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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

    Cylindrical grinding is an abrasive finishing process widely 

used across all industrial sectors for enhancing the surface 

finish quality of the output product. Grinding process is much 

more complex as compared to other machining processes like 

turning and milling. The variations in work piece and wheel 

topography largely contribute to the uncertainties in surface 

quality prediction. In recent times, significant efforts have 

been taken in developing intelligence for finishing processes 

like grinding [1]. The growth of data analytics, sensor 

capabilities, and cloud computing are revolutionizing 

manufacturing systems into smart environments [2]. The 

motivation behind the application of these artificial 

intelligence techniques is to capture the process intelligence 

and previous experience into a data driven model that can 

help in the future operations. 

    Industries vastly use cylindrical grinding process to get 

accurate surface finish in high precision components like 

bearings [3]. To ensure that those components do not fail 

early, strict monitoring of the surface finish (Ra) must be 

there. Surface finish (Ra) relies heavily on a vast number of 

parameters including machine tool characteristics, work piece, 

wheel topography and operational parameters. 

    Along with these, surface finish in plunge grinding, relies 

substantially on the process mechanics such as forces and 

radial (normal) direction vibrations [4]. In cylindrical 

grinding, the complexity of the process makes it difficult to 

predict surface roughness even in controlled environments. 

The abrasive particle distribution, change in the work piece 

characteristics, type of bonds and other parameters of the 

wheel give rise to stochastic nature in prediction of surface 

roughness.  Hence, a data driven model is indispensable to 

predict surface roughness and hence, assure the integrity of the 

surface in plunge grinding process.  

    In this paper, a sensor set up using power cell and two 

accelerometers was used for feature extraction method. 

Cylindrical grinding process is predominantly a non-linear and 

non-stationary process. The vast number of parameters in 

cylindrical grinding process makes the situation even 

complex. 

    Owing to this non-stationary and non-linear behavior of the 

grinding process, Hilbert Huang Transform (HHT) was used 

as a means to extract features for surface finish prediction.  

Average percentage of energy of the Intrinsic Mode Function 

(IMF) components was used as a criterion to filter out the IMF 
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Grinding being a finishing process, the quality of the ground surface is one of the most important performance evaluation 
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components. Three IMF components were chosen by this 

criteria and features were extracted for surface roughness 

prediction. Apart from this, raw time domain parameters were 

also extracted from the power and acceleration signals to give 

as an input for surface roughness prediction by gradient 

boosting algorithm. To make the model robust, other 

algorithms like regression, artificial neural networks and 

support vector machines were also used. The best model was 

chosen based on least MSE and highest R2 value. A 

comprehensive introduction to HHT is given in section 2. The 

experimental details and feature extraction are presented in 

section 3. The data driven predictive model is given in section 

4. Conclusions drawn are given in section 5. 

 

Nomenclature 

ACC_N       Acceleration value in normal direction. 

ACC_T       Acceleration value in tangential direction 

PE              Percentage energy. 

SD              Standard deviation. 

SK              Skewness. 

Ra              Surface finish in microns. 

RF              Roughing feed in mm/min. 

SFF            Semi finish feed in mm/min. 

FF              Finish feed in mm/min. 

WS             Wheel speed in m/s. 

WoS           Work piece revolutions per minute. 

 

2. Hilbert Huang Transform 

 

    Fourier analysis in general is used for studying the 

frequency distribution of the signal. However, Fourier 

transform is fruitful only for signals that are linear and 

stationary. Another tool, wavelet transform is a Fourier 

analysis where the window size can be adjusted. Wavelet 

analysis is suitable for non-stationary and linear analysis [5]. 

The HHT method is more suitable for analyzing non-

stationary and non-linear signals like grinding signals. The 

analysis comprises of two steps: (1) Empirical Mode 

Decomposition (EMD) and (2) the Hilbert transform. 

    The objective of EMD is to pull out each mode of 

oscillation from a set of time series data. Through the 

empirical mode decomposition of the signal, a finite number 

of intrinsic mode functions (IMF) can be obtained upon which 

Hilbert analysis is done. An IMF is defined by a function 

having the identical number of zero crossings and extremums, 

and also having symmetric envelope defined by the local 

extremums [6]. 

    Since the EMD analysis method is based on the data, it is 

an intuitive and adaptive method [6]. Also, it is 

computationally less expensive since it does not involve time 

taking operations like convolution. 

    Through the application of the Hilbert transform, the IMFs 

are able to give instantaneous frequencies in time space which 

is better than the Fourier transform. The energy distribution in 

frequency space is not meaningful in Fourier transform for 

signals which are not stationary and linear. In this regard HHT 

give meaningful instantaneous frequency resolutions in 

comparison to Fourier and wavelet transforms. 

    In this study EMD analysis has been used upon vibration 

signals of grinding which are typically stochastic signals. The 

parent vibration signals are broken down into a finite number 

of IMFs in localized time space in the order of decreasing 

frequency and energy content in comparison to the parent 

signal. Consecutively, time domain features are extracted 

from each IMF which are discussed in details in section 3.   

 

3. Experimental Setup and Feature Extraction 

 

    For performing the experiments, an MGTL make plunge 

grinding machine was used. Apart from power cell, two 

accelerometers of specifications as mentioned in table 1 were 

used which were placed on the tailstock spindle in the in-feed 

direction (X axis) along with the tangential direction (Y axis) 

as shown in Fig. 1. The setup of the power cell is shown in 

Fig. 2. The grinding wheel and work piece details are 

mentioned in table 2. 

 

Table 1. Accelerometer and DAQ details. 

Type Make Number 

Sampling 

Frequency 

(Hz) 

Accelerometer Dytran 3055B2 2 10000 

Power Cell Load Control 1 67 

DAQ NI 9234 1  

DAQ NI 9205 1  

 

Table 2. Wheel and work piece details. 

 

3.1 Design of experiments 

 

Typically, a grinding cycle consists of consecutives phases of 

roughing, semi finishing, finishing and spark out [7]. In this 

study, the three levels of variation of the operational 

parameters are given in table 3.  

 

Table 3. Levels of operational parameters. 

  WS            RF SFF FF  WoS   

Level1  25 0.4 0.2 0.01  100   

Level 2  35 0.8 0.3 0.02 200 
  

Level 3  45 1.2 0.4 0.03 300 
  

Specifications      

Grinding wheel A80L5V Maximum 

cutting Speed  

45mps   

Work piece EN 31 Hardness 60 HRC   

Dressing cutter Blade type 

diamond 

dresser 

Width of 

dresser 

0.9mm   
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Fig. 1. Placement of accelerometers. 

 

Fig. 2. Power cell.  

 

3.2 Signal acquisition 

 

    The independent parameters in the grinding cycle (Feed 

rates) were designed in such a way that the cycle time lasted 

10 seconds. Power signals were acquired at sampling 

frequency of 67 Hz, whereas vibration signals in the normal 

and tangential direction were acquired at a frequency of 10 

kHz. Surface roughness (Ra) was noted after consecutive 

phases of grinding cycle using roughness profilometer. The 

schematic diagram of signal collection system is shown in 

Fig. 3. 

 

Fig. 3. Schematic setup of data acquisition. 

 

 

 

 

 

3.3 Feature extraction 

    Feature extraction is an integral step through which the 

dimensionality of the parent signal is reduced. The whole 

signal is converted into features of numerical values that 

represents the original signal as shown in table 4. The feature 

extraction has been done in two stages: a) Raw time domain 

parameters of the parent signals, b) Time domain parameters 

of the IMFs of the vibration signals.  It can be seen from Fig. 

4 that the energy of the signal is dominantly present on IMF 1 

to IMF 3. So, IMF 1 to IMF 3 were chosen for further feature 

extraction of their marginal spectra. The original signal and 

the overlap of IMF 1, IMF 2, IMF 3 and IMF 10 on parent 

signal are portrayed in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a. Plot of parent vibration signal in tangential 

direction. 

Fig. 4b. Overlap of IMF 1 and parent signal. 

Fig. 4c. Overlap of IMF 2 and parent signal. 
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Fig. 4. Parent signal and overlap of IMF signals on parent signal 

(RF=1.2mm/min, SF=0.4mm/min, FF=0.03mm/min, WS=45m/s, 

WoS=300RPM) 

 

Table 4. Time domain features.  
Time Domain 

Features 

Formula   

 

Mean 

 

 =   

  

    

 

RMS [8] 

 

 

Variance [8] 

 

 

Skewness [8] 

 

 

Kurtosis [8] 

 

 

Energy [9] 

 

Percentage Energy 

 

 
 

Xrms =
 

 

 

 

variance =  

 
 

skewness =   

 

 

 

kurtosis =    

 

 

 

energy =  

 

 

i percent energy = ith energy / energy 

 

  

Note:   is the  value of the IMF of length N. 

 

 

 

 
4.  Surface Roughness (Ra) prediction 

 

    A data driven model is made by using data from three 

sensors, a power cell and accelerometers in normal and 

tangential directions. The feature extraction process is divided 

into two stages. In the 1st stage, raw time domain parameters 

are extracted. In the 2nd stage, time domain features of the 

marginal spectra of the consecutive IMFs of the vibration 

signals are extracted. It may be noted that the time domain 

parameters of the marginal spectra of the consecutive IMFs of 

the power signals are not extracted since the sampling rate 

was low (67 Hz). In addition to the features extracted from 

these two stages, the operational   parameters of the grinding 

cycle: roughing feed, semi-finishing feed, finishing feed, 

work speed and wheel speed are included in the model for 

prediction of surface roughness Ra. In total 59 features (18 

raw time domain features, 36 time domain features of the 

marginal spectra, 5 for operational parameters) were used to 

make the data driven model. To avoid the problem of over 

fitting, the number of features need to be reduced. 

Random forest classifier has the capability to rank 

significance of features [10]. The importance of a particular 

feature is measured by a parameter called Gini index. While 

perturbing a feature, if the decrease in the Gini index is high, 

it depicts the significance of that particular feature. 

Random forest classifier is applied to our data set consisting 

of 59 features to get the relatively important features. The 

results of the random forest classifier are shown in Fig. 5. In 

the figure, the features are arranged in the decreasing order of 

their relative importance. Based on relative importance, 12 

features are further chosen for surface finish prediction. The 

list of 12 features which are further used for surface finish 

prediction are listed in table 5. These 12 features contain both 

the time domain parameters of the raw signals and the time 

frequency domain parameters of the marginal spectra of the 

IMFs of the vibration signals. 

     

Fig. 5. Plot of the relatively importance of the feature set. 

 

 

 

 

 

 

 

Fig. 4d. Overlap of IMF 3 and parent signal. 

Fig. 4e. Overlap of IMF 10 and parent signal. 
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Table 5. Relatively important features along with their rank. 

 

The complete flowchart for predicting surface finish in this 

data driven model is shown in Fig. 6. 

     Gradient boosting is a popular ensemble learning method 

for regression or classification. Gradient boosting algorithm 

differs from the random forests in the manner in which they 

are built. The gradient boosting algorithm generates one tree 

at a time, where each new tree generated helps to alleviate 

errors made by previously trained trees. The gradient boosting 

algorithm was applied to this data set for surface roughness 

prediction. If the parameters are tuned properly, the gradient 

boosting algorithm have proven to give less Mean Square 

Error (MSE) than other tree-based methods for predicting the 

presence of tree species [11], which is a comparison in real 

life application.  In regard to scaling to a large number of 

features, gradient boosting gives much better performance 

than random forests [12]. 

    The gradient boosting algorithm for surface roughness 

prediction was applied to two different data sets for surface 

finish prediction. The first data set only consisted of the time 

domain parameters of the raw signals among those 12 

dominant features from the random forest classifier as shown 

in table 5. The time domain parameters of the marginal 

spectra of the IMFs are not considered in this case.  

Fig. 6. Surface finish prediction methodology. 

 

The model can predict Ra with R2 values exceeding 48% with 

cross validation. The plot of the predicted values versus the 

actual values of the surface finish are shown in Fig. 7a. 

    In the 2nd stage, the data set for prediction consisted of both 

the raw time domain features of the power and vibration 

signals along with the time domain features of the marginal 

spectra of the vibration signals as shown in table 5. The 

feature vector contained the 12 dominant features obtained 

from the random forest classifier. In this case the model can 

predict surface finish with R2 values exceeding 88% with 

cross validation. The prediction accuracy increased 

substantially after including the time domain features of the 

marginal spectra. The plot of the predicted versus actual 

values of the surface finish are shown in Fig. 7b. 

    The model with gradient boosting algorithm was not the 

only model used for surface finish prediction. Other 

algorithms such as linear regression, multiple regression, 

support vector machine (SVM), artificial neural networks 

(ANN) were used for surface finish prediction. In all the 

models, the dominant 12 features obtained from the random 

forest classifier were used for surface finish prediction. Other 

algorithms were applied since such approach would give us a 

detailed and an exhaustive approach regarding the best 

algorithm that can be used for prediction. 

    The model with the best R2 value (statistical coefficient) 

and the least mean square error (MSE) was chosen as the best 

model for prediction. The gradient boosting algorithm proved 

to be the best model with R2 values exceeding 88% with cross 

validation. The methodology to obtain the best algorithm 

model is shown in Fig. 8. And the comparison bar graph for 

the various algorithms are shown in Fig. 9.  

 

Fig. 7a. Plot of predicted vs actual Ra in microns. 

 

 

Fig. 7b. Plot of predicted vs actual Ra in microns. 

 

Time Space and Rank Time Frequency Space and Rank 

Mean of ACC_N (1) 

Mean of ACC_T (2) 

PE of IMF3 of ACC_T      (6) 

Mean of IMF2 of ACC_N (7) 

Mean of Power   (3) 

SD of ACC_N     (4) 

SD of Power       (5) 

 

Mean of IMF1 of ACC_T (8)  

RMS of IMF1 of ACC_N (9) 

RMS of IMF3 of ACC_N (10) 

SK of IMF3 of ACC_N     (11) 

SK of IMF1 of ACC_T     (12) 

Note: These are relatively important 12 features for prediction 
of Ra. 
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Fig. 8. Flowchart to choose best algorithm. 

Fig. 9. Performance evaluation of various algorithms. 

 

 

5.  Conclusions 

 

    In this study, Empirical Mode Decomposition (EMD) was 

used for feature extraction in order to predict surface finish. 

The raw time domain features were also extracted additionally 

from the power and vibration signals. It was found that only 

the first three Intrinsic Mode Functions (IMF) contained the 

maximum energy. So, they were picked out and their marginal 

spectra were calculated. Subsequently their time domain 

features were found out. 

    Using EMD and gradient boosting algorithm, this model 

can predict surface finish with accuracies exceeding 88%. 

Using only the time domain features of the raw signals, only a 

prediction accuracy of 48% could be achieved. After the 

inclusion of features of the marginal spectra in the domain of 

time and frequency, the prediction accuracies exceeded 88%. 

It can be concluded that the application of EMD is fruitful for 

prediction of surface finish in outer diameter cylindrical 

grinding which is typically a non-linear and non-stationary 

process. 
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