄(s)
△
=

K

s

(

1 + d
K

s

)−1

=
K

s + Kd
. (17)

In other words, the whole scheme can be implemented in a

standard feedback setup, as shown in Fig. 1 with C(s) re-

placed by C̄(s). However, using a lossy integrator C̄(s) directly

and achieving the damping does not provide any insight into

the working of the control scheme. In particular, it tells very

little about the swapping of the zeros that is achieved by adding

the d term.

III. ACTUATION OF A PIEZOELECTRIC TUBE

A piezoelectric tube is a thin-walled cylindrical tube made of

piezoelectric material. The inner and outer walls of the tube

are coated with a layer of silver. The silver coating acts as the

electrodes of the piezoelectric tube. The outer electrode of the

piezoelectric tube scanner is axially quartered into four equal

sections. A pair of opposite quartered electrodes are referred to

as the x–x electrodes and the other pair is referred to as the

y–y electrodes (see Fig. 4). Good illustrations of the tube can

be found in [5], [10], [18], and [12].

A. Experimental Setup

In the experimental setup used here, a piezoelectric tube is

held upright with its bottom glued to a rigid surface. A small

aluminum cube is bonded to the upper end of the tube. This

cube represents the seat where the materials that need to be

scanned are placed. The head of an ADE Technologies 4810

capacitive sensor is placed in close proximity to the face of

aluminum cube along the x-axis (see Fig. 5). The inner electrode

of the piezoelectric tube is grounded. An electrode from the

x–x pair, referred as the x+ electrode, is chosen as the input

end of the piezoelectric tube. The whole setup consisting of the

piezoelectric tube with the bonded aluminum cube and the heads

of the capacitive sensors is placed in a specially constructed
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Fig. 5. Schematic diagram of the experimental setup.

Fig. 6. Piezoelectric tube mounted inside an aluminum shield. The x-axis
capacitive sensor is shown secured at right angles to a cube mounted onto
the tube tip, and the y-axis capacitive sensor is secured at right angles to the
perpendicular face of the aluminum cube.

cylindrical enclosure (refer to Fig. 6). The cylindrical enclosure

protects the experimental setup from external noise.

As mentioned in Section I, the goal is to actuate this piezo-

electric tube in a raster pattern. A desired trajectory for the

piezoelectric tube would be to repeatedly trace straight lines

back and forth in the x-direction, while slowly increasing its

position in the y-direction. A common practice to track such a

trajectory is to apply a triangular waveform to the x+ electrode

and a “very slowly” increasing ramp signal to the y+ (one of

the electrodes of the y–y pair, see Fig. 4). In fact, to have a

good scan of the surface the changes in y-direction must be

“quasi-static” with respect to the changes in the x-direction.

Normally, for illustration purposes, the slowly varying ramp in

the y+ electrode is either replaced by a dc signal or assumed to

be earthed or open circuited (see [1], [19], and [33]). Here, it is

earthed.

When a signal is applied at the electrode x+ , the piezoelec-

tric tube deforms causing a change in the capacitance between

the aluminum cube and the head of the capacitive sensor. The

change in the capacitance is used by the capacitive sensor to

measure the distance between its head and the aluminum cube.

This distance, denoted by D(t), is also recorded as an output.

In summary, the piezoelectric tube is modeled as a SISO system

Fig. 7. Response D(t) recorded by the capacitive sensor to a sinusoidal input
of 5-Hz frequency and 62-V amplitude at the x+ electrode.

Fig. 8. Response D(t) recorded by the capacitive sensor to a sinusoidal input
of 5-Hz frequency and 4500-nC amplitude at the x+ electrode.

with the input being the signal applied at the x+ electrode and

the output being the capacitive sensor measurement D(t).
In this paper, charge signals q(t), or signals obtained by mod-

ulating charges instead of voltages, are used as inputs to avoid

hysteresis. In Figs. 7 and 8, responses recorded by the capacitive

sensor to sinusoidal waveform inputs v1(t) and q1(t), respec-

tively, with a frequency of 5 Hz are plotted. It can be noted that

v1(t) has amplitude of about 62 V and q1(t) has an amplitude of

4500 nC. More importantly, it can be noted that the response to

the charge signal is linear while the response recorded for the

voltage signal v1(t) is nonlinear.

B. Identification and Control

Using the charge amplifier, swept sine waves are applied

as input at the x+ electrode of the piezoelectric tube. Appli-

cation of the swept sine input causes the tube to bend. The

input q(t), applied to the x+ electrode, and the correspond-

ing capacitive sensor output D(t) are fed into a spectrum ana-

lyzer, which computes the frequency response function (FRF)
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Fig. 9. Magnitude plots of the data (solid) along with the corresponding
parametric model (dashed dots).

TABLE I
EMPIRICAL TRANSFER FUNCTION PARAMETERS

GDq (iω) = (D(iω)/q(iω)), where D(iω) and q(iω) are the

Fourier transform of D(t) and q(t), respectively, a set of de-

sired frequency points. The computed FRF is plotted in Fig. 9.

The model

GDq (s) =
Γ

s2 + 2σpωps + ω2
p

(18)

with the parameters tabulated in Table I was fit for the FRF data

(see Fig. 9). It is apparent that the model captures the magnitude

response, with good accuracy, but not the phase response. The

phase response of the system suggests a delay in the system re-

sponse. This delay is due to the presence of a zero between the

first and the second resonance (the second resonance is not seen

in Fig. 9, as it is out of the bandwidth of interest), which can-

not be captured using a second-order model. In Fig. 12(a), the

responses D(t) recorded by the capacitive sensor to the triangu-

lar waveform inputs with fundamental frequencies 10, 40, and

80 Hz are plotted. It is apparent that the recorded responses are

not triangular waveforms. This distortion is due to the amplifi-

cation of the harmonics of these triangular waveforms that lie

close to the resonant mode. In the case of the 10 Hz triangular

waveform it the ninth harmonic, while it is the fifth and the third

harmonic, respectively, in the cases of 40 and 80 Hz triangular

waveforms.

As mentioned earlier, to design the control scheme, GDq (s) is

approximated by setting 2σω in (18) to zero, and d = −(2Γ/ω2
p )

is added to obtain

ḠDq (s) =
Γ

s2 + ω2
p

+ d. (19)

Note that for the chosen value of d, the closed-loop sys-

tem (8) will have a unit static gain. In Fig. 10, the root lo-

cus of (ḠDq (s)/s), or alternatively, the locus of the poles

of r(s) = s
(

s2 + ω2
p

)

+ Kd
(

s2 + ω2
p + (Γ/d)

)

, for K < 0,

Fig. 10. Root locus of the plot of (ḠD q (s)/s) for K < 0. X denotes the

closed-loop poles of G(c l) (s) for a gain of K = −105 .

Fig. 11. Predicted (solid) and the experimentally determined (dashed) mag-
nitude responses of the closed-loop system.

is plotted. Here, the gain of the integral controller is set to

K = −105 . In Fig. 11, the magnitude response of G(cl)(iω),
(8), is plotted along with experimentally determined magnitude

response. It can be observed from the plot that the experimen-

tally determined magnitude response matches predicted magni-

tude response. Here, a dSPACE 1103 PPC controller board is

used for the real-time implementation of the feedthrough term

d and the integral controller. A sampling frequency of 20 kHz

was used to avoid aliasing. Simulink was used to download the

feedthrough term and the controller in to the dSPACE board.

The gain K = −105 is not optimal in any particular sense. As

the goal is to have a good damping, an optimal choice would be

a K that gives maximum modal damping. It can be shown that

this is achieved by selecting Kopt = −(ωP /d)
√

(ωP /ωZ ) [6],

where ωZ , ωP , and d are as defined in (12), (13), and (14), re-

spectively. Note that for d = −(4Γ/3ω2
p ), (14), ωZ = (ωP /2).

Which implies Kopt = (ωP /d)
√

2 ≈ 3.3 × 105 . It was found

that this gain was too large to implement, and the charge am-

plifier used in the experiments could not generate the necessary
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Fig. 12. (a) Response D(t), recorded by the capacitive sensor to triangular waveform inputs with fundamental frequencies 10, 40, and 80 Hz, respectively.
(b) Response recorded by the capacitive sensor, in closed-loop, for inputs of the form u(t), (20), for fd (t)’s with fundamental frequencies 10, 40, and 80 Hz,
respectively.

control signal and went into saturation. Hence, a suboptimal

K = −105 was chosen.

In order to actuate the piezoelectric tube in a raster pattern,

an input of the form

u(t)
△
=

∞
∑

k=1

ak

| G
(cl)
dq (iωk ) |

sin(ωk t − φk ) (20)

where ak and ωk are such that

fd(t)
△
=

∞
∑

k=1

ak sin(ωk t) (21)

is the desired triangular waveform output D(t) at the capacitive

sensor in the Fourier series form and

φk
△
= arg G

(cl)
dq (iωk ) (22)

is applied at the x+ electrode. It is easy to see that applying

u(t) to closed-loop plant should give a triangular waveform,

provided G(cl)(iω) models the frequency response of the closed-

loop plant with reasonable accuracy. It is apparent from Fig. 11

that closed-loop model G
(cl)
dq (s), (8), fits the frequency response

of the closed-loop plant with reasonable accuracy. In Fig. 12, the

capacitive sensor response D(t) recorded for inputs of the form

u(t), (20), with fd(t) being triangular waveforms of 10, 40, and

80 Hz, respectively. It can be observed that the capacitive sensor

responses appear triangular. In the following, the rms errors in

the capacitive sensor outputs (plotted in Fig. 12) are estimated

using the approximation

ǫrms
△
=

√

1

T

∫ T

0

[fd(t) − fo(t)]
2 dt

≈

√

√

√

√

1

Lh

L−1
∑

k=0

[fd(kh) − fo(kh)]2 h

=

√

√

√

√

1

L

L−1
∑

k=0

[fd(kh) − fo(kh)]2 . (23)

In (23), fd(t) denotes the desired triangular waveform, fo(t)
denotes the capacitive sensor output, T denotes the period of

the desired triangular waveform, and h denotes the sampling

rate. Note that the desired triangular waveforms fd(t)’s corre-

sponding capacitive sensor outputs fo(t)’s (plotted in Fig. 12)

have an amplitude of 1 µm with fundamental frequencies being

10, 40, and 80 Hz, respectively. The estimates of the ǫrms , with

h = 5 × 10−5 s, for the 10, 40, and 80 Hz triangular waveforms

were found to be 4.9, 9, and 15.6 nm, respectively. Not sur-

prisingly, the rms error increases with the increasing frequency

of scan. Since high-frequency triangular waveforms excite the

unmodeld higher order harmonics, it is general practice to con-

sider only 80% of the scan area. In other words, 20% of the data

around the corners, i.e., 20% data close to the peaks in Fig. 12,

are discarded, since these regions correspond to the higher hor-

monics that excite the unmodeled dyanamics. The ǫrms estimates

of the 80% scans, for 10, 40, and 80 Hz triangular waveforms,

were found to be 4.7, 7.5, and 12.5 nm, respectively.
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IV. CONCLUSION

In this paper, a piezoelectric tube of the type used in STMs

and AFMs was considered. The objective was to actuate this

tube at high scanning frequencies with nanoscale precision. It

was noted that the main impediment to perform fast actuation

is the presence of a resonant mode. This resonant mode was

damped by designing a suitable IRC controller in the feedback.

Damping of the resonance mode enabled vibration-free actu-

ations with scanning frequencies comparable to 0.1fr , where

fr is the resonance frequency of the tube. The rms errors

obtained for actuation with scanning frequencies 10, 40, and

80 Hz confirm that the scans are of nanoscale precision.
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