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Abstract

We prove that the acyclic chromatic index a′(G)�6� for all graphs with girth at least 9. We extend the same method to obtain a

bound of 4.52� with the girth requirement g�220. We also obtain a relationship between g and a′(G).
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1. Introduction

We consider only simple undirected graphs. Throughout the paper, we use �=�(G) to denote the maximum degree

of a graph G and g = g(G) to denote the girth (length of a shortest cycle) of G. A colouring of the edges of a graph

is proper if no pair of incident edges receive the same colour. A proper colouring of the edges of a graph G is called

acyclic if there is no bichromatic (two-coloured) cycle in G. In other words, the subgraph induced by the union of any

two colour classes is a forest. The minimum number of colours required for any acyclic edge colouring is called the

acyclic chromatic index of G and is denoted by a′(G). This notion was introduced by Grunbaum in [6].

It is obvious that any proper edge colouring of G requires at least � colours, and Vizing [9] showed that there exists

a proper edge colouring with � + 1 colours. Using probabilistic arguments, Alon et al. [1] obtained a bound of 64� on

a′(G) which was later improved to 16� (presently best known upper bound) by Molloy and Reed in [7]. In [8, Chapter

19, p. 226], a bound of 9� is claimed for a′(G) but the proof is incorrect and is not easily rectifiable (see the Appendix

A for details).

In this work we obtain a bound of 4.52� for all graphs with g(G)�220. We can relax the girth requirement to 9 if we

are willing to use 6� colours. It might be possible to remove the girth requirement with a more sophisticated analysis.

Theorem 1. If g(G)�9, then a′(G)�6�.

Theorem 2. If g(G)�220, then a′(G)�4.52�.

Our proofs are based on probabilistic arguments. We make use of the same random experiment used in [1,7].
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The main new idea of the proof is to allow limited improperness with acyclicity in the first phase of colouring and

take care of properness in the second phase. The reason we need to allow improperness is that, without this, one can

show (as explained in the Appendix A) that one will have to use more than 4e� colours. Both theorems are proved

using essentially the same arguments.

It is conjectured that a′(G)��+2 in [3] and in the same work this conjecture is proved for graphs with g=�(� log �)

and also that a′(G)�2� + 2 for graphs with g = �(log �). However, when using probabilistic arguments, short

cycles are the major obstacles since they have a “high” probability of becoming bichromatic compared to long cycles.

Hence, bounding a′(G) for graphs with short cycles seems fairly difficult. The following theorem tries to capture this

phenomenon in a formal way. As a corollary, we notice that a′(G)�� + o(�) for all graphs G with g = �(log �). All

logarithms are to the base e.

Theorem 3. There are absolute constants c1, c2 > 0 such that, for any G with g�c1 log � we have

a′(G)�� + 1 +

⌈

c2

(

� log �

g

)⌉

.

We make use of Lovász Local Lemma [5,8,2] stated below.

Lemma 4 (The Lovász Local Lemma). Let A= {A1, . . . , An} be events in a probability space � such that each event

Ai is mutually independent of A − ({Ai} ∪ Di), for some Di ⊆ A. Also suppose that there exist x1, . . . , xn ∈ (0, 1)

such that

Pr(Ai)�xi

∏

Aj ∈Di

(1 − xj ), 1� i�n.

Then Pr(A1 ∧ · · · ∧ An) > 0.

In Section 2, we prove Theorems 1 and 2. In Section 3, we prove Theorem 3. Section 4 concludes with some remarks.

2. Acyclic colouring for graphs with constant girth

We have not optimised the constants in the application of Lovász Local Lemma. With a more careful application of

local lemma it might be possible to bring down the bound a bit further.

Proof of Theorems 1 and 2. It is known that, if ��3, then a′(G)�� + 2 [4]. Hence we may assume that ��4 in

our arguments. Our proof consists of two stages. In the first stage, we show, by probabilistic arguments, the existence

of a colouring C, using a set C of c� colours (where c > 1 is a constant to be fixed later), such that C satisfies the

following properties for some positive integer ��4:

(i) every vertex has at most � incident edges of any single colour,

(ii) there are no properly two-coloured cycles, and

(iii) there are no monochromatically coloured cycles.

Note that in C each colour class (set of edges receiving the same colour) is a forest of maximum degree at most �.

In the second stage we split each colour class into � parts by recolouring the edges of each colour ci with the colours

c1
i , . . . , c

�
i to get a colouring C

′. We claim that C′ is proper and acyclic. Since every forest of maximum degree at most

d is properly edge colourable using d colours, it is easy to see that properness holds. Any bichromatic cycle in the

colouring C
′ should either come from an existing two-coloured cycle in C, or from a monochromatic even length cycle

in C being split into two. Both of these possibilities are forbidden by properties (ii) and (iii), respectively. It follows

that the colouring C
′ is proper, acyclic, and uses at most c�� colours.

To complete the proof, it is now sufficient to show that such a colouring C described above exists with positive

probability. We do this using Lovász Local Lemma. For this, we do the following random experiment. Each edge

chooses a colour uniformly and independently at random, from the set C. For the resulting random colouring to satisfy
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(i)–(iii) above, define the following three types of unfavourable events. As explained below, in the absence of these

events, the colouring obtained satisfies the above properties:

(1) For a set of � + 1 edges {e1, . . . , e�+1} incident on a vertex u, let Ee1,...,e�+1 be the event that all of them receive

the same colour. We call this an event of type I.

(2) Let EC,2k denote the event that an even cycle C of length 2k is properly coloured with two colours. We call this

an event of type II.

(3) Let EC,ℓ denote the event that a cycle C of length ℓ is coloured monochromatically. We call this an event of type

III.

Suppose C be such that none of the above events holds. We claim that properties (i)–(iii) above are satisfied. It is easy

to see that the absence of events of type I implies that (i) holds. Similarly, absence of type II and III events, respectively,

implies (ii) and (iii).

In order to apply the local lemma, we need estimates for the probabilities of each event, and also for the number of

other events of each type which can possibly influence any given event. For the above random experiment, an event E

is mutually independent of a set B of other events if the set of edges on which E depends is disjoint from the set of

edges on which the events in B depend. Hence, we calculate the number of events of each type that depend on a given

edge, and multiply by the number of edges to get an upper bound on the number of events influencing E. The following

two lemmas present the estimated bounds. The proof of Lemma 5 is straightforward. Lemma 6 is also not difficult and

uses standard arguments (see [1] for details).

Lemma 5. The probabilities of events are as follows:

1. For each event Ee1,...,e�+1 of type I, Pr(Ee1,...,e�+1) = 1/|C|�.

2. For each event EC,2k of type II, where length of C is 2k, Pr(EC,2k)�1/|C|2k−2.

3. For each event EC,ℓ of type III, where C is of length ℓ, Pr(EC,ℓ) = 1/|C|ℓ−1.

Lemma 6. The following is true for any given edge e:

1. Less than 2��/�! events of type I depend on e.

2. Less than �2k−2 events of type II depend on e.

3. Less than �ℓ−2 events of type III depend on e.

In order to apply Lovász Local Lemma, let x0 = 1/(��)�, xk = 1/(��)2k−2, and yℓ = 1/(��)ℓ−1 be the values

associated with events of types I, II, and III respectively, where �, �, � > 1 are constants to be determined later. Recall

that we use g to denote girth. We conclude that with positive probability none of the above events occur, provided that

∀k�⌈g/2⌉, ℓ�g,

1

(c�)�
�x0(1 − x0)

(�+1)2��/�!
∏

	�⌈g/2⌉

(1 − x	)
(�+1)�2	−2 ∏


�g

(1 − y
)
(�+1)�
−2

,

1

(c�)2k−2
�xk(1 − x0)

2k(2��/�!)
∏

	�⌈g/2⌉

(1 − x	)
2k�2	−2 ∏


�g

(1 − y
)
2k�
−2

,

1

(c�)ℓ−1
�yℓ(1 − x0)

ℓ(2��/�!)
∏

	�⌈g/2⌉

(1 − x	)
ℓ�2	−2 ∏


�g

(1 − y
)
ℓ�
−2

.

Let f (z) = (1 − 1/z)z. It is well known that (1 − 1/z)z ↑ 1/e. Defining

� = min

{

f (x−1
0 ), min

	�⌈g/2⌉
f (x−1

	
), min


�g
f (y−1



)

}

,
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it follows that

(1 − x0)
2��/�! =

(

1 −
1

(��)�

)2��/�!

=

(

(

1 −
1

(��)�

)(��)�
)2/(�!��)

��2/(�!��).

Similarly,

∏

	�⌈g/2⌉

(1 − x	)
�2	−2

=
∏

	�⌈g/2⌉

(

1 −
1

(��)2	−2

)�2	−2

�
∏

	�⌈g/2⌉

��−(2	−2)

��S1 ,

where

S1 =
∑

	�⌈g/2⌉

1

�2	−2
�

1

(�2 − 1)�2⌈g/2⌉−4
and

∏


�g

(1 − y
)
�
−2

=
∏


�g

(

1 −
1

(��)
−1

)�
−2

�
∏


�g

��−(
−1)/�
��S2 ,

where

S2 =
∑


�g

1

��
−1
�

1

��g−2(� − 1)
.

Thus, taking roots on both sides and simplifying, the three inequalities required by local lemma are satisfied

∀k�⌈g/2⌉, ℓ�g, provided that

1

c
�

1

�
�((�+1)/�)Υ ,

1

c
�

1

�
�(2k/(2k−2))Υ and

1

c
�

1

�
�(ℓ/(ℓ−1))Υ , (1)

where

Υ =
2

�!��
+

1

(�2 − 1)�2⌈g/2⌉−4
+

1

��g−2(� − 1)
.

Now we have to set specific values of �, �, �, and �. Firstly, we set �=2 and �=�= �=2. Using g�9 and ��4, we

have ��(1 − 1
64 )64 �0.3649. It can easily be verified that the above inequalities (1) are satisfied by setting c = 2.951.

It follows that a′(G)�5.91 < 6� for all graphs G with girth g�9. This proves Theorem 1.

Secondly, we set �=4, �=1.02, �=1.04, and �=1.04. Using g�220 and ��4, we have ��(1− 1
256 )256 �0.3671.

It follows that by setting c = 1.13, a′(G)�4 × 1.13� = 4.52� when girth g�220. Hence Theorem 2. �

Further improvements on a′(G), which can be obtained (with this experiment) by strengthening the girth requirement,

are only marginal as long as we focus on constant lower bounds on girth.

3. A general relation between g(G) and a′(G)

An even cycle is called half-monochromatic with respect to a colouring if one of its halves (a set of alternate edges)

is monochromatic. Notice that this definition includes bichromatic cycles also.

Proof of Theorem 3. For the sake of simplicity in the analysis, we write g in the form c1�
ε log �, where ε�0 and

where c1 is mentioned in Theorem 3. We can assume w.l.o.g. that ε�1, because when ε exceeds 1, by choosing a

large value of c1, a′(G)�� + 2 as shown in [3]. As before, we assume ��4.

The proof consists of an initial deterministic phase followed by a random phase. We begin by obtaining a proper

edge colouring of G using �+1 colours applying Vizing’s method. We then randomly recolour some of the edges with

a new set of o(�) colours, and show that with positive probability, the colouring obtained is proper and acyclic. This

random experiment is a slight modification of the one used in [3].
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The random colouring is obtained as follows:

(1) Obtain a proper colouring C : E → S1 = {1, . . . , � + 1}.

(2) In the second phase we do the following:

• Activate each edge with independent probability p = 1/�ε.

• Each activated edge chooses a new colour uniformly at random and independently, from the set S2 =

{1′, . . . , (a�1−ε)′}, where a > 1 is a constant to be determined later.

Denote the resulting random colouring by C
′. With respect to C

′, we define the following unfavourable events:

(1) For a pair of incident edges e and f , let Ee,f denote the event that they are both recoloured with the same new

colour. We call this an event of type I.

(2) Let EC,2k denote the event that a bichromatic cycle C of length 2k in C is undisturbed in the recolouring process.

Call this a type II event.

(3) Let EC,2ℓ denote the event that a half-monochromatic cycle C of length 2ℓ in C becomes bichromatic by retaining

the same colour on a half and receiving a common new colour on the other half, a type III event.

(4) Let EC,2m denote the type IV event where an even length cycle C of length 2m becomes properly bichromatic

with two of the new colours.

We claim that the absence of types I–IV events implies that the colouring C
′ is proper and is also acyclic. Since C

is proper, the absence of events of type I ensures that C′ is also proper. The absence of events of types II, III, and IV

ensures, respectively, (i) the absence of bichromatic cycles using both colours from S1, (ii) one colour from each of S1

and S2, and (iii) both colours from S2. It is therefore sufficient to show the absence of the above four types of events

which we do by using Lovász Local Lemma.

To apply the local lemma we need estimates for the probabilities of each event, and for the number of events of

each type possibly influencing a given event. As before, we calculate the number of events of each type that depend

on a single edge and multiply by the number of edges in any event to get an upper bound on the total dependency. The

following two lemmas present the estimated bounds.

Lemma 7. The probabilities of events are as follows: for each

1. event Ef,g of type I, Pr(Ef,g) = p2/(a�1−ε) = 1/(a�1+ε).

2. event EC,2k of type II, Pr(EC,2k) = (1 − p)2k �e−2k/�ε

.

3. event EC,2ℓ of type III, Pr(EC,2ℓ)�2pℓ(1 − p)ℓ/(a�1−ε)ℓ−1 < 2a�1−ε/(a�)ℓ.

4. event EC,2m of type IV, Pr(EC,2m) = p2m(
a�1−ε

2 )(2/(a�1−ε)2m) < (a�1−ε)2/(a�)2m.

Lemma 8. The following is true for any given edge e:

1. Less than 2� events of type I depend on e.

2. Less than � events of type II depend on e.

3. Less than 2�ℓ−1 events of type III depend on e, for each ℓ�2.

4. Less than �2m−2 events of type IV depend on e, for each m�2.

To apply Lovász Local Lemma, let x0 = 1/(��1+ε), x1 = 1/(��1+2ε), yℓ = (2a�1−ε)/(��)ℓ, and zm=

(a�1−ε)2/((��)2m) be the values associated with events of types I–IV, where lengths of cycles III and IV are 2ℓ

and 2m, respectively. Here �, �, �, � > 1 are real values to be determined later. We conclude that with positive proba-

bility none of the above events occurs, provided that ∀k, ℓ, m�⌈g/2⌉,

1

a�1+ε
�x0(1 − x0)

4�(1 − x1)
2�

∏

	�⌈g/2⌉

(1 − y	)
4�	−1 ∏


�⌈g/2⌉

(1 − z
)
2�2
−2

,

e−2k/�ε

�x1(1 − x0)
4k�(1 − x1)

2k�
∏

	�⌈g/2⌉

(1 − y	)
4k�	−1 ∏


�⌈g/2⌉

(1 − z
)
2k�2
−2

,
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2a�1−ε

(a�)ℓ
�yℓ(1 − x0)

4ℓ�(1 − x1)
2ℓ�

∏

	�⌈g/2⌉

(1 − y	)
4ℓ�	−1 ∏


�⌈g/2⌉

(1 − z
)
2ℓ�2
−2

,

(a�1−ε)2

(a�)2m
�zm(1 − x0)

4m�(1 − x1)
2m�

∏

	�⌈g/2⌉

(1 − y	)
4m�	−1 ∏


�⌈g/2⌉

(1 − z
)
2m�2
−2

.

Setting � = � = � = � = 1000 and a = 4000 and using the fact that (1 − 1/z)z � 1
4 ∀z�2 we have

(1 − x0)
2�

�

(

1

4

)2�x0

=

(

1

4

)2/(��ε)

, (1 − x1)
�

�

(

1

4

)�x1

=

(

1

4

)1/(��2ε)

,

∏

	�⌈g/2⌉

(1 − y	)
2�	−1

�

(

1

4

)S1

and
∏


�⌈g/2⌉

(1 − z
)
�2
−2

�

(

1

4

)S2

,

where

S1 =
∑

	�⌈g/2⌉

2y	�
	−1 =

4a

�ε

∑

	�⌈g/2⌉

1

�	
�

4a

�ε�⌈g/2⌉−1(� − 1)

and

S2 =
∑


�⌈g/2⌉

z
�
2
−2 =

a2

�2ε

∑


�⌈g/2⌉

1

(�)2

�

a2

�2ε�2⌈g/2⌉−2(�2 − 1)
.

Let Pi , Ni , and xi denote, respectively, the probabilities, number of edges, and local lemma constants associated

with events of type i. We can see that, as in the previous proof, the inequalities required by local lemma are satisfied

provided that

Pi �xi

(

1

4

)NiΥ

, ∀i, (2)

where

Υ =
2

��ε +
1

��2ε
+

4a

�ε�⌈g/2⌉−1(� − 1)
+

a2

�2ε�⌈g/2⌉−2(�2 − 1)
.

By choosing c1 suitably large, we can verify that �εΥ � 1
125 and each of inequalities (2) is satisfied. As a result, the

inequalities corresponding to local lemma are also satisfied. Finally, fixing c2 = a · c1, the theorem is proved. �

4. Remarks

We are able to bring down the upper bound on a′(G) from 16� to 4.6�, assuming the girth to be at least a small

constant. We believe that, with a more careful analysis, it will be possible to remove the girth assumption.

As we mentioned earlier, it is the short cycles which are difficult to deal with when we are using probabilistic

arguments, because they have a higher probability of becoming bichromatic as compared to long cycles. Similarly,

when we try to kill bichromatic cycles in a proper colouring by randomly recolouring some of the edges with a set

of new colours, short cycles have a high probability of survival. We are presently investigating on how to take care of

short cycles.

Appendix A. A note on the claimed 9� bound in [8]

The proof of a′(G)�9� given in [8] is based on applying a specialised version of Lovász Local Lemma to the

following random experiment: choose a colour for each edge independently and uniformly at random, from a set C of

a� colours for some a > 1. It is easy to see that the requirements of the local lemma are not met in the proof given.
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We give below an argument explaining why the proof is not easily rectifiable even if we ignore the acyclicity

requirements and only want to ensure properness. More precisely, we show that any proof, which is based on applying

local lemma on the random experiment stated above and which assumes a uniform value for all the constants (associated

with various events), will require that a�4e. It is natural to assume that the constants are uniformly the same unless

one wants to look at proofs which make use of the structure of the graph under consideration.

With respect to the random experiment, consider an unfavourable event that a pair of incident edges e, f receive the

same colour. Denote it by Ee,f . Clearly, Pr(Ee,f ) = 1/(a�) and the number of other events which may influence a

given event is at most 4�. Let x0 be the uniform constant chosen for all events.

Applying the local lemma, we see that none of these bad events holds, if 1/(a�)�x0(1 − x0)
4�. Write x0 as

1/(��). It follows that the inequality of the local lemma holds only if 1/a�(1/�)(1 − 1/��)4� �(1/�)e−4/�. Let

f (�)= (1/�)e−4/�. To find the extrema, we have f ′(�)=−(1/�2)e−4/� + (4/�3)e−4/� = 0, which yields �∗ = 4. Since

f ′(�)= (4/�2 −1/�)f (�), we get f ′′(�)= (4/�2 −1/�)f ′(�)+ (1/�2 −8/�3)f (�). Since f ′′(�∗)=−1/(64e) < 0, the

maximum value of f (�) namely 1/(4e), is achieved at �=4. Hence we need to have 1/a�1/(4e) or, equivalently, a�4e.
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