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Measurements of the local density of states near impurities can be useful for identifying the
superconducting gap structure in alkali doped iron chalcogenide superconductors KxFe2−ySe2. Here,
we study the effects of nonmagnetic and magnetic impurities within a nearest neighbor d-wave and
next-nearest neighbor s-wave superconducting state. For both repulsive and attractive nonmagnetic
impurities, it is shown that sub-gap bound states exist only for d-wave superconductors with the
positions of these bound states depending rather sensitively on the electron doping level. Further,
for such disorder Coulomb interactions can lead to local impurity-induced magnetism in the case of
d-wave superconductivity. For magnetic impurities, both s-wave and d-wave superconducting states
support sub-gap bound states. The above results can be explained by a simple analytic model that
provides a semi-quantitative understanding of the variation of the impurity bound states energies
as a function of impurity potential and chemical doping level.

PACS numbers: 74.70.Xa, 74.20.Rp, 74.55.+v, 74.81.-g

I. INTRODUCTION

Alkali doped iron chalcogenide superconductors
AxFe2−ySe2 undergo a transition to an iron vacancy or-
dered structure at TS ∼ 578K, followed by magnetic
transition to a block antiferromagnetic state (BAFM)
at TN ∼ 559K.1–3 Below a temperature of Tc ∼ 32K
the compounds become superconducting.4 It is now well
documented that superconductivity phase separates from
the BAFM and exists in filamentary regions parallel and
perpendicular to the FeSe planes.5–15 In addition to the
presence of phase separation, any theoretical descrip-
tion of the superconducting state is necessarily altered
compared to the usual iron pnictides by the absence of
Fermi surface hole pockets.Experiments find only elec-
tron pockets around the M points of 1 Fe Brillouin zone
at kz = 0 and the development of additional electron
pockets around the Z point.16–18 The description of a
spin-fluctuation based pairing mechanism in iron based
pnictide superconductors argues for a leading s± pair-
ing instability based on (π, 0) nesting between the elec-
tron and hole Fermi surface sheets.19 The alkali doped
iron chalcogenides therefore violate such arguments since
the absence of hole pockets imply that the relevant nest-
ing vector for these systems is not (π, 0) but the weaker
(π, π) nesting between electron pockets at the M points.
Theoretical calculations for the superconducting ground
state are currently inconclusive and predictions have been
made for both d-wave20,21 and s-wave22,23 pairing sym-
metry.

Experiments have found evidence for the absence of
a nodal structure in the superconducting gap.10,16,17,24

This does not identify the gap symmetry in alkali iron
selenides since neither d-wave nor s-wave symmetry pos-

sess any symmetry enforced nodes at kz = 0 for this
Fermi surface. However, a symmetry based argument has
shown that inclusion of kz dispersion would require the
d-wave symmetry to possess nodes in the gap structure.25

The case for s-wave superconducting gap is further sup-
ported by angular resolved photoemission (ARPES) mea-
surements in Ref. 26 that find an isotropic superconduct-
ing gap structure at the Z point where an electron pocket
exists. Scanning tunnelling microscopy (STM) experi-
ments have observed a double gap feature in the local
density of states (LDOS).9,10

Previous theoretical studies of impurity effects
in potassium doped iron selenide superconductors
KxFe2−ySe2 have investigated the role of nonmagnetic
impurities in identifying the characteristic difference be-
tween superconducting gap symmetries.27,28 For exam-
ple, Zhu et al.

27 studied the effects of repulsive nonmag-
netic impurity potentials using a T-matrix approach for
various gap symmetries, and found that sub-gap bound
states close to gap edge are generated for d-wave but
not for s-wave (next-nearest neighbor pairing) super-
conductivity. Another calculation based on a three or-
bital tight-binding Hamiltonian and the Bogoliubov-de
Gennes (BdG) method found that only attractive non-
magnetic impurity potentials generate sub-gap bound
states for d-wave gap symmetry.28 This discrepancy be-
tween theoretical models for impurity bound states in
iron-based superconductors has been recently pointed out
to arise naturally for these systems due to strong sensitiv-
ity to the particular band structure and superconducting
gap function.29 Therefore, it seems important to use re-
alistic five-band models with self-consistently generated
superconducting pairing in order to minimize the effects
of free parameters within the various models.
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In this work we study the impurity LDOS in the su-
perconducting state of KxFe2−ySe2 using a realistic five-
band microscopic model for this material. Superconduc-
tivity is introduced into the model by using the effec-
tive pairing interactions obtained within the RPA spin-
fluctuation exchange mechanism. We focus on nearest
neighbor (NN) d-wave and next-nearest neighbor (NNN)
s-wave superconducting states since these are the leading
candidates for the ground state gap symmetry in these
materials. Note that in the absence of a hole pocket
around the Γ point, the NNN s-wave symmetry does not
possess a sign change in the superconducting gap, and
the only difference between the two gap symmetries is
the absence (presence) of a relative sign difference be-
tween the gap on the electron pockets at the M points
for s-wave (d-wave) pairing.

We find that sufficiently strong nonmagnetic scatter-
ers lead to sub-gap bound states both for repulsive and
attractive impurity potentials for the case of d-wave pair-
ing. The location of the bound states depend rather
strongly on the electron doping and approach zero bias
for increased electron doping. Hence, we propose to mea-
sure the LDOS for maximally electron doped KxFe2−ySe2
samples to clearly identify the possible existence of sub-
gap bound states.
For magnetic impurities, bound states exist within the

superconducting gap for both d- and s-wave pairing as
expected. It may, however, be too naive to split up
the scatterers into nonmagnetic and magnetic since, as
we show, in the case of d-wave superconductivity puta-
tive nonmagnetic impurity potentials may take advan-
tage of significant Coulomb correlations to locally pin
magnetic fluctuations and generate magnetic droplets
around the impurity sites. This mechanism can be un-
derstood as a local Stoner instability and has been dis-
cussed extensively in the literature.31–43 The existence of
impurity-induced order may be particularly relevant to
alkali doped iron chalcogenides due to the evidence of sig-
nificant electronic interactions44 and the likely presence
disordered vacancies (which in the vacancy ordered state
induce the BAFM order) in the superconducting regions.
We note that the presence of impurity-induced magnetic
order is only relevant for d-wave pairing, and hence our
conclusion of absence (presence) of sub-gap bound states
for d-wave (s-wave) pairing symmetry remains robust.

II. MODEL

For the five orbital model the Nambu space is de-

fined by the creation and annihilation operators Ψ†
µk =

(c†µk↑, cµ−k↓), and Ψµk = (cµk↑, c
†
µ−k↓), respectively.

Here c†µk↑(cµk↓) denotes the creation (annihilation) oper-
ator with orbital index µ being one of the five d-orbitals,
dxz, dyz , dx2−y2 , dxy and d3z2 , k is the momentum index,
and ↑ (↓) is the spin projection. The Hamiltonian for the
alkali doped iron chalcogenides in the superconducting
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FIG. 1. (Color online) (a) Band structure of KxFe2−ySe2.
Here the color codes represent green: dxz, red: dyz, pink:
dx2

−y2 , blue: dxy, yellow: dz2 . (b) Orbitally resolved Fermi
surface at kz = 0. Outer pockets correspond to doping
level n = 6.23 electrons/Fe, middle pocket to n = 6.19 elec-
trons/Fe, and inner pocket to n = 6.14 electrons/Fe.

state can be expressed in this Nambu basis as

Ĥ(k) =

(

Ĥ0(k) ∆̂(k)

∆̂†(k) −Ĥ∗
0 (k)

)

(1)

Here Ĥ0(k) is a 5 × 5 matrix that represents the tight-
binding Hamiltonian

Ĥ0(k) =
∑

µν,σ

tµν
k
c†
kµσckνσ − µ0

∑

kµσ

nkµσ, (2)

where µ0 is the chemical potential and the indices µ and
ν correspond to the five Fe d-orbitals. The hopping pa-
rameters tµν

k
include hoppings to the second next-nearest

neighbors and are identical to those discussed in Ref. 45
and 46. To calculate the electronic structure we enforce
an electron doping of 0.15 electron per Fe (calculated
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for the bulk system) by adjusting the chemical potential
to µ0 = −0.25eV. The band structure derived from the
tight-binding Hamiltonian and the corresponding Fermi
surface at kz = 0 are shown in Fig. 1(a,b) respectively.
The Fermi surface sheets at kz = 0 have been plotted in
Fig. (1)(b) for three different doping levels correspond-
ing to n = 6.23 electron/Fe, n = 6.19 electrons/Fe, and
n = 6.14 electrons/Fe. As seen from Fig. (1)(b), upon
increasing the electron doping the shape of the Fermi sur-
face becomes more elliptical and its orbital character gets
dominated by the xy orbital.

The off-diagonal block in Eq.(1) contains the super-

conducting part of the Hamiltonian. Here ∆̂(k) is a 5×5
matrix extracted from the quartic interaction term that
leads to the superconducting instability

HSC =
∑

µν

[∆µν
k
c†−kµ↑c

†
kν↓ +H.c.], (3)

with the superconducting gap function ∆µν
k

defined as

∆µν
k

=
∑

k′

Γµ,ν
µ,ν(k,k

′)〈ck′ν↓c−k′µ↑〉. (4)

Here, Γµ,ν
µ,ν(k,k

′) is the pairing interaction obtained
from the spin-fluctuation exchange mechanism as men-
tioned above. The details of the calculations of the pair-
ing interaction and superconducting gap value can be
found in Ref. 46. As discussed in Ref. 46 the LDOS for
the homogeneous superconducting state evaluated from
this model reveals a nodeless gap for both d-wave and
s-wave superconducting pairing symmetry.

We solve the single impurity problem in KxFe2−ySe2
superconductors using the so-called T-matrix approach.
This requires evaluation of the bare Greens function in
Nambu space using the Hamiltonian in Eq.(1)

Ĝ−1
0 (k, iωn) = iωnÎ − Ĥ(k), (5)

where ωn = (2n + 1)πT is the Matsubara frequency for
fermions. In the following we assume that the impuri-
ties substitute iron atoms and act as short-ranged poten-
tial scatterers.30 The full Greens function in real-space is
given by

Ĝ(i, j; iωn) = Ĝ0(i−j; iωn)+Ĝ0(i; iωn)T̂ (iωn)Ĝ0(−j; iωn).
(6)

Here, the Greens function is evaluated by Fourier trans-
formation Ĝ0(i, j; iωn) = 1

NxNy

∑

k
Ĝ0(k; iωn)e

ik·(ri−rj)

with NxNy denoting the total number of lattice sites.

The T̂ -matrix is given by

T̂ (iωn) = Ĥimp[Î − Ĝ0(0, 0; iωn)Ĥimp]
−1, (7)

where the impurity potential Hamiltonian is given by

Ĥimp = VimpΨ
†
0τ3Ψ0 for nonmagnetic scatterers and

Ĥimp = VmagΨ
†
0τ0Ψ0 for magnetic scatterers. Here,
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FIG. 2. (Color online) LDOS for nearest neighbor sites
around a nonmagnetic impurity for repulsive potentials Vimp

at n = 6.19 electrons/Fe in the case of d-wave (a) and s-
wave (b) pairing. Here the color codes represent red: Vimp =
103eV, green: Vimp = 10eV, blue: Vimp = 3eV, black: homo-
geneous case.

τ = (τ1, τ2, τ3) denote Pauli spin matrices in the 10× 10
Nambu space and τ0 is the identity matrix. For simplic-
ity we include only the effects of constant intraorbital
impurity potentials.

It can be instructive to compare the results obtained
numerically from the multi-band T-matrix approach with
the corresponding single-band analytic expressions to
identify the role of multi-band physics in these sys-
tems. The bound state energy can be obtained from
the T-matrix given in Eq.(7) by evaluating the zeroes

of det[Î − Ĝ0(0, 0; iωn)Ĥimp]. For a single-band problem
the bare Greens function is a 2 × 2 matrix with compo-
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nents

ℜ[G0,11/22(0, 0;ω)] =
∑

k

ω ± ξ(k)

ω2 − ξ(k)2 −∆2

= γ(ω)ω ∓ α (8)

ℜ[G0,12/21(0, 0;ω)] =
∑

k

∆

ω2 − ξ2(k) −∆2
. (9)

Here, ξ(k) is the single-particle dispersion and ∆ the
superconducting gap. We have introduced γ(ω) =

− πN(0)ω√
∆2−ω2

with N(0) denoting the density of states at

the Fermi level. The parameter α depends on details of
the band structure and anisotropy of the superconduct-
ing gap over the Fermi surface. For the simplest case
of an isotropic superconducting gap, α is given by the
expression

α =
N(0)

2
log

(

B2 +∆2 − ω2

A2 +∆2 − ω2

)

(10)

Where B and A denote the maximum and minimum of
the band with respect to the chemical potential.
The off-diagonal parts of the bare Greens function van-

ish ℜ[G0,12/21(0, 0;ω)] = 0 for a d-wave superconducting
gap since

∑

k
∆(k) = 0. This occurs because although

the gap over a Fermi pocket does not change sign for d-
wave symmetry it changes sign between the two electron
pockets at the M points. For an s-wave symmetry the off-
diagonal term is given by ℜ[G0,12/21(0, 0;ω)] = γ(ω)∆.
Using the above formulation the bound state energy ωB

for a nonmagnetic impurity is given by,

ω2
B =

ω2
0 + p

ω2
0 + 1

∆2, (11)

with p = 0 for d-wave and p = 1 for s-wave symmetry.
The impurity potential is included through the dimen-
sionless term ω2

0 = 1
π2N(0)2 (1/Vimp + α)2.

In the case of a magnetic impurity potential, the sin-
gularity condition for the T-matrix leads to the following
expression for bound state energy given by,

ω2
B =

−(1− λ)(λ − p)− x±
√

x2 − 2x(λ− p)(1− p)

(1− λ)2 + 2x
∆2,

(12)
where x = 2

π2N(0)2V 2
mag

, and λ = 1
π2N(0)2 (1/V

2
mag − α2).

In the next section we discuss the results of LDOS
around nonmagnetic and magnetic impurities using the
numerical five band T-matrix approach and compare the
results with the analytic expressions derived in Eq. (11)
and Eq. (12).

III. RESULTS

The LDOS for the nearest neighbor sites around non-
magnetic impurities are shown in Fig. 2 and Fig. 3 for
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FIG. 3. (Color online) LDOS for nearest neighbor sites
around a nonmagnetic impurity for attractive impurity po-
tentials Vimp at n = 6.19 electrons/Fe in the case of d-wave
(a) and s-wave (b) pairing. The color codes represent red:
Vimp = −103eV, green: Vimp = −10eV, blue: Vimp = −3eV,
black: homogeneous case.

repulsive and attractive potentials, respectively. For re-
pulsive impurity potentials we find that sub-gap bound
states exist only in the presence of a d-wave supercon-
ducting gap in general agreement with Anderson’s the-
orem. For systems with an electron doping of n =
6.19 electrons/Fe at kz = 0 (which corresponds to
n = 6.15 electrons/Fe for the bulk (kz-summed) sys-
tem) the LDOS around large repulsive potentials such as
iron vacancies shows sub-gap bound state peaks around
ωB/∆ ∼ 0.55. The bound state peak position saturates
around this value of ωB/∆ ∼ 0.55 and does not shift
further into the superconducting gap for larger impurity
potentials. It can also be seen from Fig. 2(a) that the
bound state peak positions move towards the gap edge
for weaker repulsive potentials in agreement with earlier
calculations by Zhu et al.

27

For attractive impurity potentials the sub-gap bound
states are also found to exist only for d-wave gap sym-
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FIG. 4. (Color online) Re[G0,xy(x = 0, y = 0, ω)] and DOS
versus ω in the superconducting state for different electron
doping levels. The sub-gap bound state positions for non-
magnetic impurities are well represented by the condition
Re[G0,xy(x = 0, y = 0, ω)] = 1/Vimp. Horizontal lines rep-
resent 1/Vimp values with colors red: Vimp = ±103eV, green:
Vimp = ±10eV, blue: Vimp = ±3eV.

metry. As can be seen in Fig. 3(a), the bound state peak
positions in this case move towards zero bias for impu-
rity potential of Vimp ∼ −10eV. Note that the bound
state peak position saturates at ωB/∆ ∼ 0.55 for large
impurity potentials even when the potential is attractive.

The location of the resonant peaks in the d-wave su-
perconducting state for the entire range of nonmagnetic
impurity potentials can be understood from Fig. 4 which
displays Re[G0,xy(x = 0, y = 0, ω)] as a function of ω
for the same three doping levels as in Fig. 1(b). Note
that xy index in the bare greens function refers to its
diagonal component corresponding to the xy orbital. As
seen from the cuts of the green, blue and red impurity
potential line on the short dashed curve representing elec-
tron density of 6.19 electrons/Fe, the resonant peaks in
Fig. 2 lie at positions corresponding to ω values where
1/Vimp = Re[G0,xy(x = 0, y = 0, ω)]. The good corre-
spondence between the sub-gap peak position and the
ω value given by 1/Vimp = Re[G0,xy(x = 0, y = 0, ω)]
for a d-wave superconducting gap is due to the condition
∑

k ∆k = 0 which makes the bare Greens function matrix
diagonal.

Our results for attractive impurity potentials agree
qualitatively with those by Wang et al.

28 but unlike their
results we also find sub-gap bound states for repulsive
potentials for d-wave superconductivity as evident from
Fig. 2(a). Such discrepancies could arise from variations
in band structure or due to differences in chemical dop-
ing. In Fig. 4 we also show Re[G0,xy(x = 0, y = 0, ω)] for
doping levels n = 6.14 and n = 6.23 electrons/Fe, respec-
tively. As can be seen by intersection of the bare Greens
function with 1/Vimp, for n = 6.23 the bound state peaks
for a given repulsive impurity potential move closer to
zero bias compared to n = 6.19. However, for lower elec-
tron doping of n = 6.14 the sub-gap bound states are
pushed to the gap edge for all repulsive impurity poten-
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FIG. 5. (Color online) LDOS for nearest neighbor sites for
an intraorbital magnetic impurity potential Vmag at n = 6.19
electrons/Fe. The color codes represent red: Vmag = 103eV,
green: Vmag = 10eV, blue: Vmag = 5eV, and black: homoge-
neous DOS.

tials even for a d-wave superconducting state, and can
exist within the d-wave superconducting gap only for
attractive impurity potentials. The significant shift of
the bound state peak position with chemical doping re-
sults from a change in electron concentration as well as a
change in shape and orbital content of the Fermi surface
as shown in Fig.1(b).

In order to better understand the significant shifts in
the bound state peak positions with changes in chemical
doping we can compare the numerical results in Fig. 2,
and Fig. 3 with the analytic expression given in Eq. (11).
We find that the single-band analytic form for the param-
eter α given in Eq. (10) cannot describe the strong shift
in bound state peak positions with changes in impurity
potential or chemical doping for nonmagnetic impurities.
However since the Fermi surface and the normal state
DOS are dominated by the dxy orbital, we introduce an
effective single-band model with renormalized parame-
ters α and πN(0). Specifically we take α and πN(0)
as free parameters and fix their values such that the
bound state energy obtained from the analytic expres-
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sion in Eq. (11) agrees with the full 5 orbital T-matrix
calculation for Vimp = 103eV and Vimp = 10eV. Apply-
ing this procedure for different electron densities we get
1/(πN(0)) = 4.728eV and 1/α = 10eV for n = 6.19 elec-
trons/ Fe, n = 6.23 corresponds to 1/(πN(0)) = 10eV,
α = 0, and n = 6.14 gives 1/(πN(0)) = 4.313eV,
1/α = 4.651eV. Having obtained the parameter values
for α and πN(0) we now test the correspondence be-
tween the analytic expressions in Eq. (11) and Eq. (12)
with the numerical solution for arbitrary impurity poten-
tials. In Fig. 6(a) the plot of bound state peak position
ωB obtained from Eq. (11) is shown against 1/Vimp for
different electron densities in the presence of nonmag-
netic impurities. Interestingly, the bound state positions
evaluated from the analytic expression in Eq. (11) agree
quantitatively with the results obtained from the numeri-
cal calculation of the full five band T-matrix approach for
all values of nonmagnetic impurity potentials including
the results presented in Fig. 2 and Fig. 3. We attribute
this agreement with the functional form of a single-band
model to the dominant role of the dxy orbital in the nor-
mal state DOS and the orbital resolved superconducting
gap magnitudes.46

LDOS calculations have also been performed in the
presence of local magnetic impurities. The results are
shown in Fig. 5(a,b). It is found that impurity induced
multiple sub-gap bound states exist for both d-wave and
s-wave superconducting gap symmetries again in overall
agreement with Anderson’s theorem. These results hold
significance for the alkali iron chalcogenides since the
superconducting state exists in phase separated regions
from a strong BAFM state. Multiple bound state peaks
have been found in the LDOS calculation near an inter-
face between a superconductor and a

√
5 ×

√
5 vacancy

ordered BAFM state in KxFe2−ySe2 for both s-wave and
d-wave superconducting states in Ref. 46. Though the
vacancies act as large nonmagnetic impurity potentials
and are expected to generate sub-gap bound state peaks
only for a d-wave pairing as discussed above, the presence
of BAFM magnetism leads to sub-gap bound states for
both d-wave and s-wave superconducting state. It is this
collective influence of vacancy potential and magnetism
that explains the sub-gap bound state peaks for both d-
wave and s-wave superconducting states found near in-
terfaces between superconducting and BAFM regions in
Ref. 46

The numerically obtained bound state peak positions
can be again compared to the analytic expression for a
single-band model. The solutions of Eq. (12) are plot-
ted in Fig. 6(b,c) for the same parameters πN(0) and
α that were obtained for the case of nonmagnetic impu-
rities. The analytic solution agrees with the numerical
results for all magnetic impurity potentials including the
results presented in Fig. 5. The sub-gap peak position
plots in Fig. 6(b,c) also reveal that magnetic impurities
can lead to multiple bound states. For an s-wave state
shown in Fig. 6(b) we never find more than two sub-gap
bound states whereas d-wave states generally form four
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FIG. 6. (Color online) Position of the sub-gap bound state
energy versus 1/Vimp obtained using Eq. (11) and Eq. (12)
for different electron doping levels. (a) Nonmagnetic impu-
rities in the case of d-wave pairing symmetry. (b) Magnetic
impurity in s-wave superconductor. (c) Magnetic impurity
in d-wave superconductor. No sub-gap bound states exist
for doping level of n = 6.23 electrons/ Fe. Plot symbols for
the different doping level are same as those used in Fig.4.
Vertical lines show position of impurity potential with colors
corresponding to Vimp values used in Fig.2, Fig.3, and Fig.5.

sub-gap peaks as seen directly from Fig. 6(c). However
this difference is observable only for strong magnetic im-
purity potentials since the multiple bound state peaks
are pushed towards the superconducting gap edge and
become difficult to resolve for weaker magnetic impurity
potentials.

IV. NONMAGNETIC IMPURITY-INDUCED

MAGNETISM

In the presence of nonmagnetic impurities in a d-wave
superconductor, local magnetic order may be pinned
around the impurity site if the Coulomb interaction is
strong enough to cause a local Stoner instability and not
large enough to cross the bulk Stoner criterion (which is
close to U ∼ 1eV, J = 0.25U in the present case).31–43

Impurity-induced magnetism is found to be absent for s-
wave superconductors in agreement with the fact that



7

x

y
HaL

-0.33

0.43

-30 -20 -10 0 10 20 30
0.00

0.05

0.10

0.15

0.20

Ω @meVD

L
D

O
S
@

ar
b.

un
its
D

HbL

FIG. 7. (Color online) (a) Real-space map showing local mag-
netization induced by a nonmagnetic impurity potential in the
d-wave superconducting phase. (b) LDOS for homogenous
(blue) and nearest neighbor point (purple) for a nonmagnetic
impurity potential. Here impurity potential Vimp = 4eV and
Coulomb interaction U = 0.95eV and J = U/4. The electron
density is fixed at n = 6.19 electrons/Fe.

they do not support sub-gap bound states and hence
cannot produce the large DOS enhancement required for
locally crossing the Stoner instability. We have calcu-
lated the local induced moments and associated LDOS
for a d-wave superconductor shown in Fig. 7(a,b) using
a BdG formalism similar to Refs. 42, 43, and 46 for the
case with U = 0.95eV and J = U/4 and nonmagnetic

impurity potential of Vimp = 4eV. The average parti-
cle density was kept fixed at n = 6.19 electrons/Fe. In
Fig. 7(a) we show the magnetization generated around an
impurity. Owing to the dominant (π, π) nesting over the
Fermi surface, we find that the impurity induced moment
also forms a local (π, π) magnetic order. This leads to a
bound state peak in the LDOS close to zero bias as seen
from Fig. 7(b). Note that in the usual case of a non-
magnetic impurity with Vimp = 4eV the LDOS bound
state peak is expected to lie close to the gap edge as seen
from Fig. 4. Hence the contribution to the peak position
is primarily from the induced magnetic moments. Thus
the presence of induced magnetic order shifts the sub-gap
peak positions in the case of d-wave superconductivity.
However, the fact that nonmagnetic disorder in s-wave
superconducting states generates neither sub-gap states
nor induced order (which would generate effective mag-
netic impurities and hence sub-gap states) means that
the existence of sub-gap bound state is a robust distinc-
tive feature between d- and s-wave superconductivity in
the alkali doped iron chalcogenide superconductors.

V. CONCLUSIONS

The presence of attractive or repulsive nonmagnetic
impurities in the alkali doped iron chalcogenide super-
conductor KxFe2−ySe2 leads to sub-gap bound states for
d-wave pairing symmetry, and does not produce any such
states for the s-wave superconducting state. By studying
the effect of changes in chemical potential we have shown
that the bound state positions move towards zero bias
upon electron doping. This result suggests that it may
be favorable to search for sub-gap conductance peaks in
samples with larger electron doping since there they are
likely to be easier to resolve from the gap edge. Addition-
ally, in the presence of magnetic impurities we find that
multiple sub-gap peaks are generated for both d-wave
and s-wave superconducting states. This is in agreement
with the presence of sub-gap bound state peaks near in-
terface between s-wave or d-wave superconductors and a
vacancy ordered BAFM state in calculations performed
recently in Ref. 46. Lastly, we have discovered the exis-
tence of impurity-induced magnetism generated by (bare)
nonmagnetic scattering potentials in the case of d-wave
pairing. Since no such effect exists for the s-wave case,
the presence of sub-gap peaks as a measure for the pair-
ing symmetry remains robust for these materials.
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