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Improved redox anti-cancer 
treatment efficacy through reactive 
species rhythm manipulation
Uma Kizhuveetil, Sonal Omer, D. Karunagaran  & G. K. Suraishkumar  *

Rhythms in the pseudo-steady state (PSS) levels of reactive species (RS), particularly superoxide 
and hydroxyl radicals, exist in cancer cells. The RS rhythm characteristics, particularly frequency 
and amplitude, are entrained (reset) by the anticancer compounds/drugs. In this work, we show for 
the first time that the phase of the RS rhythm at which the drug is added is significantly important 
in determining the cytotoxicity of anticancer compounds/drugs such as menadione and curcumin, 
in two different cancer cell lines. Curcumin, the more effective of the two drugs (IC50 = 15 µM, SiHa; 

6 µM, HCT116) induced reset of superoxide and hydroxyl rhythms from 15.4 h to 9 h, and 25 h to 11 h 
respectively, as well as caused increases in these radical levels. However, menadione (IC50 = 20 µM, 

SiHa; 17 µM, HCT116) affected only the superoxide levels. Drug treatment at different time points/
phase of the RS rhythm resulted in a maximum of 27% increase in cytotoxicity, which is significant. 
Further, we report for the first time, an unexpected absence of a correlation between the intracellular 
PSS RS and antioxidant levels; thus, the practice of using antioxidant enzyme levels as surrogate 
markers of intracellular oxidative stress levels may need a re-consideration. Therefore, the RS rhythm 
could be a fundamental/generic target to manipulate for improved cancer therapy.

Reactive oxygen species (RS) such as superoxide and hydroxyl radicals seem to be an important set of molecular 
mediators of the effectiveness of many anticancer therapies; they are also important determinants of the cellular 
redox status and conditions such as hypoxia1–7. RS are also known to regulate cellular rhythms, and the compo-
nents of the cellular redox system such as glutathione, glutathione reductase and NAD+ have been shown to be 
rhythmic8–11. Such rhythms along with their crosstalk with the timekeeping mechanisms control the metabolic, 
transcriptional and translational machinery in the cells12,13. Further, the rhythms and their alterations have been 
linked to immune gating responses, lipid peroxidation levels as well as to drug resistance observed in some treat-
ments4,14–19. However, the rhythms in the pseudo-steady state (PSS) levels of the more fundamental molecules, 
the RS themselves, have not been reported in the above context, probably due to an incorrect perception of their 
utility, given their high reaction rates.

The cellular antioxidant levels have been used as an indirect measure of the oxidative stress in the cells20, 
and oxidative stress is caused by an imbalance in the rates of production and consumption of reactive species21. 
The indirect measure seems to arise from an expectation based on the molecular interactions between enzy-
matic antioxidants and the relevant RS – e.g. superoxide dismutase (SOD) and superoxide. However, the dynamic 
aspects of the cell system do not seem to be considered in that expectation. For example, the rate constants of the 
RS reactions are many orders of magnitude higher than the synthesis rates of enzymatic antioxidants through 
transcription/translation. Also, the presence of a certain basal level of antioxidants does not explain the dynamic 
relationship between the RS and antioxidants. Here we show that no correlation exists between the temporal 
intracellular PSS specific levels of SOD and superoxide in untreated or drug treated SiHa or HCT116 cells. It is 
a reasonably common practice to use the easily measurable antioxidant enzyme levels as a surrogate measure 
of oxidative stress caused by increased RS levels in cells. The lack of a relationship between RS and the relevant 
antioxidant in a cancer cell line (mammalian cell), a bacterium and a microalga suggest that the above common 
practice needs re-consideration.

The pseudo-steady-state levels of RS can be measured using cell-permeable fluorescent dyes. The common 
approach, however, is to measure the total oxidative capacity of the cells in terms of H2DCFDA fluorescence. This 
approach is inaccurate due to contributions to measured fluorescence by many molecules21. However, the use 
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of other dyes to obtain the PSS levels of RS has been shown to be valuable22. They also provide the variations in 
individual PSS RS levels, which we show to be important in terms of drug activity.

In this work, we report the rhythmic nature of temporal variation of PSS RS levels in two cancer cell lines, the 
cervical cancer cell line SiHa and the colon cancer cell line HCT116. We also report the entrainment (reset) of 
these rhythms upon treatment with two well-known anticancer agents, menadione and curcumin. The cytotox-
icity induced by the drugs was dependent on the time of drug addition. A larger reset of rhythm was associated 
with higher therapeutic efficacy of the drug, which implies a relationship between cell death and RS rhythm reset. 
Analyses of the basal and altered rhythms of RS in cancer cells are expected to improve our understanding of 
stress response and RS homeostasis in cancer treatment.

Results and Discussion
Menadione and curcumin differently altered superoxide and hydroxyl radical levels. Menadione 
(vitamin K3) is a synthetic vitamin, which induces superoxide production through a redox cycling mechanism23. 
Curcumin, obtained from Curcuma longa, is a polyphenolic compound reported to have pro-oxidant effects24. 
Even though the exact mode of action of curcumin is not well known, both the compounds are known to induce 
cytotoxicity in cancer cells through induction of RS25,26. We determined the cytotoxicity induced by menadione 
and curcumin in SiHa, a cervical cancer cell line, and HCT 116, a colon cancer cell line, using the MTT assay. It 
was observed that both menadione and curcumin showed a concentration-dependent cytotoxic effect on both 
cell lines. However, curcumin was the more effective of the two drugs with an IC50 value of 15 µM and 6 µM 
respectively, in SiHa and HCT116, compared to menadione, which had an IC50 of 20 µM and 17 µM, respectively, 
as shown in Fig. 1a,b.

Menadione treatment resulted in increased superoxide levels as shown in Fig. 2a,b. The superoxide levels 
induced in menadione treated SiHa showed a maximum of 3-fold increase compared to the untreated control for 
the same time point. Menadione induced a 2.2-fold increase in superoxide levels in HCT116 as well. However, 
menadione did not induce a comparable change in the hydroxyl radical levels in either of the cell lines as can be 
seen in Fig. 3a,b.

Figure 1. Variation of cytotoxicity of menadione (∆) and curcumin (■) with concentration on (a) SiHa and 
(b) HCT116. The cells were seeded at 1 × 104 cells per well. The cell viability was measured using MTT, 48 h post 
drug treatment. Values are expressed as mean ± SD, n = 3.
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On the other hand, curcumin effected changes in both superoxide (Fig. 2) and hydroxyl (Fig. 3) radical lev-
els. The effect of curcumin on hydroxyl radical levels was more pronounced in SiHa with a maximum 3.4-fold 
increase as compared to a 1.9-fold increase in HCT116, whereas superoxide levels showed a maximum of about 
2.8-fold increase in both the cell lines. These results imply that the mode of action of the two drugs involves mech-
anisms that alter different types of RS in the cell. The various RS such as hydrogen peroxide, superoxide, hydroxyl, 
peroxyl, etc., have widely different damage potentials27,28. The levels of ‘total ROS’ (ROS- reactive oxygen species) 
measured through say, H2DCFDA, a popular fluorescent probe, may not be an appropriate measure of oxidative 
stress in such cases21.

The temporal levels of antioxidants and reactive species are not correlated. The expression pro-
files of the antioxidant enzymes are more commonly used to represent the variations of the redox status of the 
drug-treated cells20. Therefore, we decided to check the SOD and catalase temporal profiles in menadione and 
curcumin-treated SiHa and HCT116. Menadione treated SiHa cells showed lesser levels of SOD as compared to 
the untreated SiHa cells. Although menadione did not induce any considerable changes in SOD levels in HCT116 
(Fig. 4c), it reduced the levels of SOD in the 20 µM menadione treated SiHa by about 75% as compared to the 
control at 12 h post drug treatment (Fig. 4a). Catalase levels were not significantly affected in either of the mena-
dione treated cells (Fig. 4b,d). The effect of curcumin on SOD or catalase levels were not significant in both the 
cell lines (Fig. 4).

Curcumin did not significantly affect both the intracellular antioxidant enzymes under consideration, whereas 
it significantly affected both intracellular superoxide and hydroxyl levels. This leads to the question whether there 
is any correlation between the temporal variations of various RS and antioxidant concentrations in the cells. 
Graphs were plotted between the temporal levels of PSS RS and enzyme levels to investigate a possible dynamic 
correlation between the two. For one of the most direct RS - antioxidant pairs, superoxide-SOD reported29,30, 
it was observed that there is no apparent correlation, as seen from the coefficient of determination (R2) for a 
linear relationship between the pseudo steady-state levels of SOD and superoxide radical levels (Fig. 5) in either 
the untreated or the drug-treated cells. A similar lack of correlation was observed in other systems such as a 
microalga, Chlorella vulgaris, and a bacterium, Bacillus subtilis (Supplementary Figs. 1, 2). This lack of correla-
tion between the dynamic levels of RS and its scavenging enzyme suggests that the individual antioxidant values 
are not surrogate measures even for ‘their’ RS. Also, as mentioned in the introduction the characteristic time 

Figure 2. Temporal variations of specific intracellular concentration of superoxide anion radicals (si 
Superoxide) in untreated (●), menadione treated (∆) and curcumin treated (■) cells (a) SiHa and (b) HCT116. 
Cells were seeded in 6 well plates and synchronized for 24 h in serum free medium. 0 h corresponds to the time 
of medium change to DMEM with 10% FBS with treated or untreated. Values are expressed as mean ± SD, n = 3.

https://doi.org/10.1038/s41598-020-58579-2


4SCIENTIFIC REPORTS |         (2020) 10:1588  | https://doi.org/10.1038/s41598-020-58579-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

constants of RS reactions and the relevant antioxidant enzyme synthesis through transcription-translation are 
different by many orders of magnitude. Therefore, the use of antioxidants as markers of cellular stress levels may 
need a re-consideration. The above results also suggest that the use of antioxidant rhythm in therapy may be inap-
propriate as manipulation of temporal variations of antioxidants might not be able to induce the desired changes 
to the RS levels in cells. Instead, if a time-profile of RS in the relevant tissues can be generated, the antioxidant 
intake can be temporally designed to coincide with high RS levels to ensure effectiveness.

Entrainment of redox rhythms in menadione and curcumin treated SiHa and HCT116 cells.  
Analysis of the temporal variations of RS levels in untreated and drug treated cells was done by using Lomb 
Scargle Periodogram (LSP) method in PAST software, to determine the periodicity of the data (Table 1), as men-
tioned in Materials and Methods. It was observed that there is an endogenous superoxide rhythm of about 15.4 h 
and 23 h respectively in the untreated SiHa and HCT116 cells. Interestingly, both menadione and curcumin 
induced entrainment (reset) of these endogenous rhythms to a shorter period. The curcumin induced reset was 
more pronounced with changes from 15.4 h to 9.6 h in SiHa and 23 h to 8.2 h in HCT116 as compared to mena-
dione induced reset from 15.4 h to 11 h in SiHa and 23 h to 12 h in HCT116 (Supplementary Fig. 3). Also, this 
improved reset of rhythms by curcumin occurred at lesser drug concentrations as compared to menadione in 
both the cell lines.

Hydroxyl radical levels in both SiHa (25 h) and HCT116 (20.2 h) showed an endogenous, near circadian 
rhythm (Table 1). Even though no considerable changes in hydroxyl radical levels were observed when the cells 
were treated with menadione. Interestingly, menadione induced a slight rhythm reset from 25 h to 21.74 h in SiHa 
and 20.2 h to 15.4 h in HCT116. The curcumin treated cells showed a larger hydroxyl radical rhythm reset from 
25 h to11.1 h in SiHa and 20.2 h to 8.9 h in HCT116 (Supplementary Fig. 4). The higher efficacy of curcumin as 
compared to menadione combined with the larger reset of both hydroxyl and superoxide rhythms by the drug 
implies a correlation between the RS rhythm reset and the cytotoxic effects of the drugs.

Menadione and curcumin are both known to induce cytotoxicity in cancer cells by RS generation; RS are 
important regulators of cellular timekeeping mechanisms. Alterations in the RS rhythms could thus cause 
changes in multiple pathways in the cell and induce cytotoxicity as there exists crosstalk between the cellular 
redox and cell cycle regulatory systems. To check if indeed, the cells were differentially sensitive to drug addition 

Figure 3. Temporal variations of specific intracellular levels of hydroxyl anion radicals (si Hydroxyl) in 
untreated (●), menadione treated (∆) and curcumin treated (■) cells (a) SiHa and (b) HCT116.  Cells were 
seeded in 6 well plates and synchronized for 24 h in serum free medium. 0 h corresponds to the time of medium 
change to DMEM with 10% FBS with treated or untreated. Values are expressed as mean ± SD, n = 3.
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at different time points, the cytotoxic effect for drug addition at various time points after the medium change was 
measured. It was observed that in SiHa, at IC50 concentrations, an increase in cytotoxicity of 18% for menadione 
and 27% for curcumin was present, when the drug was added at 4 h, as compared to drug addition at zero time 
(Fig. 6a,b). The maximum cytotoxicity was observed when drugs were added at 4 h post medium change in SiHa 
whereas drug addition along with medium change, i.e., at 0 h gave maximum cytotoxicity in HCT116 (Fig. 6c,d). 
It can be observed that while menadione induces changes in the rhythm and levels of superoxide radicals in both 
cell lines, curcumin, the more effective of the two drugs, induces an increase in both superoxide and hydroxyl 
radical levels as well as reset their rhythms to a higher extent. Also, it is interesting that in menadione treated cells, 
a lesser hydroxyl rhythm reset is observed for certain time points corresponding to higher cytotoxicities, even 
though no significant changes in hydroxyl radical levels are found, further implying the involvement of rhythm 
reset in improving cytotoxic efficacy.

The rhythm reset has also been observed to have a direct correlation to the improved cytotoxicity for drug 
addition at 4 h in SiHa and 0 h in HCT116 as observed by the higher rhythm reset (Supplementary Fig. 5). 
The superoxide rhythm reset is comparatively lesser for both drugs when added at 8 h (Supplementary Fig. 6). 
Interestingly, we observe the complete loss of rhythms for both the RS when the drugs are added at 12 h post 
medium change. This is also observed in the case of hydroxyl radicals in curcumin treated HCT116 cells for drug 
treatment at 8 h. This could be because of interference from other cellular clock machinery or rhythms and needs 
to be explored further.

Therefore, the endogenous rhythms of RS seem to affect the drug efficacy and they could be used as a generic 
target for improved cancer therapy. Since RS are important signaling molecules in the cell interacting with multi-
ple signaling networks, manipulation of RS rhythms for improved drug tolerance and efficacy has potential use in 
multiple systems. However, further in-depth studies with other drugs and cell lines, as well as in vivo studies need 
to be performed before RS rhythms could be used as a target for cancer chronotherapy.

Figure 4. Temporal variations of (a) SOD enzymes, (b) catalase enzyme in untreated (●), menadione treated 
(∆) and curcumin treated (■) SiHa, (c) SOD enzymes, (d) catalase enzyme in untreated (●), menadione 
treated (∆) and curcumin treated (■) HCT116. Cells were seeded in 6 well plates and synchronized for 24 h 
in serum free medium. 0 h corresponds to the time of medium change to DMEM with 10% FBS with treated or 
untreated. Values are expressed as mean ± SD, n = 3.
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Conclusions
Two redox mediated anticancer compounds, menadione and curcumin, were shown to induce the superoxide 
and hydroxyl radicals differently in SiHa, a human cervical cancer cell line and HCT116, a human colon can-
cer cell line. Also, they differently entrained (reset) the rhythms of these RS. The rhythm reset was found to 
correlate to the drug efficacy. The cytotoxic effect of the drug was higher where RS rhythm reset was higher. 
Further, we observed a difference in the efficacy of the drugs upon drug addition at different points of the endog-
enous RS rhythm; a 27% higher efficacy in SiHa with curcumin, when added at 4 h compared to the addition at 
0 h demonstrates the significance of this finding in a cancer treatment context. In addition, lack of correlations 
between the dynamic levels of RS and its corresponding antioxidant in the untreated or drug treated cells were 
observed, which suggests that the use of antioxidant levels as indirect markers of cellular stress levels may need a 
re-consideration.

Materials and Methods
Culture growth. SiHa and HCT116 cells were maintained in complete DMEM (Himedia, India). To the 
DMEM, 1x of penicillin/streptomycin (Himedia, India) and 10% heat-inactivated fetal bovine serum (FBS; 
Invitrogen, USA) were added. Cells were cultured in a humidified incubator at 37 °C, 5% CO2, and passaged after 
80–90% confluence. Before seeding for an experiment, the viable cell concentrations were measured by Trypan 

Figure 5. There is no evident correlation between SOD and si superoxide levels in (a) untreated (●),  
(b) menadione treated (∆), (c) curcumin treated (■) SiHa and in the (d) untreated (●), (e) menadione treated 
(∆), (f) curcumin treated (■) HCT116 cells. Values are expressed as mean ± SD, n = 3.

Time of drug 
addition Parameter

Untreated control curcumin menadione

SiHa HCT116 SiHa HCT116 SiHa HCT116

0 h drug 
addition

superoxide rhythm period (h) 15.38 22.59 9.62 8.17 10.99 12.00

Hydroxyl rhythm period (h) 25.00 20.21 11.11 8.90 21.74 15.36

4 h drug 
addition

superoxide rhythm period (h) 15.38 22.59 9.17 9.17 9.62 12.82

Hydroxyl rhythm period (h) 25.00 20.21 8.33 9.60 20.41 20.25

8 h drug 
addition

superoxide rhythm period (h) 15.38 22.59 12.05 —* 12.35 12.35

Hydroxyl rhythm period (h) 25.00 20.21 23.81 10.11 25.00 20.25

Table 1. Changes in cytotoxicity and RS rhythms† for different time points of drug addition. †Data averaged for 
n = 3. The rhythm periods are given for p < 0.01 by LSP analysis using the software PAST. The power spectra 
with individual p values are given in the Supplementary Information. *No significant rhythm was found.
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blue (Life Technologies, USA) exclusion method in a hemocytometer placed under 10X magnification of an 
inverted microscope (Eclipse TS100, Nikon, Japan).

Determination of cytotoxicity of menadione and curcumin. Seeding density of 1 × 104 cells/well 
were done in a serum-starved condition for synchronization in a 96 well microplate. After 24 hours of seeding, the 
medium was discarded and 100 µl of fresh DMEM (10% FBS) with different concentrations of menadione or cur-
cumin was added and further incubated for 48 h. MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium 
bromide; Himedia, India) at 5 mg/ml in sterile PBS was further diluted in a ratio of 1:10 in a complete medium 
and incubated for 3 h, after which time the medium was replacd with 100 µl of DMSO to dissolved the formazan 
crystals. Dual wavelength absorbance measurements at 650 and 570 nm were made using a microplate reader 
(Model 680, Bio-Rad Laboratories), and the former value was subtracted from the latter to quantitate the cell 
viability in the wells. To determine the percentage of cell viability at each drug concentration, the percentage ratio 
of the respective final absorbance values to that of the control (cells treated with 0.1% of DMSO) was calculated.

Induction of RS by drug treatment. For synchronization, both cell lines were first seeded at 4 × 105 cells/
well in 6-well dishes (Nunc) in a serum-starved condition. The medium was replaced with fresh DMEM (10% 
FBS) after 24 h with predetermined concentration of menadione or curcumin (Sigma Aldrich, USA) for inducing 
RS inside the cells. The drug addition time was taken as 0 h, and cells were collected by trypsinization every 4 h, 
until 48 h, one well for each set at each time point. Untreated cells, without drugs, were otherwise maintained at 
the same culture conditions as of the menadione/curcumin treated cells.

Intracellular superoxide quantification. Intracellular superoxide concentrations were measured in both 
cell lines by the fluorescence-based assay using dihydroethidium (DHE; Sigma Aldrich, USA) dye. For specific 
estimation of hydroxyethidium, the 405/570 nm excitation/emission wavelength pair31 was used. To convert the 
fluorescence unit to the actual concentrations the calibration curve was made as described elsewhere32. Catalase 
(400 U mL−1) was also added in the mixture, to remove the hydrogen peroxide generated by the reaction.

Figure 6. The cytotoxic effects of (a) menadione, (b) curcumin depend on the time point of drug addition in 
SiHa and (c) menadione, (d) curcumin depends on the time point of drug addition in HCT116. The cells were 
seeded at 1 × 104 cells per well in 96 well plates in serum free DMEM. Medium change to DMEM with 10% 
serum, 24 h post seeding is considered to be 0 h. The drugs were introduced at 0, 4 or 8 h post medium change. 
MTT assay was done 48 h post drug treatment. Data represented as mean ± SD, n = 3.
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For samples collected every 4 h, cells at 2.5 × 105 cells mL−1 were suspended in ice-cold PBS containing 20 µM 
of the cell permeable DHE dye. The cells were incubated at 37 °C for 30 minutes inside humidified incubator, 
centrifuged at 2,000 rpm and resuspended in 1 ml of PBS. Then further 200 µL of cell suspension per well was 
aliquoted in the 96 well plate, and fluorescence measurements were taken in a multimode plate reader (Enspire, 
PerkinElmer, UK). PBS was considered as a blank.

Intracellular hydroxyl quantification. The measurement of intracellular hydroxyl radical concentra-
tions was quantified by a fluorescent assay using hydroxyphenyl fluorescein (HPF; Life Technologies, USA) dye. 
To ensure specificity, an excitation/emission wavelength of 480/515 nm was used33. For the calibration curve, 
hydroxyl radicals were generated from hydrogen peroxide using the Fenton reaction. The Fe2+ ions required were 
obtained from a solution of ammonium iron (II)sulfate hexahydrate (Sigma Aldrich, USA) dissolved in 0.01 N 
HCl.

For sample preparation, cells were suspended in 10 µM of the cell permeable dye HPF, dissolved in ice-cold 
PBS at 2.5 × 105 cells mL−1. Then the cells were incubated for 25 minutes at room temperature in the dark, centri-
fuged at 2,000 rpm and resuspended in the 1 ml of PBS. Then, 200 µL of cell suspension per well was aliquoted into 
96 well plates and fluorescence values were measured in a multimode plate reader (Enspire, PerkinElmer, UK). 
Blank values for PBS were subtracted from the readings.

Intracellular SOD quantification. The SOD activity was analysed by using a SOD determination kit 
(Sigma Aldrich 19160). Control and drug treated cells were collected at different times by trypsin treatment, 
washed thrice with PBS, and store at −80 °C. Cell lysis was accomplished with a sonicator (Q700, Q-Sonica, 
USA). After sonication, the cells lysate was centrifuged and then carried forward for assay. The specific (sp) SOD 
values were determined by normalizing the measured intracellular SOD concentrations with the corresponding 
cell numbers.

Intracellular catalase quantification. The cell lysate so obtained for SOD assay described above was 
assayed for catalase as well by measuring hydrogen peroxide level reduction on treatment with the sample, using 
the fluorescent dye Amplex Red (Invitrogen, USA). Amplex Red reacts with the unscavenged hydrogen peroxide 
in the system to form a fluorescent product resorufin, which is specific to an excitation/emission wavelength of 
570/585 nm. The sp. catalase values were determined by normalizing the measured intracellular SOD concentra-
tions with the corresponding cell numbers.

Determination of rhythm parameters. The RS temporal data was processed using the open source soft-
ware PAST34, to check for possible rhythms and to obtain the period of the rhythm, using the spectral analysis tool 
based on Lomb – Scargle Periodogram (LSP) method. The LSP method uses power spectral analysis to determine 
the presence of statistically significant rhythms in the given data, assuming a sinusoidal rhythm35.

Statistical analysis. All data retrieved from the three independent experiments were analyzed in a software 
named GraphPad Prism 7 (GraphPad, San Diego, CA, USA). The same software was used to compile all the 
graphs with error bar depicting standard deviation ± mean for 3 independent experiments. Statistical analysis for 
analyzing the rhythm frequency in the temporal RS data was done in PAST. According to the characteristics of 
experiment, statistical analysis was done by either Student’s t-test or two-way ANOVA in a Graph Pad PRISM 7, 
and the statistical significance of the data was considered (α = 0.05 and p < 0.05) in both the softwares.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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