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Abstract

This study reports a surface electromyogram and force of contraction model. The objective was to investigate the effect

of changes in the size, type and number of motor units in the Tibialis Anterior muscle to surface electromyogram and
force of dorsiflexion. A computational model to simulate surface electromyogram and associated force of contraction by

the Tibialis Anterior muscle was developed. This model was simulated for isometric dorsiflexion, and comparative

experiments were conducted for validation. Repeated simulations were performed to investigate the different para-
meters and evaluate inter-experimental variability. An equivalence statistical test and the Bland–Altman method were

used to observe the significance between the simulated and experimental data. Simulated and experimentally recorded

data had high similarity for the three measures: maximal power of power spectral density (p \ 0.0001), root mean
square of surface electromyogram (p \ 0.0001) and force recorded at the footplate (p \ 0.03). Inter-subject variability

in the experimental results was in-line with the variability in the repeated simulation results. This experimentally vali-

dated computational model for the surface electromyogram and force of the Tibialis Anterior muscle is significant as it
allows the examination of three important muscular factors associated with ageing and disease: size, fibre type and num-

ber of motor units.
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Introduction

Surface electromyogram (sEMG) is the recording of

the electrical activity of a muscle non-invasively, which

is induced on the surface due to the superposition of

the action potentials (APs) generated by motor units

(MUs) in the muscle (motor unit action potential

(MUAP)).1–4 Studies have shown the changes in the

neuromuscular parameters that influence the signal.

However, this is not well understood because the signal

is influenced by multiple parameters: activation rate, con-

duction velocity, size and type of MUs and tissue proper-

ties.5–7 The relationship of muscle properties and sEMG

features has only been heuristically investigated.1,8,9

Research studies10–14 have reported various compu-

tational sEMG models to understand the changes in

sEMG due to neuromuscular parameters. While the ear-

lier models provide conceptual and generic explanation

of the signal, some of the approximations that have

limited their suitability for investigating age- or disease-

associated changes are as follows:

1. Statistical distribution: the reported models have

allocated single values to their input parameters

and have not considered the characteristic variabil-

ity. The models reported by Farina et al.15 and

Mesin et al.16 applied a normal distribution for

conduction velocity.
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2. Number and size of MU: apart from Arjunan et

al.4 and Mesin et al.,16 the earlier models have not

considered the change in number and size of MUs.

This limits the investigation in the neuromuscular

changes of MUs.

3. Types of fibre: the ratio of Type II (fast) and Type

I (slow) fibre is an important neuromuscular para-

meter that needs to be monitored.17

Earlier models12–14 have represented generic parallel

fibre muscles for the generation of sEMG, making them

unsuitable for studying pennate muscles (e.g. Tibialis

Anterior (TA)). Investigating TA is vital for determining

posture stability and gait assessment.18 Even though recent

modelling work13,16,19–21 has reported using volume con-

ductor models to the architecture of the pennate muscle,

they are inadequate due to the previous limitations listed.

Validating computational models of the complex biolo-

gical system requires comparison of simulated with experi-

mental data.22 In the case of neuromuscular experiments,

the inputs are not under the direct control of the examiner

because of the voluntary control by the subject, reflexive

component and other factors. It is not credible to validate

such a model with a single output such as sEMG but

should require two or more outputs. To overcome this

shortcoming, models that simultaneously simulate force

and sEMG have been previously investigated.23,24

However, these studies have made an assumption that does

not represent the physiology of the neuromuscular system;

single force output of the muscle, whereas in reality there is

an integration of individual muscle fibre twitch force. This

limits the model ability to investigate factors such as effect

of muscle fibre type on force and sEMG.

This study reports an improved computational model

for simulating the force and the sEMG generated by a

muscle which overcomes the shortcomings of the earlier

sEMG models. It has been customized for unipennate

TA under isometric conditions and been validated by

comparing the features of experimentally recorded and

simulated sEMG. The model was similarly validated for

the force of TA during dorsiflexion (DF).

The main significances of this model are twitch force

integration with precise parameters instead of arbitrary

units, incorporation of joint model of ankle for compu-

tation of force and allocation of statistically distributed

values to its parameters for better representation of

variability due to innate biological conditions and to

differentiate between the two MU types.

Materials and methods

Description of sEMG model

The model described in this study is an adaptation from

the sEMG model of biceps brachii.4 It incorporates the

following from the earlier model:4 statistical distribu-

tion of parameters,25 difference between fibre type,

non-linear MU recruitment25–27 and various sizes of

MUs.27,28 The significance of this model is that it has

added the following three new features: twitch force,

pennation angle and single fibre action potential (SFAP).

SFAP. The biceps brachii sEMG model described by

Arjunan et al.4 and other models12–14,21 simulated a

constant shape to explain the MUAP at the fibre level.

This prevents the user to investigate the generation and

extinction of the AP and the effect of inter-electrode

distance as it travels.4 Although this is valid for the par-

allel muscle fibres (biceps), this makes it unsuitable for

pennate muscles (TA).16 To overcome this limitation, it

is necessary to generate sEMG based on SFAP.

An AP propagates along the excited motor neuron’s

fibre, eventually arriving at the neuromuscular junction

where the motor neuron attaches to its muscle fibres.

The intracellular AP recorded by an electrode from a

single fibre is known as an SFAP. Collectively, these

SFAPs create the MUAP.

In order to model the generation of the SFAP,

Dimitrov and Dimitrova29 used equation (1) and based

on our earlier biceps brachii sEMG model, this was

modelled for a fusiform muscle as the volume conduc-

tor.4 However, this was improved for the depth-inclined

pennate TA.

In our model, the following values were used as

reported in the literature:11,30

(a) Intracellular conductivity=1.01 Smm21.30

(b) Extracellular conductivity=0.089Smm21.11

(c) The axial conductivity=0.33 Smm21 and radial

conductivity=0.0633Smm21 for the anisotropy.30

Pennation angle. Researchers have developed the numer-

ical solutions for volume conduction model of bipen-

nate muscles.20,21 However, these are computationally

very complex. In a bipennate muscle, the conductivity

tensor becomes inhomogeneous as it changes its direc-

tions between the unipennate halves.13

Surface electrode recordings are largely unaffected

by distant sources and thus the deeper part of the

bipennate muscle16 would not significantly contribute

to them. This justifies the approximation that an uni-

pennate model can be used for TA and enables for an

analytical volume conductor solution.

The volume conductor function for a muscle fibre is

expressed in equation (1)

ft=
∂
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where ft is the volume conduction function, se and si

are the extra- and intracellular conductivities, Kan is the

anisotropic factor, (xo, yo, zo) is the location of the

recording electrode, (xNMJ, yNMJ, zNMJ) is the location

of the neuromuscular junction and (x, y, z) is the coor-

dinate system of the muscle fibre.31u is the degree at

which the muscle fibre is inclined to the electrode. (x#,

y#, z#) indicates the position of the AP travelling the

length of the fibre.

The neuromuscular parameters reported in the liter-

ature15,30,32–48 were used to model the sEMG and force

of TA (summarized in Table 1). The variability in the

recruitment pattern and the MU firing rate was mod-

elled as described subsequently.

MU firing rate. This study has used the estimation of the

firing rate of TA as reported by De Luca and Hostage49

in equation (2). The ‘onion skin’ phenomenon repre-

sented by equation (2) describes: (1) the rate of dis-

charge increases with u, % of maximum voluntary

contraction (MVC) and (2) higher firing rates are

achieved by first recruited MUs compared to those

recruited later

l(f, t)=D � f+ C� A � e
�f

B

� �

� t+E ð2Þ

where l is the MU firing rate; u is the % MVC; t is the

recruitment threshold of MU; and the range of the firing

rate being 8–30Hz were used to derive the constants.49

To simulate the variations in the firing rate, the var-

iance was considered in a way that the coefficient of

variation (CV) decreases exponentially with increasing

MVC as reported by Jesunthadas et al.50 The CV in the

MU firing rate is expressed in equation (3)

CV=F+
ti

25

� �

+
f

4

� �

� e(�Df) ð3Þ

where u is the % MVC, ti is the recruitment threshold

of the ith MU, and F is a constant.

Recruitment pattern. We have incorporated the experimen-

tal outcomes reported by Klass et al.,28 where they have

determined that the younger subjects show continuous

MU recruitment from 1% to 90%MVC having a skewed

distribution (median=26.3% MVC, skewness=0.641

Table 1. Parameters used for simulation of Tibialis Anterior sEMG and force.

Model parameter Values reported in
the literature

Values for ‘Young’ Tibialis Anterior
simulation – variations to model
inter-subject variability

Number of motor units 125 – 65232

192 + 547

150 + 4344

12936

44535

100; 150; 200; 250; 300; 360; 380; 445; 652

Percentage of Type I fibres (%) 76 + 739

7036,40

72 + 6.438

30; 50; 70; 80; 9036

Type I muscle fibre cross-sectional area (mm2) 3950 + 95039

4830 – 529034
395038

Type II muscle fibre cross-sectional area (mm2) 8070 + 185039

8060 – 880034
807038

Fast fibres conduction velocity (m/s) 2.6 – 5.321 4.9 + 0.321

Slow fibres conduction velocity (m/s) 3.9 + 0.3
Total number of muscle fibres 96,800 – 162,500 fibres40 96,800; 131,000 fibres;39 162,500
Innervation ratio Poisson distribution with l= 364
Muscle length (cm) 28.4 – 32.248

30.0 + 0.837
29.843

Muscle fibre length (cm) 6.9 – 9.348

4.5 + 0.437

7.0 + 1.342

4.0; 4.5; 6.9; 7.742,43,46,48

Pennation angle (�) 548

20 + 242

12.1 + 2.246

0�; 5�; 10�; 12�;46 20�; 30�

Duration of AP along fibre (mm) 1133

1645
1645

Subcutaneous tissue (mm) Single, 3-mm isotropic layer
Slow-type specific force (N cm22) 8.5 + 1.637

13.1 + 2.041
15.5 + 5.041

Fast-type specific force (N cm22) 17.9 + 7.3
Tibialis Anterior tendon moment arm (cm) 4.9 + 0.0637

3.4 + 0.342
4.9 + 0.442

Simulation sampling frequency (Hz) 10,000

AP: action potential.
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and kurtosis=20.491) and applied Henneman’s ‘size

principle’.

Implementation of force model

The force model developed by Fuglevand et al.51 has

been adapted in this study. However, in the original

model, the peak twitch amplitude was not based on the

muscle anatomical properties but was assigned arbitrary

values. This may demonstrate the concept, but it is not

accurate due to the varying levels of force generated by

different muscle fibres. This model has overcome this

limitation by computing the amplitude of the peak

twitch as a function of the following three factors:52,53

number of muscle fibres constituting the MU, muscle

fibre cross-sectional area and the type of muscle fibre.

This model has incorporated the integration of

twitch force with modified contraction time of an MU

to undergo a normal distribution based on the study by

Van Cutsem et al.32 This study has considered Type I

fibres to have twice the time of Type II fibres.54

Computation of resultant force

It is essential to compare the experimental and simu-

lated recordings for validating the model. As it is

impossible to directly record the force of muscle con-

traction but only the force at a sensor placed on the

surface of the limb, the simulated muscle force needs to

be transformed suitably. The first step is to convert it

to tendon force and then the resultant force at the sen-

sor using the joint moment (Figure 2(b)) based on the

estimated length of insertion (Figure 1(a) and (b)). The

muscle force (Fm) is first converted to the tendon force

(Ft) using equation (4)

Ft =Fm � cos a ð4Þ

where a is the pennation angle of the TA.

The joint moment is computed by considering the

moments centred on the tibiotalar joint42 as expressed

in equation (5)

Jointmoment = Ft � d ð5Þ

where d is the tendon moment arm of the TA.

The resultant force recorded by the force sensor is

obtained by considering the moments centred about

the footplate hinge point (Figure 3) and is mentioned

in equation (6)

Resultantforce=
Jointmoment � x1

x2
ð6Þ

where x1 and x2 are the distances between the first inter-

phalangeal joint of the foot and hinge point at the foot-

plate and the tibiotalar joint, respectively.

Figure 1. (a) Experimental setup and the electrode placement, (b) muscular forces, and (c) input and output of sEMG and force model.
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An overview of the implementation and the process

of sEMG and force model are illustrated in Figure 1.

The MUs have a specific activation pattern, which has

been used to produce the stimulus. It represents the

neural impulses travelling down from the central ner-

vous system (CNS). This initiates a train of APs to gen-

erate the MU twitch, which in turn leads to a muscular

contraction through the excitation and contraction

process.55

Experimental procedures

The experimental procedures used in this study have

been reported in our earlier studies.31,26,56

Experimental protocol. This study protocol was approved

by the ‘RMIT University Human Research Ethics

Committee’ (SEHAPP 15751 (40/13)) and was carried

out in accordance with the Declaration of Helsinki. All

subjects gave written informed consent before the start of

the experiments and sEMG recordings. Eighteen young

healthy volunteers (9 males and 9 females; 26.1 + 2.9

years; 166.7 + 8.9 cm; body mass index (BMI):

22.3 + 2.9) participated in the experiments.

sEMG was recorded from the TA and Triceps

Surae (TS) muscles using the Delsys myomonitor 4

(DELSYS, Boston, USA) system, having gain of 1000

and bandwidth of 20–450Hz. The contacts in electro-

des (10mm3 1mm) have a fixed inter-electrode dis-

tance of 10mm, with the preamplifier embedded on the

electrode. The sampling frequency was set at 1000Hz

with a resolution of 16 bits/sample. The electrodes were

placed on the recommended locations57 as shown in

Figure 2(a).

Recording of force data. The volunteers were seated in a

chair with hip flexed at 90�, knee at 140� and ankle at

90�. To prevent any foot or toe movement and heel lift,

the foot and ankle were strapped to the footplate.56 The

force produced by the ankle was measured by using an

S-type force transducer (SM-100 type; INTERFACE,

Arizona, USA) attached to the footplate.

The volunteers performed a training session to pro-

duce their true MVC during both isometric DF and

before the experiments. They were provided visual feed-

back of the force sensor output and given verbal

encouragement. The volunteers repeated the MVC

trials until their consecutive force recordings differed

less than 5%. After a period of 15-min rest, the volun-

teers performed isometric DF at 10%, 20%, 30%,

50%, 75% and 100% MVC in a software-generated

random order. Each contraction was for 5 s and was

repeated twice with a 2-min rest between each trial.31

The antagonist force produced by the TS was quanti-

fied based on its sEMG–force relationship, which was

identified during plantarflexion (PF).58

Simulation protocol

The model was simulated at 10%, 20%, 30%, 50%,

75% and 100% MVC for 6 s. This 6 s time window is

long enough for steady-state force and short enough for

estimating the activity close to 100% MVC.59 As a first

step, the following five anatomical parameters were

fixed because these do not vary within a same person:

1. the number of MUs,

2. muscle fibres,

3. Ratio of fast to slow fibre,

4. length of fibre and

5. pennation angle.

The simulation was repeated 18 times with values of

these parameters based on the ranges shown in Table 1

to consider the variability observed in the experimental

sEMG. All the other parameters were obtained based

on the assumption of normal distribution of the values

(Table 1). A total of 108 simulations were performed.

The simulated outputs were processed based on the

recording device specifications to compare simulated

and experimental recordings and downsampled to

1000Hz, mimicking the filter characteristics and sam-

pling frequency of the experimental recording.31

Figure 2. Scatter plot with line of best fit for (a) MP_PSD and

(b) RMS of the simulated and experimental sEMG with change in

percentage MVC.
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Data analysis

SEMG data analysis. The initial and last 1 s of the experi-

mental sEMG and force recordings were discarded

because they contained transients, while this study was

designed for steady state. Maximal power of the power

spectral density (MP-PSD) and root mean square

(RMS) were calculated for both the simulated sEMG

and experimental sEMG. MP-PSD was computed using

a 25% overlap with epoch lengths of 512 points.60

Force data analysis. Determining the true force produced

by TA requires the estimation of the force produced by

TS as an antagonist. This was done by computing the

RMS of TS at the submaximal contractions. The

antagonistic force generated by TS was estimated by

considering the force–sEMG relationship for the TS as

reported by Baratta et al.58 To obtain the agonist TA

force, the estimated antagonistic TS force was added to

the resultant DF force at each %MVC.61

Statistical analysis. To validate the computational model,

the agreement between simulated and experimentally

recorded EMG data was investigated using the Bland–

Altman graphical method.62 The linearity test

(a=0.05) using the Bland–Altman method was also

performed to determine the significance of the agree-

ment between the features (MP-PSD and RMS) of

simulated and experimental sEMG.

Shapiro–Wilk test was performed to determine

whether the mean and variance of the intervals follow

the normal distribution. Since the data were normally

distributed, a statistical equivalence test was performed

to investigate whether the simulated and experimentally

recorded normalized forces are close enough and lie

within the equivalence margin.63 In this study, the

equivalence margin was defined as the range where the

difference between the simulated and experimental

mean data is acceptable and considered close enough

to claim that the two means are equal. Statistical signif-

icance (p-value) was computed to observe the confi-

dence interval for the difference is completely within

the equivalence margin to claim the equivalence.

Results

Figure 2 shows the scatter plot for the MP-PSD and

RMS of simulated and experimental sEMG to observe

the linearity with the force. It is observed that MP-PSD

and RMS increase with increasing force levels, with

simulated data following the experimental trend and

having comparable values. The range of simulated val-

ues is within the experimentally observed values.

Figure 3 shows the Bland–Altman plots for MP-

PSD, RMS and normalized force measurements. From

this plot, it is observed that 98% of the ratios between

MP-PSD of simulated and experimental sEMG lie

within the upper and lower limits of 1.96 standard

deviation (SD), and this confirms agreement. This is

also confirmed by the significance of the linearity test

(p \ 0.0001) using the Bland–Altman method.

It is also observed that 95% of the ratios between

the RMS measured from simulated and experimental

sEMG lie within the upper and lower limits of 1.96 SD

and confirms the agreement between simulated and

experimental sEMG. This is confirmed by the signifi-

cance of the linearity test (p \ 0.0001) using the

Bland–Altman method.

Figure 3. Bland–Altman plot to observe the agreement

between the features of experimental and simulated sEMG and

the force (a) MP-PSD, (b) RMS and (c) normalized force.
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Similarly, 96% of the ratios between the normalized

force sensor measurements from simulated and experi-

mental sEMG lie within the upper and lower limits of

1.96 SD. This confirms that the simulated and experi-

mental normalized measurements agree with each

other. A test of equivalence shows that the equivalence

margin values lie within 95% confidence interval to

claim the equivalence with the significance p-value of

0.03.

Discussion

This article has explained and validated an sEMG

model of TA and resultant force measured at the

footplate during ankle DF. This model has included

the details of the neuromuscular parameters: variations

in Type I and Type II fibres, the non-linearity of MU

recruitment, integration of individual muscle fibre

twitch force and number and size of MUs.

The feature of both the simulated and experimental

sEMG linearly increase with %MVC and was statisti-

cally significant based on the linearity test performed

using the Bland–Altman method. The simulated and

experimental values lie within the upper and lower lim-

its of 1.96 SD and hence confirms the agreement

between the measurements. The results show that the

inter-subject variability was higher in the experimental

data compared with the simulated data despite the

simulated parameters being randomly obtained from

the corresponding range.

Table 1 shows the various ranges of values for each

parameter reported in the literature. It shows that there

is a very high level of variability, such as the number of

MUs reported being in the range from 125 to

652.32,35,44 Similarly, the muscle fibres in the TA

reported varied from 96,000 to 162,000.38 There are

also large variabilities in the values of intra- (si) and

extracellular conductivity (se) and the anisotropy ratio

of the muscles (Kan),
30,64,65 which suggests that there is

large inter-subject variability in the parameters.

However, this may not be observable in the simulation

when considering only 18 subjects because of the num-

ber of parameters being large.

Further simulations were conducted to investigate

the effect of the intracellular and extracellular conduc-

tivities. The results show that the extracellular and

intracellular conductivity ratios influence the SFAP’s

amplitude as shown in Figure 4(a). From Figure 4(b),

it is also observed that the anisotropy affects both its

amplitude and wave shape66 and the amplitude of the

AP decreases with an increase in anisotropy and

‘stretch’ its shape of the wave, which shows high varia-

bility. This condition was simulated and the effect of

different extracellular and intracellular conductivity

ratios and anisotropic ratios on the MP-PSD is shown

in Figure 4(c).

Modelling is a simplified representation of a real-

world application, and in the process, a few assump-

tions are made. In this study, the volume conductor of

TA is modelled as unipennate instead of bipennate. The

validity of this assumption is based on the deeper fibres

having very small impact on the measurements from

the surface.

Also, the computation of the simulated resultant

force at the footplate assumes that the ankle is two-

dimensional (2D) and disregards any difference in the

moment arms x1 and x2 shown in equation (6). This

assumption is reasonable for isometric contraction but

limits generalization. While more natural representa-

tions of volume conductor have been reported,13,19,21 in

this study we have investigated the model only for iso-

metric contractions due to the limits in the

assumptions.12,25,27,29

Figure 4. (a) Effect of different extracellular and intracellular

conductivity ratios on the SFAP, (b) effect of anisotropic ratios on

the SFAP and (c) effect of different extracellular and intracellular

conductivity ratios and anisotropic ratio on the MP-PSD.
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Another significant inference is that the shortening

of muscle fibres can impact the Median Frequency

(MDF)27 and could explain the reduced variability in

the simulated compared with experimental sEMG. It

has been shown that pennate muscles can still undergo

a decrease in fibre length and increased pennation angle

under isometric contraction.28,46

Future work could investigate the detailed volume

conductor representation to consider change in length.

The ankle model that has been used to compute the

resultant force from the generated muscle force is repre-

sented as 2D with fixed moment arms. It has also been

assumed that it is a point load rather than a distribu-

tion on the footplate. These assumptions could be the

cause of the difference between experimental and simu-

lated force measurements. Another assumption in this

study is that only TA has been considered while it is

one of the four muscles that is responsible for ankle

DF.67

Conclusion

A computational model of sEMG and force signal for

TA muscle that describes the sEMG recorded using dif-

ferential electrodes and the resultant force measured on

the footplate has been reported. The model has

included physiological details that have not been

described in previous models: muscle fibre type, num-

ber of muscle fibres, differential surface electrodes, pen-

nation angle and twitch force of each MU. It has been

simulated using a range of values obtained from the lit-

erature and covers the inter-subject variability. This

improved model can be used to investigate changes in

the TA muscle based on sEMG and force generated at

the footplate during isometric DF. This would be devel-

oped to study the changes in neuromuscular parameters

that cannot be estimated directly such as number, size

and type of MUs. It can provide the adaptability to

study the effect of ageing and decline in strength due to

various muscular factors.
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