Header menu link for other important links
X
In silico reconstruction of nutrient-sensing signal transduction pathways in Aspergillus nidulans
Published in
2004
Volume: 4
   
Issue: 4
Pages: 605 - 631
Abstract
We report here probable nutrient-sensing signal transduction pathways in Aspergillus nidulans, a model filamentous fungus, based on sequence homology studies with known Saccharomyces cerevisiae and Schizosaccharomyces pombe proteins. Specifically, we identified A. nidulans homologs for yeast proteins involved in (1) filamentation-invasion, (2) cAMP-PKA, (3) pheromone response, (4) cell integrity and (5) TOR signaling pathways. We have also studied autophagy, one of the most important cellular responses regulated by TOR signaling. The Basic Local Alignment Search Tool program "blastp" was used to assess the homology of proteins. We note that by using a highly conservative approach, 70% of the S. cerevisiae signal transduction proteins (107 proteins out of 153 proteins studied) have significant homologs in A. nidulans. Using a slightly less conservative approach, we are able to identify homologs for as high as 91% of the S. cerevisiae signal transduction proteins (139 proteins out of 153 proteins studied). The filamentation-invasion, cell integrity and TOR signaling pathways showed greatest similarity with S. cerevisiae, while the cAMP-PKA and pheromone response pathways showed greater similarity with S. pombe. Based on these results, probable pathways in A. nidulans were constructed using well-established S. cerevisiae and S. pombe models. © 2004 - IOS Press and Bioinformation System e.V. and the authors. All rights reserved.
About the journal
JournalIn Silico Biology
ISSN13866338
Open AccessNo